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Typed soundness —Our slogan

“ Well-typed programs do not go wrong ”

But what does this means?

Closed, well-typed terms never reduce to an error:

∅ ⊢ a : τ =⇒ ∀b, a
∗

−→ b, b /∈ Errors

The term π1 true is an error, but it is ill-typed. —So we are happy.

However. . .
λ(x) (π1 true) is not an error, but it is still ill-typed.

—Should we be upset?

Should we fix/improve our type system to accept this?
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Typed soundness —The slogan revisited

λ(x) (π1 true)

Type errors are bad even in not-yet-used parts of a program.

λ(x) (λ(y) π1 y) true
full
−→ λ(x) (π1 true)

Latent type errors are also bad.

Problem: These errors are not ruled out by type soundness for CBV.

Solution: Full reduction should be used to test type soundness!

This will evaluate open subterms, even under λ’s.

Revised slogan (with full reduction)

“ Well-typed program fragments do not go wrong ”



Benefit of full reduction

Detects more errors.

Hence, as a corollary, type soundness is a stronger result!

Makes typechecking more modular:

You are not forced to use your functions to see errors in their bodies.

Share the meta-theoretical study between CBV and CBN.

Also gives a more abstract view of programs

Even in languages with a CBV semantics, full reduction may be used
to understand programs when efficiency is not a concern.

Give a more solid ground

Even if a full-fledged language uses CBV, it is reassuring if its core
subset is sound and confluent for full reduction.
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Benefit of full reduction

Detects more errors.

Hence, as a corollary, type soundness is a stronger result!

Makes typechecking more modular:

You are not forced to use your functions to see errors in their bodies.

Share the meta-theoretical study between CBV and CBN.

Also gives a more abstract view of programs

Even in languages with a CBV semantics, full reduction may be used
to understand programs when efficiency is not a concern.

Give a more solid ground

Even if a full-fledged language uses CBV, it is reassuring if its core
subset is sound and confluent for full reduction.

Beware! We’ve been spoiled by decades during which our languages
were sound for full reduction and these properties could be taken for
granted. — But they are not true anymore!
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What to do with GADTs?

Should we give up full reduction altogether?

Consider this variant of join:

let join (type a) (x, y : a) (tag : a tag) : a ∗ string =
match tag with

| TInt → (x + y, "an" ^ " int")
| TString → (x ^ y, "a" ^ " string ")

The string computation does not depend on the assumptions and could be
safely reduced.

Our goal

Find the right constructs to allow full reduction in the presence of GADTs.



Implicitly-typed System F with pairs

Terms:

a, b ::= x | λ(x) a | a a | (a, a) | πi a

Evaluation contexts ( for full reduction )

E ::= � | λ(x) E | E a | a E | (E , a) | (a, E ) | πi E

Reduction rules:

(λ(x) a) b ◦→ a[b/x ] πi (a1, a2) ◦→ ai

Context

a ◦→ b

E [a] −→ E [b]

Errors:
D ::= � a | πi � Destructor contexts

c ::= λ(x) a | (a, b) Constructors

E ::=

{

E

[

D[ c ]

]

∣

∣

∣ D[c] 6◦→

}

Errors



Type system Implicitly typed

τ, σ ::= α | τ → σ | τ ∗ σ | ∀(α) τ

Typing rules

Γ, x : τ ⊢ x : τ
Γ, x : τ ⊢ a : σ

Γ ⊢ λ(x) a : τ → σ

Γ ⊢ a : τ → σ Γ ⊢ b : τ

Γ ⊢ a b : σ

Γ ⊢ a : τ Γ ⊢ b : σ

Γ ⊢ (a, b) : τ ∗ σ

Γ ⊢ a : τ1 ∗ τ2

Γ ⊢ πi a : τi

Gen

Γ, α ⊢ a : τ

Γ ⊢ a : ∀(α) τ

Inst

Γ ⊢ a : ∀(α) τ Γ ⊢ σ

Γ ⊢ a : τ [σ/α]



Soundness holds with full reduction

For all variants of System F (F<:, MLF, . . . )

Type soundness breaks

with inconsistent logical assumptions.
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Adding propositions

P ::= ⊤ | P ∧ P | . . . Logical propositions

| τ ≤ τ | . . . Atomic propositions

How can we add support for logical assumptions to our system?

τ ::= . . . | ∀(α | P) τ Γ ⊢ P
Γ ⊢ a : τ Γ ⊢ τ ≤ σ

Γ ⊢ a : σ
. . .

Replacing generalization and instantiation typing rules (the obvious way):

Gen

Γ, α, P ⊢ a : τ

Γ ⊢ a : ∀(α | P) τ

Inst

Γ ⊢ a : ∀(α | P) τ Γ ⊢ σ Γ ⊢ P[σ/α]

Γ ⊢ a : τ [σ/α]

Subsumes System F, F<:, MLF, can encode GADTs:

∀(α | ⊤) σ ∀(α | α ≤ τ) σ ∀(α | α ≥ τ) σ (σ ≤ τ) ∧ (τ ≤ σ)
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The naive rules are unsound

α, (B ≤ B ∗ B) ⊢ true : B α, (B ≤ B ∗ B) ⊢ B ≤ B ∗ B

α, (B ≤ B ∗ B) ⊢ true : B ∗ B

α, (B ≤ B ∗ B) ⊢ (π1 true) : B

∅ ⊢ (π1 true) : ∀(α | B ≤ B ∗ B) B
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An abstraction on (α | P) is consistent when P is satisfied for some type σ
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Explicit vs. Implicit use of hypotheses

In dependently-typed languages, logical propositions are represented as
types. Assumptions are introduced using just λ-abstraction λ(z : P) a and
used by explicitly referring to the assumption z :
(fun (type a) (x, y : a) (tag : a tag) → match tag with

| TInt (z : a = int) → (z x) + (z y)
| TString (z : a = string) → (z x) ^ (z y))

If each use of an assumption is marked by a variable,
all dangerous redexes are blocked by those variables.

The same happens in functional intermediate typed representations (e.g.

System FC).

But marking all uses of assumptions explicitly is a burden for the
programmer: it is too fine grain.

Assumptions should be usable implicitly in derivations, just as consistent
abstraction, for both convenience and erasability.



Explicit vs. Implicit use of hypotheses

In dependently-typed languages, logical propositions are represented as
types. Assumptions are introduced using just λ-abstraction λ(z : P) a and
used by explicitly referring to the assumption z :
fun (tag : int tag) → match tag with

| TInt (z : int = int) → (z 3) + (z 4)
| TString (z : int = string) → (z 3) ^ (z 4)

If each use of an assumption is marked by a variable,
all dangerous redexes are blocked by those variables.

The same happens in functional intermediate typed representations (e.g.

System FC).

But marking all uses of assumptions explicitly is a burden for the
programmer: it is too fine grain.

Assumptions should be usable implicitly in derivations, just as consistent
abstraction, for both convenience and erasability.
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Introducing (possibly) inconsistent assumptions

a ::= . . . | δ(a, φ.b) | ⋄ τ ::= . . . | [P]

Γ ⊢ P

Γ ⊢ ⋄ : [P]

Γ ⊢ a : [P] Γ, φ : P ⊢ b : τ

Γ ⊢ δ(a, φ. b ) : τ

Evaluation

E ::= . . . | δ(E , φ.b) |
✘✘✘✘✘✘

δ(a, φ.E ) δ(⋄, φ.b) ◦→ b
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GADTs, sound edition

type ’a tag =
| TInt of [’ a = int]
| TString of [’ a = string ]

let join (type a) (x, y : a) (tag : a tag) : a ∗ string =
match tag with

| TInt z → δ(z, φ. (x + y, "an" ^ " int" ))

| TString z → δ(z, φ. (x ^ y, "a" ^ " string " ))

We may block the whole branch, as done in OCaml or Haskell

We also offer more flexibility between implicit and explicit use of
assumptions.

Can we do even better?

leave the use of the assumption implicit in the whole scope

but say explicitly that "an" ^ " int" is not using the assumption?
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Assumption hiding

Assume only F is implicitly using the assumption in:

δ

(

a, φ. E

[

F
[

b
]

]

)

Then E and b are unnecessarily blocked. We may write

E

[

δ

(

a, φ. F
[

b
]

)]

For flexibility, we allow un-blocking a subterm by disabling an assumption.

E

[

δ(a, φ. F
[

hide φ in b
]

)

]

Formally

a ::= . . . | hide φ in b
Γ ⊢ ∆ Γ, ∆ ⊢ a : τ

Γ , φ : P , ∆ ⊢ hide φ in a : τ



GADTs, last edition

type ’a tag =
| TInt of [’ a = int]
| TFloat of [’ a = float ]

let join (type a) (x, y : a) (tag : a tag) : a ∗ string =
match tag with

| TInt z → δ(z, φ. (x + y, hide φ in "an" ^ " int" ))

| TString z → δ(z, φ. (x ^ y, hide φ in "a" ^ " string " ))

The evaluation of "an" ^ " int" need not be blocked anymore.

We offer a continuity between implicit and explicit use of assumptions.
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δ(y , φ. E [hide φ in a ] ) δ(y , φ. E
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]

)−✟✟−−−→

A term in reducible position before substitution, should remain reducible
after substitution.
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Mixing full and weak reduction: confluence is restored.

Suppose a −→ b. We have a confluence problem:

(λ(x) δ(y , φ. E [x ] )) a (λ(x) δ(y , φ. E [x ] )) b

δ(y , φ. E [hide φ in a ] ) δ(y , φ. E
[

hide φ in b
]

)

A term in reducible position before substitution, should remain reducible
after substitution.

Idea insert hide φ when substitution traverses the guard φ.

Result The system is sound for full-reduction and confluent.

Notice: hide φ in b is useful for flexibility, but required for confluence.





Technical details Evaluation contexts

We now need to scan under δ’s for reducible terms under hides.

E ::= . . . | δ(a, φ.E ) | hide φ in E

In δ(a, φ.b), b is guarded by the assumption variable φ, while hide φ in a

releases the guard φ. Evaluation contexts are the unguarded ones:

Context

a ◦→ b guard∅ (E ) = ∅

E [a] −→ E [b]

where

guardS (λ(x) E ) := guardS (E )
guard

S
(�) := S

guard
S

(δ(E , φ.b)) := guard
S

(E )

guardS (δ(a, φ.E )) := guard S, φ (E )

guard
S

(hide φ in E ) := guard S \ {φ} (E )



Technical details Substitution

We have changed the notion of substitution to insert hidings:

(λ(x) a) b ◦→ a[b/x ]∅

x [c/y ]S := x

y [c/y ]S := hide S in c

(λ(x) a)[c/y ]S := λ(x) (a[c/y ]S )

δ(a, φ.b)[c/y ]S := δ(a[c/y ]S , φ.b[c/y ] S,φ)

(hide φ in a)[c/y ]S := hide φ in a[c/y ] S\{φ}

We have also changed the notion of reduction contexts.

These changes are minor as they do not change the term structure, just
hiding information, which can be seen as annotations on terms.



Technical details Related works

Mixing full and weak reduction is a known a problem in the term rewriting
community.

In λ-calculus, the solution is to extend weak reduction to allow reduction of
subterms under abstractions on which the computation does not depend.

Our solution is somehow similar, but we first had to introduce explicit
(blocking and unblocking) marks for logical dependencies.



More technical details Soundness proof

1. Eliminating hides
We simulate computation with hiding in the language without hiding (and
normal β-reduction) by let-extruding hiding constructs.

δ(b, φ. E [hide φ in a ] )

→֒ let x = abs(E , a) in δ(b, φ. E [app(x , E ) ])

If |a| is the →֒ normal form of a:

If a −→ b then |a| −→∗ |b|.

a ∈ Errors ⇐⇒ |a| ∈ Errors



More technical details Soundness proof

1. Eliminating hides
We simulate computation with hiding in the language without hiding (and
normal β-reduction) by let-extruding hiding constructs.

δ(b, φ. E [hide φ in a ] )

→֒ let x = abs(E , a) in δ(b, φ. E [app(x , E ) ])

If |a| is the →֒ normal form of a:

If a −→ b then |a| −→∗ |b|.

a ∈ Errors ⇐⇒ |a| ∈ Errors

2. Soundness of the language without hide

Bisimulation with Fcc (variant with both consistent and inconsistent
abstractions, but no inconsistent assumptions [P])

Fcc proved sound with a semantics approach.

Direct soundness proof should be possible.



Consistent assumptions

I focused on (possibly) inconsistent assumptions, but consistent
assumptions are also common and equally useful.



Mixing consistent and inconsistent abstraction

We build a data-type α term that contains computations, of type α:

type _ term =
| TLam : ’a ∗ [ ’a = ’b → ’c ] → ’a term
| TApp : (’b → ’a) term ∗ ’b term → ’a term

let rec eval (type a) (t : a term) : a =
match t with

| TLam (f, z) → δ(z, φ. f)
| TApp (tf, tx) → (eval tf ) (eval tx)

The constructor TLam constraints ’a to be an arrow type.
A value TLam (f, w) carries a witness z that f has an arrow type.

The constructor TApp is surjective, so it needs not block the
evaluation.



Implicit types

Our calculus is implicitly-typed

⊙ This simplifies the presentation

⊕ We focus on computation and soundness issues

⊕ Terms only contain computational constructs (i.e. that determines
the semantics) and no erasable features at all.

⊖ Does not provide a surface language.



Take away

We may support inconsistent abstraction the presence of full reduction.

One must allow to block (for soundness) and unblock (for confluence)
reduction of subterms.

We should distinguish consistent and inconsistent abstractions and use
whichever is most appropriate.

Language design could help preserve/structure this distinction.

(Opinion) In many cases programmers also think of correctness in an
abstract way, in terms of full reduction. We should also care for full
reduction in the meta-theoretical study of programming languages.
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