DA

FUNCTIONALLY OBLIVIOUS

(AND SUCCINCT)

Edward Kmett

PUILDING BETTER TOCHSS

» Cache-Oblivious Algorithms

* Succinct Data Structures

A MODE

» Almost everything you do in Haskell assumes this model

» Good for ADTs, but not a realistic model of today’s hardware

e IO

CPU + IR Disk
MiSisleln

* Can Read/Write Contiguous Blocks of Size B

* Can Hold M/B blocks in working memory

» All other operations are “Free”

LN TN

| L I Iy P Tyl PIEL |

* Occupies O(N/B) blocks worth of space
* Update in time O(log(N/B))
» Search O(log(N/B) + a/B) where a is the result set size

o MODTE

S — e
Registers Memory

Registers

* Huge numbers of constants to tune
» Optimizing for one necessarily sub-optimizes others

» Caches grows exponentially in size and slowness

CACHE-OBLIVIOUS MODE

m : ; =

* Can Read/Write Contiguous Blocks of Size B

* Can Hold M/B Blocks in working memory

B Beiher operations are "kree”

* But now you don't get to know M or B!

» Various refinements exist e.¢. the tall cache assumption

CACHE-OBLIVIOUS MODE

m : ; =

* If your algorithm is asymptotically optimal for an unknown
cache with an optimal replacement policy 1t Is asymptotically
optimal for all caches at the same time.

* You can relax the assumption of optimal replacement and
model LRU, k-way set associative caches, and the like via
caches by modest reductions in M.

CACHE-OBLIVIOUS MODE

m : ; =

* As caches grow taller and more complex it becomes harder
to tune for them at the same time. Tuning for one provably
renders you suboptimal for others.

* The overhead of this model is largely compensated for by ease
of portability and vastly reduced tuning.

* This model iIs becoming more and more true over time!

DATA.MAP

Built by Daan Leijen.

Maintained by Johan Tibell and Milan Straka.
Battle Tested. Highly Optimized. In use since 1998.
Built on Trees of Bounded Balance

The defacto benchmark of performance.

Designed for the Pointer/RAM Model

DATA.MAP

“
g b

“Binary search trees of bounded balance”

DATA.MAP

y
o %

“Binary search trees of bounded balance”

DATA.MAP

« Production:

e empty :: Ord k = Map k a

« insert :: Ord k = k > a — Map k a = Map k a
« Consumption:

e« null :: Ord k = Map k a — Bool

e lookup :: Ord k = k = Map k a — Maybe a

WHAT | WANT

* | need a Map that has support for very efficient range queries
* It also needs to support very efficient writes
* It needs to support unboxed data

- ..and | don't want to give up all the conveniences of Haskell

SIE DUMBES T [Hiis
gHAl CAN WORE

- TJake an array of (key, value) pairs sorted by key and arrange it
contiguously In memory

 Binary search It.

- Eventually your search falls entirely within a cache line.

BINARY SEARCH

— | Binary search assuming 0 <= 1 <= h.
— Returns h if the predicate 1is never True over [l..h)

SE s @Int —> Bool) —-> Int -> Int -> Int
search p = go where
go L h
| 1 ==h =1
pm = go L m

| otherwise = go (m+1) h
where m = 1 + unsafeShiftR (h sl
{-# INLINE search #-}

OFFSET BINARY SEARCH

— | Offset binary search assuming 0 <= 1 <= h.
— Returns h if the predicate is never True over [Ll..h)

EE el (Cint —> Bool) -> Int -> Int -> Int
search p = go where
go L h
= 1 L Avoids thrashing the same lines in k-way set
pm RO associative caches near the root.

|
|
| otherwise = go (m+1l) h
where hml = h - 1

m = 1 + unsafeShiftR hml 1 + unsafeShiftR hml 6
{-# INLINE search #-}

DYNAMIZATION

 We have a static structure that does what we want

« How can we make It updatable!

+ Bentley and Saxe gave us one way in [980.

BENTLEY-5AX

D

2 12030140

Now let's insert /

B

-NTLEY-5AX

5 v

e

ol
2 12030140

-NTLEY-5AX

ol
2 12030140

Now let's insert 8

BENTLEY-5SAXE

3
il
2 12030140

Next insert causes a cascade of carries!
Worst-case insert time is O(N/B)

Amortized insert time is O((log N)/B)
We computed that oblivous to B

BENTLEY-5SAXE

» Linked list of our static structure.
* Each a power of 2 in size.

* The list Is sorted strictly monotonically by size.
* Bigger / older structures are later in the list.
* We need a way to merge query results.

Biete e ust take the first.

SLOPPY AND DYSFUNCTIONAL

Chris Okasaki would not approve!
Our analysis used assumed linear/ephemeral access.

A sufficiently long carry might rebuild the whole thing, but it you
went back to the old version and did it again, it'd have to do it all

over.

You can't earn credits and spend them twice!

AMORTIZATION

Gliven a sequence of n operations:

di, @z, as .. dn

What Is the running time of the whole sequence!?

Vk=<n. Zac’ruali SZGmOPTiZCdi

There are algorithms for which the amortized bound s
provably better than the achievable worst-case bound
e.9. Union-Find

BANKER'S METHOD

» Assign a price to each operation.
» Store savings/borrowings In state around the data structure

* If no account has any debt, then

Vk=<n. ZGCTUGIi SZGmOr‘TiZQdi

ESICIS TS METHICES

- Start from savings and derive costs per operation

* Assign a “potential” @ to each state in the data structure
* The amortized cost Is actual cost plus the change In potential.
amortized; = actuali + & - &1

actual; = amortized; + ®;.1 - ¥

* Amortization holds if &9 = O and &, > O

RCMBER SYSTERS

S Einar - Linkea List

+ Binary - Bentley-Saxe

 Skew-Binary - Okasaki's Random Access Lists

» Zeroless Binary - !

UNARY

 data Nat = Zero | Succ Nat

 data Lista = Nil | Cons a (List a)

BINARY

B o
| ||
Unary - Linked List 10
||
Binary - Bentley-Saxe 1100
10|
Skew-Binary - Okasaki's Random Access Lists E 11110
/ [AEREER

Zeroless Binary - ¢

EDHEE) 1O
DD
o el D)

/EROL

* Digits are all I, 2.

+ Unique representation

=55 BINARE

N = N = | DI D s e

0
n
El
Kl
6
7
5
9
10

NN =i LR s

MODIFIED ZEROL

EREeistcre all |, 2 or 3.
* Only the leading digit can be |
+ Unique representation

» Just the right amount of lag

=55 BINARY

ﬂ 0
|
Pl | >
3
4 EEb)
5 ik
B 2>
¥ :
1 3>
£l 33
I 2o

Binary
0 [
B | |
10
|
1100
10|
B o
11

COLBCHIEIED
S D) D)
S el)

Zeroless Binary

K o
B | |
2
3
g >
5
B 2>
7 [
s (e
5 [kl

10 [jei

Modified
Zeroless Binary

DT e Pt
N G0 A S PO OO SRR R

2
3|2
3|3
B

I
o
k
k2
10

RERSIS [ENTLY AMOR FZESS

data Map k a
= MO
| M1 !(Chunk k a)
| M2 !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
| M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)

data Chunk k a = Chunk !(Array k) !(Array a)

— | 0(log(N)/B) persistently amortized. Insert an element.
insert :: (k, Arrayed k, Arrayed v) => k -=> v —> Map k v —> Map k v
insert k@ v@0 = go $ Chunk (singleton k@) (singleton v@) where

go as M@ M1 as

go as (M1 bs) M2 as bs (merge as bs) M0

go as (M2 bs cs bcs xs) M3 as bs cs bcs xs

go as (M3 bs _ _ cds xs) = cds seq M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}

WHY DO WE CARE!

Inserts are ~/-10x faster than Data.Map and get faster with scale!
The structure is easily mmapd in from disk for offline storage
This lets us build an “unboxed Map’ from unboxed vectors.
Matches insert performance of a B-Tree without knowing B.

Nothing to tune.

"ROBLEME

» Searching the structure we've defined so far takes

O(log?(N/B) + a/B)

« We only matched insert performance, but not query performance.

We have to query O(log n) structures to answer queries.

BLOOM-FILTERS

@

* Assoclate a hierarchical Bloom filter with each array tuned to a
false positive rate that balances the cost of the cache misses for
the binary search against the cost of hashing into the filter.

* Improves upon a version of the “Stratified Doubling Array”

« Not Cache-Oblivious! %b

FRACTIONAL CASCADING

* Search m sorted arrays each of sizes up to h at the same time.
* Precalculations are allowed, but not a huge explosion In space

* Very useful for many computational geometry problems.

* Naive Solution: Binary search each separately in O(m log n)

* With Fractional Cascading: O (log mn) = O(log m + log n)

Al | IONAL CASCA

» Consider 2 sorted lists e. 4.

i

5

3
6

8

PO

2

36

5
37|38

* Copy every kth entry from the second into the first

3

/ /

56

[112113

02010

364

i

O350

=

DING

40

41

» After a falled search in the first, you now have to search a
constant K-sized fragment of the second.

.

IMPLICIT
FRACTIONAL CASCADING

* New trick:

* We copy every kth entry up from the next largest array.

* |[f we had a way to count the number of forwarding pointers

up to a given position we could just multiply that # by k and
not have to store the pointers themselves

SUCCINCT

DICTIONARI

* Given a bit vector of length n containing k ones e.4.

O[O L] L{O] I{ T{O[O[L{ {0 || 1| I{H{O{F{I{IO]1]1{1]|I]I]O[O

; | q
There exist <k> such vectors.

Ho = log (IQ)+1

* Knowing nothing else we could store that choice in Hog bits

rankq(i) = # of occurrences of a in S[O..i)

selectq(i) = position of the ithain S

NON-SUCCINC
DICTIONARIES

* Given a bit vector of length n containing k ones e.4.

O[O[L{L{O[T{IJO{O| I{ 1] 1O L{EEL{E{E{O{E{T{1{Ofl{1]{1]1]1]0|O

* Break it into chunks of size log(n) (or 64)
» Store a prefix sum up to each chunk

* With just 2n total space we get an O(1) version of:
rankq(S,i) = # of occurrences of a in S[O..i)

IMPLICIT FORWARDING

» Store a bitvector for each key in the vector that indicates If the
key Is a forwarding pointer; or has a value associated.

* o index Into the values use rank up to a given position
Instead.

» This can also be used to represent deletion flags succinctly.

* In practice we can use non-succinct algorithms. (ranko,
POPPY)

g

BEN

Match the asymptotic B-Tree performance without knowing B
Fully persistent, can edit previous versions.
Always uses sequential writes on disk

We get ~ | Ox faster inserts than Data.Map

We can reuse the dynamization technique for other domains

QUESTIONS!?

* The code is on github:

http://github.com/ekmett/structures

http://github.com/ekmett/succinct

NON-SUCCINC
DICTIONARIES

* Given a bit vector of length n containing k ones e.4.

O[O[L{L{O[T{IJO{O| I{ 1] 1O L{EEL{E{E{O{E{T{1{Ofl{1]{1]1]1]0|O

* Break it into chunks of size log(n) (or 64)
» Store a prefix sum up to each chunk

* With just 2n total space we get an O(1) version of:
rankq(S,i) = # of occurrences of a in S[O..i)

BOC CINC T RESS

- Parsed data takes several times more space than the raw format

+ Pointers and ADTs are big

« How can we do better?

JACOBSON TR

k div 2
» Start with an implicit tree

