
Bounded Model Checking
for Functional Programs

Koen Lindström Claessen
(joint work with Dan Rosén)



prop_Unambiguous t1 t2 =
  show t1 == show t2 ==> t1 == t2

prop_Unambiguous’ t1 t2 =
  t1 /= t2 ==> show t1 /= show t2

very hard to test
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QuickSpec

            map f [] = []
    map f (map g xs) = map (f . g) xs
reverse (reverse xs) = xs
  map f (reverse xs) = reverse (map f xs)
                    ... 

● automatically produced
● every equation is tested for 

correctness
● no equation is logically implied* 

by previous ones

sorted xs ==>
  sorted (insert x xs)

?



...
insert x xs = xs          ==> FALSE
insert x xs = insert y xs ==> x = y
insert x xs = insert x ys ==> xs = ys
...

very hard to test

TurboSpec

sort xs = sort ys ==> sort xs = xs
                   \/ sort ys = ys
                   \/ xs = ys

very hard to black-box test



The Problem

● Properties with
○ Strong pre-conditions
○ Weak post-conditions
○ No use of human intelligence

● How to find counter-examples?

● How to increase our confidence?
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type Bool

Forte / FL

FL> var “a” && not (var “a”)

FL> not (var “b” || not (var “a”))

FL> if var “a” then [] else [1]
 

FL> if var “a” then False else True

var :: String -> Bool

False

a&&~b

~a

ERROR: no booleans
type Prop



   data List a = Nil
               | Cons a (List a)

Main Trick

   data Arg a = X | An a

   data ListS a = NilCons Prop
                          (Arg a)
                          (Arg (ListS a))

decides whether 
Nil or Cons



Symbolic If-Then-Else

 if c then p else q = (c && p) || (not c && q)

 if_then_else_ :: Prop -> Prop -> Prop -> Prop



Symbolic If-Then-Else

 if c then X    else ab   = ab
 if c then aa   else X    = aa
 if c then An a else An b =
                          An (if c then a else b)

 if_then_else_ :: Prop -> Arg a -> Arg a -> Arg a



Symbolic If-Then-Else

 if c then NilCons p x xs else NilCons q y ys =
   NilCons (if c then p else q)
           (if c then x else y)
           (if c then xs else ys)

 if_then_else_ :: Prop -> ListS a -> ListS a
                                  -> ListS a



symbolic evaluation
on bounded inputs



incrementality

unbounded inputs?
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data Expr a = Var a
            | Add (Expr a) (Expr a)
            | Neg (Expr a)

Example
vars :: Expr a -> [a]
vars (Var x)   = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a)   = vars a

vars e res =
  wait e $ \(Expr c ax aa ab) ->
    do when (c `is` Var) $
         singleton (un ax) res
       when (c `is` Add) $
         do va <- new
            vars (un aa) va
            vb <- new
            vars (un ab) vb
            append va vb res
       when (c `is` Neg) $
         do vars (un aa) res



Generating Constraints

type C a -- Monad

newVar :: C Prop
insist :: Prop -> C ()
when   :: Prop -> C () -> C ()

when a (insist b) == insist (a => b)
when a (when b p) == when (a && b) p
when false p      == skip



Finite Choice

type Fin a = [(Prop,a)]

is :: Eq a => Fin a -> a -> Prop
pxs `is` x = lookup x (pxs++[(x,false)])

newFin :: [a] -> C (Fin a)
newFin xs =
  sequence [ (x,) `fmap` newVar | x <- xs ]



Example
vars :: Expr a -> [a]
vars (Var x)   = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a)   = vars a

vars e res =
  wait e $ \(Expr c ax aa ab) ->
    do when (c `is` Var) $
         singleton (un ax) res
       when (c `is` Add) $
         do va <- new
            vars (un aa) va
            vb <- new
            vars (un ab) vb
            append va vb res
       when (c `is` Neg) $
         do vars (un aa) res



Incrementality

type Delay a

delay :: C a -> C (Delay a)
force :: Delay a -> C a
wait  :: Delay a -> (a -> C ()) -> C ()



Example: Expr

data Expr a = Var a
            | Add (Expr a) (Expr a)
            | Neg (Expr a)

data ExprL   = Var | Add | Neg
data ExprC a = Expr (Fin ExprL)
                    (Arg a)
                    (Arg (ExprS a))
                    (Arg (ExprS a))
data ExprS a = Delay (ExprC a)



Symbolic Expressions

class Constructive a where
  new :: C a

instance Constructive a =>
           Constructive (ListS a) where
  new = delay $
    do c  <- newFin [Nil,Cons]
       x  <- new  -- :: a
       xs <- new  -- :: ListS a
       return (ListS c (An x) (An xs))



Example
vars :: Expr a -> [a]
vars (Var x)   = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a)   = vars a

vars e res =
  wait e $ \(Expr c ax aa ab) ->
    do when (c `is` Var) $
         singleton (un ax) res
       when (c `is` Add) $
         do va <- new
            vars (un aa) va
            vb <- new
            vars (un ab) vb
            append va vb res
       when (c `is` Neg) $
         do vars (un aa) res



Translation of Programs

f x y = e

f x y res =
  <<e->res>>

<<f x y->res>> =
  f x y res

<<(let x = e1 in e2)->res>> =
  do x <- new
     <<e1->x>>
     <<e2->res>>



Case Expressions

<<(case xs of
     Nil       -> e1
     Cons y ys -> e2 y ys)->res>>

wait xs (\(List c ay ays) ->
  do when (c `is` Nil)
       <<e1->res>>

     when (c `is` Cons)
       <<e2 (un ay) (un ays)->res>>
)

un :: Arg a -> a
un (An x) = x



Example
vars :: Expr a -> [a]
vars (Var x)   = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a)   = vars a

vars e res =
  wait e $ \(Expr c ax aa ab) ->
    do when (c `is` Var) $
         singleton (un ax) res
       when (c `is` Add) $
         do va <- new
            vars (un aa) va
            vb <- new
            vars (un ab) vb
            append va vb res
       when (c `is` Neg) $
         do vars (un aa) res



Example

prop_NoPalindromes (xs::[Bool]) =
  length xs >= 3 ==>
    reverse xs /= xs



Call merging
case t of
  Empty ->
  Node a p q | x < a     -> … f p … 
             | otherwise -> … f q … 

let pq =
       case t of
         Node a p q | x < a     -> p
                    | otherwise -> q
 in case t of
      Empty ->
      Node a p q | x < a     -> … f pq … 
                 | otherwise -> … f pq … 



Main Solving Loop

1. Generate initial constraints by executing 
the program

2. Solve, assuming that no waiting 
computation can happen

3. If solution, then done

4. Otherwise, pick one waiting computation, 
force it, and go to 3.



Example
vars :: Expr a -> [a]
vars (Var x)   = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a)   = vars a

vars e res =
  wait e $ \(Expr c ax aa ab) ->
    do when (c `is` Var) $
         singleton (un ax) res
       when (c `is` Add) $
         do va <- new
            vars (un aa) va
            vb <- new
            vars (un ab) vb
            append va vb res
       when (c `is` Neg) $
         do vars (un aa) res



Memoization

● In symbolic evaluation…

● … all branches of a case are executed!

● Functions are applied much more often…

● … and more often to the same 
arguments multiple times!



Which Wait to Force?

● If no solution, then we have a conflict …

● … a subset of the assumptions that is 
contradictory

● Keep a queue of waiting computations …

● … and always expand the computation 
that is part of the conflict that is most to 
the head of the queue



Example: Usorted list

usorted :: [Nat] -> Bool
usorted (x:y:xs) = x < y && usorted (y:xs)
usorted _        = True

cond xs = length xs >= 3 && usorted xs



Example: Merge
merge :: Ord a => [a] -> [a] -> [a]
merge []     ys     = ys
merge xs     []     = xs
merge (x:xs) (y:ys)
  | x <= y          = x : merge xs (y:ys)
  | otherwise       = y : merge (x:xs) ys

memoization!

merge :: Ord a => [a] -> [a] -> [a]
merge []     ys     = ys
merge xs     []     = xs
merge (x:xs) (y:ys) =
  let (a,as,bs)
        | x <= y    = (x, xs,   y:ys)
        | otherwise = (y, x:xs, ys)
   in a : merge as bs





Example: Turing Machine
data Sym    = A | B | O
type State  = Nat
data Action = Lft State | Rgt State | Stp

type Q = (State,Sym) -> (Sym,Action)

run :: Q -> [Sym] -> [Sym]



Termination

● Some functions may not terminate

● (even though their non-symbolic versions 
do terminate!)

● In such cases, we introduce an artificial 
wait

postpone :: C () -> C ()
postpone p =
  do x <- new -- :: ()
     wait x $ \() -> p



Example: Turing Machine

cond q =
  run q [A]           == [A] &&
  run q [B,A,A,A,A,B] == [A,A,A,A,B,B]

(0,A) -> (A,Stop)
(0,B) -> (A,Rgt 1)
(1,A) -> (A,Rgt 1)
(1,B) -> (B,Lft 2)
(2,A) -> (B,Stop)



Other examples

● Type checker
-> find terms of a certain type

● Regular expression recognizer
-> find bugs in recognizer
-> find buggy laws

● Grammar specification
-> natural language ambiguities



Current Work

● SMT
○ Integer theory
○ Equality / functions (Leon)

● Improve incrementality
○ Conflict minimization

● Memory use / garbage collection

● TurboSpec



Conclusions

● HipSpec = QuickSpec + Hip

● Speculating conjectures needs smart ways 
of finding counter examples

● Using SAT is one such way

● Benchmark suite for
○ Automated induction problems
○ False properties https://github.com/tip-org


