Bounded Model Checking
for Functional Programs

Koen Lindstrom Claessen
(joint work with Dan Rosén)

|
| |..ill‘

]

[

prop_Unambiguous tl t2 =
show t1 == show t2 ==> tl1l == t2

prop_Unambiguous’ t1 t2
tl /= t2 ==> show t1 /= show t2

Haskell
program

FOL prover
| T
speculated ;
conjectures proo

attempts

QuickSpec

map f [] = []
map £ (map g xs) = map (f . g) Xxs
reverse (reverse xs) = XS
map ¥ (reverse xs) = reverse (map f xs)

e automatically produced
e every equation is tested for
correctness
e no equation is logically implied’
S by previous ones

sorted xs ==>
sorted (insert x xs)

TurboSpec

XS ==> FALSE
insert y Xs ==> X =y
insert X ys ==> Xs = ys

insert x Xs
insert x Xs
insert x Xs

sort xs = sort ys ==> sort xs = Xs
\/ sort ys = ys
\/ Xs = ys

The Problem

e Properties with

o Strong pre-conditions
o Weak post-conditions

o No use of human intelligence

e How to find counter-examples?

e How to increase our confidence?

1990

1999

Bounded Model
Checking

ease of use deep bugs

immense SAT-solver
Improvements

bounded model checking

symbolic evaluation

Forte / FL

type Bool var :: String -> Bool

FL> var “a” & & not (var “a”)
False

FL> not (var “b” || not (var “a”))
a&&~b

FL> if var “a” then False else True
~Q3

FL> if var “a” then [] else [1]

ERROR: no booleans

type Prop

Main Trick

Nil

data List a =
| Cons a (List a)

data Arg a = X | An a
decides whether

Nil or Cons

data ListS a = NilCons Prop

(Arg a)
(Arg (ListS a))

Symbolic If-Then-Else

if then_else_ :: Prop -> Prop -> Prop -> Prop

if c then p else g = (c & p) || (not c && q)

Symbolic If-Then-Else

if then _else_ :: Prop -> Arg a -> Arg a -> Arg a

if ¢ then X else ab = ab
if ¢ then aa else X = aa
if ¢ then An a else An b =

An (if c then a else b)

Symbolic If-Then-Else

if then _else :: Prop -> ListS a -> ListS a
-> ListS a

if c then NilCons p x xs else NilCons q y ys =

NilCons (if c then p else q)
(if c then x else y)
(if c then xs else ys)

symbolic evaluation

on bounded inputs

unbounded inputs?

incrementality

HBMC

Haskell
program pusse HS->SymHs

|

Haskell
program

property

SAT-solver

?
counter
example

:: Expr a -> [a]

(Var x) = [x]

(Add a b) = vars a ++ vars b
(Neg a) = vars a

- res ‘lll'
\(Exp ax aa ab) -»>
Cuen X Cis)var) 8

51ng1eton (un ax) res

vars (un aa) va
vb <- new
vars (un ab) vb
append va vb res
when (c “is Neg) $
do vars (un aa) res

Generating Constraints

type C a -- Monad

newVar :: C Prop
insist :: Prop -> C ()
when :: Prop -> C () -> C ()

when a (insist b) == insist (a => b)
when a (when b p) == when (a & b) p
when false p == skip

Finite Choice

type Fin a = [(Prop,a)]

newFin :: [a] -> C (Fin a)
newFin xs =

sequence [(x,) ~fmap~ newVar | x <- xs]

is :: Eq a => Fin a -> a -> Prop

pxs ~is’ x = lookup x (pxs++[(x,false)])

-> [a]

= [x]

= vars a ++ vars b
= vars a

va res = ‘
<§§3§\e ¢ \(Expr_c ax aa ab) ->
s when (c Cis)Var) %

singleton (un ax) res
when (c "is _Add) $
do yva <-
vars (un aa) va
vb <- new
vars (un ab) vb
append va vb res
when (c “is Neg) $
do vars (un aa) res

Incrementality

type Delay a

delay :: C a -> C (Delay a)
force :: Delay a -> C a
wait :: Delay a -> (a -> C ()) -> C ()

Example: Expr

Expr a = Var a
| Add (Expr a) (Expr a)
| Neg (Expr a)

Var | Add | Neg
Expr (Fin ExprlL)
(Arg a)
(Arg (ExprS a))

(Arg (ExprS a))
Delay (ExprC a)

Symbolic Expressions

class Constructive a where
new :: C a

instance Constructive a =>
Constructive (ListS a) where

new = delay $
do ¢ <- newFin [Nil,Cons]
X <- new
XS <- new
return (ListS ¢ (An x) (An xs))

Expr a -> [a]
(Var x) = [x]
(Add a b) = vars a ++ vars b
(Neg a) = vars a

vars-e res =
wait e $ \(Expr c ax aa ab) ->
do when (c "is” Var) $%
singleton (un ax) res
when (¢ "is Add) $
do va <-(new
vars (un aa) va
vb <- new
vars (un ab) vb
append va vb res
when (c “is Neg) $
do vars (un aa) res

Translation of Programs

f Xy res = <<f X y->res>> =
<Ke->res>> f X y res

<<(let x = el in e2)->res>> =
do X <- new
<<el->x>>
<<e2->res>>

Case Expressions

<<(case xs of
Nil -> el
Cons y ys -> e2 y ys)->res>>

wait xs (\(List c ay ays) ->
do when (c "is™ Nil)
<<el->res>>

when (c "is Cons)
<<e2 (un ay) (un ays)->res>>

;. Expr a -> [a]

(Var x) = [x]

(Add a b) = vars a ++ vars b
(Neg a) = vars a

vars e res =
wait e $ \(Expr c ax aa ab) ->
do when (c "is™ Var) $%
singleton (un ax) res
when (c "is Add) $
do va <- new
vars (un aa) va
vb <- new
vars (un ab) vb
append va vb res
when (c “is Neg) $
do vars (un aa) res

Example

prop NoPalindromes (xs::[Bool]) =

length xs >= 3 ==>
reverse Xs /= XS

Call merging

case t of
Empty ->
Node a pg | x < a -> ... fp ..
| otherwise -> ... f q ...

let pg =
case t of
Node a pq | x < a ->p
| otherwise -> g
in case t of
Empty ->
Node a pg | x < a -> ...
| otherwise -> ...

Main Solving Loop

. Generate initial constraints by executing
the program

. Solve, assuming that no waiting
computation can happen

. If solution, then done

. Otherwise, pick one waiting computation,
force it, and go to 3.

;. Expr a -> [a]

(Var x) = [x]

(Add a b) = vars a ++ vars b
(Neg a) = vars a

vars e res =
wait e $ \(Expr c ax aa ab) ->
do when (c "is™ Var) $%
singleton (un ax) res
when (c "is Add) $
do va <- new
vars (un aa) va
vb ==
vars (un ab) vb
append va vb res

do vars (un aa) res

Memoization
In symbolic evaluation...
... all branches of a case are executed!
Functions are applied much more often...

... and more often to the same
arguments multiple times!

Which Wait to Force?
If no solution, then we have a conflict ...

... a subset of the assumptions that is
contradictory

Keep a queue of waiting computations ...

... and always expand the computation
that is part of the conflict that is most to
the head of the queue

Example: Usorted list

usorted :: [Nat] -> Bool
usorted (x:y:xs) = x < y && usorted (y:xs)
usorted = True

XS

XS
XS«
XS
XS
XS

XS
XS
XS«

XS :
xs= [Z,S Z,S (S Delayed_Nat)]

Lst__

Lst_(Lst__)

Lst_(Lst_(Lst__))

Lst_(Lst_(Lst_(Lst__)))

Lst_(Lst(Nat_) (Lst_(Lst__)))

Lst_(Lst(Nat_) (Lst(Nat_) (Lst__)))

Lst(Nat_) (Lst(Nat_) (Lst(Nat_) (Lst__)))
Lst(Nat_) (Lst(Nat(Nat_)) (Lst(Nat_) (Lst__)))

Lst (Nat_) (Lst(Nat(Nat_)) (Lst(Nat(Nat_)) (Lst__)))

Example:

Merge

merge ::

merge
merge
merge

let

in

Ord a => [a]
] ys =
XS [] =
(x:xs) (y:ys) =
(a,as,bs)

| x <=y =

| otherwise =
a : merge as bs

-> [a] -> [a]
ysS
XS

(X, XS, y:ys)
(Y, X:XS, ys)

merged —+—

memo

unopt —¥—

lazysc —=5—
leon

10 15
List length

Example: Turing Machine

data Sym A|lB]| O
type State = Nat
data Action = Lft State | Rgt State | Stp

type Q = (State,Sym) -> (Sym,Action)

run :: Q -> [Sym] -> [Sym]

Termination
e Some functions may not terminate

e (even though their non-symbolic versions
do terminate!)

e [n such cases, we introduce an artificial
wait

postpone :: C () -> C ()
postpone p =

do X <- new
wait x $ \() -> p

Example: Turing Machine

cond q =
run q [A] == [A] &&
run q [B,A,A,A,A,B] == [A,A,A,A,B,B]

(0,A) -> (A,Stop)
(0,B) -> (A,Rgt 1)
(1,A) -> (A,Rgt 1)
(1,B) -> (B,Lft 2)
(ZJA) -2 (BJStOp)

Other examples

Type checker
-> find terms of a certain type

Regular expression recognizer
-> find bugs in recognizer
-> find buggy laws

Grammar specification
-> natural language ambiguities

Current Work

o SMT

o Integer theory
o Equality / functions (Leon)

e Improve incrementality
o Conflict minimization

e Memory use / garbage collection

e TurboSpec

Conclusions

e HipSpec = QuickSpec + Hip

e Speculating conjectures needs smart ways
of finding counter examples

e Using SAT is one such way

e Benchmark suite for

o Automated induction problems

o False properties

https://github.com/tip-org

