
Bounded Model Checking
for Functional Programs

Koen Lindström Claessen
(joint work with Dan Rosén)

prop_Unambiguous t1 t2 =
 show t1 == show t2 ==> t1 == t2

prop_Unambiguous’ t1 t2 =
 t1 /= t2 ==> show t1 /= show t2

very hard to test

HipSpec

QuickSpec

Haskell
program Hs->FOL

speculated
conjectures

logic theory

Hip

properties

proof
attempts

FOL prover

testing

QuickSpec

 map f [] = []
 map f (map g xs) = map (f . g) xs
reverse (reverse xs) = xs
 map f (reverse xs) = reverse (map f xs)
 ...

● automatically produced
● every equation is tested for

correctness
● no equation is logically implied*

by previous ones

sorted xs ==>
 sorted (insert x xs)

?

...
insert x xs = xs ==> FALSE
insert x xs = insert y xs ==> x = y
insert x xs = insert x ys ==> xs = ys
...

very hard to test

TurboSpec

sort xs = sort ys ==> sort xs = xs
 \/ sort ys = ys
 \/ xs = ys

very hard to black-box test

The Problem

● Properties with
○ Strong pre-conditions
○ Weak post-conditions
○ No use of human intelligence

● How to find counter-examples?

● How to increase our confidence?

BDDs

SAT

Bounded Model
Checking

deep bugsease of use

immense SAT-solver
improvements

1990

1999

symbolic evaluation

bounded model checking

type Bool

Forte / FL

FL> var “a” && not (var “a”)

FL> not (var “b” || not (var “a”))

FL> if var “a” then [] else [1]

FL> if var “a” then False else True

var :: String -> Bool

False

a&&~b

~a

ERROR: no booleans
type Prop

 data List a = Nil
 | Cons a (List a)

Main Trick

 data Arg a = X | An a

 data ListS a = NilCons Prop
 (Arg a)
 (Arg (ListS a))

decides whether
Nil or Cons

Symbolic If-Then-Else

 if c then p else q = (c && p) || (not c && q)

 if_then_else_ :: Prop -> Prop -> Prop -> Prop

Symbolic If-Then-Else

 if c then X else ab = ab
 if c then aa else X = aa
 if c then An a else An b =
 An (if c then a else b)

 if_then_else_ :: Prop -> Arg a -> Arg a -> Arg a

Symbolic If-Then-Else

 if c then NilCons p x xs else NilCons q y ys =
 NilCons (if c then p else q)
 (if c then x else y)
 (if c then xs else ys)

 if_then_else_ :: Prop -> ListS a -> ListS a
 -> ListS a

symbolic evaluation
on bounded inputs

incrementality

unbounded inputs?

HBMC

Haskell
program Hs->SymHs

Haskell
program

execute

property

SAT-solver

counter-
example

?

data Expr a = Var a
 | Add (Expr a) (Expr a)
 | Neg (Expr a)

Example
vars :: Expr a -> [a]
vars (Var x) = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a) = vars a

vars e res =
 wait e $ \(Expr c ax aa ab) ->
 do when (c `is` Var) $
 singleton (un ax) res
 when (c `is` Add) $
 do va <- new
 vars (un aa) va
 vb <- new
 vars (un ab) vb
 append va vb res
 when (c `is` Neg) $
 do vars (un aa) res

Generating Constraints

type C a -- Monad

newVar :: C Prop
insist :: Prop -> C ()
when :: Prop -> C () -> C ()

when a (insist b) == insist (a => b)
when a (when b p) == when (a && b) p
when false p == skip

Finite Choice

type Fin a = [(Prop,a)]

is :: Eq a => Fin a -> a -> Prop
pxs `is` x = lookup x (pxs++[(x,false)])

newFin :: [a] -> C (Fin a)
newFin xs =
 sequence [(x,) `fmap` newVar | x <- xs]

Example
vars :: Expr a -> [a]
vars (Var x) = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a) = vars a

vars e res =
 wait e $ \(Expr c ax aa ab) ->
 do when (c `is` Var) $
 singleton (un ax) res
 when (c `is` Add) $
 do va <- new
 vars (un aa) va
 vb <- new
 vars (un ab) vb
 append va vb res
 when (c `is` Neg) $
 do vars (un aa) res

Incrementality

type Delay a

delay :: C a -> C (Delay a)
force :: Delay a -> C a
wait :: Delay a -> (a -> C ()) -> C ()

Example: Expr

data Expr a = Var a
 | Add (Expr a) (Expr a)
 | Neg (Expr a)

data ExprL = Var | Add | Neg
data ExprC a = Expr (Fin ExprL)
 (Arg a)
 (Arg (ExprS a))
 (Arg (ExprS a))
data ExprS a = Delay (ExprC a)

Symbolic Expressions

class Constructive a where
 new :: C a

instance Constructive a =>
 Constructive (ListS a) where
 new = delay $
 do c <- newFin [Nil,Cons]
 x <- new -- :: a
 xs <- new -- :: ListS a
 return (ListS c (An x) (An xs))

Example
vars :: Expr a -> [a]
vars (Var x) = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a) = vars a

vars e res =
 wait e $ \(Expr c ax aa ab) ->
 do when (c `is` Var) $
 singleton (un ax) res
 when (c `is` Add) $
 do va <- new
 vars (un aa) va
 vb <- new
 vars (un ab) vb
 append va vb res
 when (c `is` Neg) $
 do vars (un aa) res

Translation of Programs

f x y = e

f x y res =
 <<e->res>>

<<f x y->res>> =
 f x y res

<<(let x = e1 in e2)->res>> =
 do x <- new
 <<e1->x>>
 <<e2->res>>

Case Expressions

<<(case xs of
 Nil -> e1
 Cons y ys -> e2 y ys)->res>>

wait xs (\(List c ay ays) ->
 do when (c `is` Nil)
 <<e1->res>>

 when (c `is` Cons)
 <<e2 (un ay) (un ays)->res>>
)

un :: Arg a -> a
un (An x) = x

Example
vars :: Expr a -> [a]
vars (Var x) = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a) = vars a

vars e res =
 wait e $ \(Expr c ax aa ab) ->
 do when (c `is` Var) $
 singleton (un ax) res
 when (c `is` Add) $
 do va <- new
 vars (un aa) va
 vb <- new
 vars (un ab) vb
 append va vb res
 when (c `is` Neg) $
 do vars (un aa) res

Example

prop_NoPalindromes (xs::[Bool]) =
 length xs >= 3 ==>
 reverse xs /= xs

Call merging
case t of
 Empty ->
 Node a p q | x < a -> … f p …
 | otherwise -> … f q …

let pq =
 case t of
 Node a p q | x < a -> p
 | otherwise -> q
 in case t of
 Empty ->
 Node a p q | x < a -> … f pq …
 | otherwise -> … f pq …

Main Solving Loop

1. Generate initial constraints by executing
the program

2. Solve, assuming that no waiting
computation can happen

3. If solution, then done

4. Otherwise, pick one waiting computation,
force it, and go to 3.

Example
vars :: Expr a -> [a]
vars (Var x) = [x]
vars (Add a b) = vars a ++ vars b
vars (Neg a) = vars a

vars e res =
 wait e $ \(Expr c ax aa ab) ->
 do when (c `is` Var) $
 singleton (un ax) res
 when (c `is` Add) $
 do va <- new
 vars (un aa) va
 vb <- new
 vars (un ab) vb
 append va vb res
 when (c `is` Neg) $
 do vars (un aa) res

Memoization

● In symbolic evaluation…

● … all branches of a case are executed!

● Functions are applied much more often…

● … and more often to the same
arguments multiple times!

Which Wait to Force?

● If no solution, then we have a conflict …

● … a subset of the assumptions that is
contradictory

● Keep a queue of waiting computations …

● … and always expand the computation
that is part of the conflict that is most to
the head of the queue

Example: Usorted list

usorted :: [Nat] -> Bool
usorted (x:y:xs) = x < y && usorted (y:xs)
usorted _ = True

cond xs = length xs >= 3 && usorted xs

Example: Merge
merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
 | x <= y = x : merge xs (y:ys)
 | otherwise = y : merge (x:xs) ys

memoization!

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
 let (a,as,bs)
 | x <= y = (x, xs, y:ys)
 | otherwise = (y, x:xs, ys)
 in a : merge as bs

Example: Turing Machine
data Sym = A | B | O
type State = Nat
data Action = Lft State | Rgt State | Stp

type Q = (State,Sym) -> (Sym,Action)

run :: Q -> [Sym] -> [Sym]

Termination

● Some functions may not terminate

● (even though their non-symbolic versions
do terminate!)

● In such cases, we introduce an artificial
wait

postpone :: C () -> C ()
postpone p =
 do x <- new -- :: ()
 wait x $ \() -> p

Example: Turing Machine

cond q =
 run q [A] == [A] &&
 run q [B,A,A,A,A,B] == [A,A,A,A,B,B]

(0,A) -> (A,Stop)
(0,B) -> (A,Rgt 1)
(1,A) -> (A,Rgt 1)
(1,B) -> (B,Lft 2)
(2,A) -> (B,Stop)

Other examples

● Type checker
-> find terms of a certain type

● Regular expression recognizer
-> find bugs in recognizer
-> find buggy laws

● Grammar specification
-> natural language ambiguities

Current Work

● SMT
○ Integer theory
○ Equality / functions (Leon)

● Improve incrementality
○ Conflict minimization

● Memory use / garbage collection

● TurboSpec

Conclusions

● HipSpec = QuickSpec + Hip

● Speculating conjectures needs smart ways
of finding counter examples

● Using SAT is one such way

● Benchmark suite for
○ Automated induction problems
○ False properties https://github.com/tip-org

