
LVars for distributed programming	

or, LVars and CRDTs join forces	

!
Lindsey Kuper	

Programming Systems Lab, Intel Labs	

!
IFIP WG 2.8 Meeting	

May 26, 2015

getKey
getKey

getKey

1
1

1

1

2

Distributed
programming

Shared-memory
parallel programming

(Observable) determinism (Eventual) consistency

LVars CRDTs

3

Shared-memory
parallel programming

(Observable) determinism

LVars

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))
 async (atomicModifyIORef cart
 (\m -> (insert Shoes 1 m, ())))

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))
 async (atomicModifyIORef cart
 (\m -> (insert Shoes 1 m, ())))
 res <- async (readIORef cart)

data Item = Book | Shoes | ...

4

p :: IO (Map Item Int)
p = do cart <- newIORef empty
 async (atomicModifyIORef cart
 (\m -> (insert Book 1 m, ())))
 async (atomicModifyIORef cart
 (\m -> (insert Shoes 1 m, ())))
 res <- async (readIORef cart)
 wait res

data Item = Book | Shoes | ...

4

5

(What happens when we run this?)

!
!
p :: IO (Map Item Int)!
p = do cart <- newIORef empty!
 async (atomicModifyIORef cart!
 (\m -> (insert Book 1 m, ())))!
 async (atomicModifyIORef cart!
 (\m -> (insert Shoes 1 m, ())))!
 res <- async (readIORef cart)!
 wait res

data Item = Book | Shoes | ...

6

!
!
p :: IO (Map Item Int)!
p = do cart <- newIORef empty!
 async (atomicModifyIORef cart!
 (\m -> (insert Book 1 m, ())))!
 async (atomicModifyIORef cart!
 (\m -> (insert Shoes 1 m, ())))!
 res <- async (readIORef cart)!
 wait res

data Item = Book | Shoes | ...

6

!
!
p :: IO (Map Item Int)!
p = do cart <- newIORef empty!
 async (atomicModifyIORef cart!
 (\m -> (insert Book 1 m, ())))!
 async (atomicModifyIORef cart!
 (\m -> (insert Shoes 1 m, ())))!
 res <- async (readIORef cart)!
 wait res

IVars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: commutative and inflationary writes,	

blocking threshold reads

data Item = Book | Shoes | ...

6

!
!
p :: IO (Map Item Int)!
p = do cart <- newIORef empty!
 async (atomicModifyIORef cart!
 (\m -> (insert Book 1 m, ())))!
 async (atomicModifyIORef cart!
 (\m -> (insert Shoes 1 m, ())))!
 res <- async (readIORef cart)!
 wait res

IVars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: commutative and inflationary writes,	

blocking threshold reads

* actually a bounded join-semilattice

data Item = Book | Shoes | ...

6

!
!
p :: IO (Map Item Int)!
p = do cart <- newIORef empty!
 async (atomicModifyIORef cart!
 (\m -> (insert Book 1 m, ())))!
 async (atomicModifyIORef cart!
 (\m -> (insert Shoes 1 m, ())))!
 res <- async (readIORef cart)!
 wait res

IVars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: commutative and inflationary writes,	

blocking threshold reads

* actually a bounded join-semilattice

data Item = Book | Shoes | ...

6

1, 1

1 1

do!
 fork (put num 3) !
 fork (put num 4)

⊥

⊤

0 1 2 ...43

do!
 fork (put num 4) !
 fork (put num 4)

Raises an error, since 3 ⊔ 4 = ⊤

Works fine, since 4 ⊔ 4 = 4

num

7

do!
 fork (put num 3) !
 fork (put num 4)

⊥

⊤

0 1 2 ...43

do!
 fork (put num 4) !
 fork (put num 4)

Raises an error, since 3 ⊔ 4 = ⊤

Works fine, since 4 ⊔ 4 = 4

num

do!
 fork (put num 4) !
 get num

get blocks until threshold is reached

7

do!
 fork (put num 3) !
 fork (put num 4)

⊥

⊤

0 1 2 ...43

do!
 fork (put num 4) !
 fork (put num 4)

Raises an error, since 3 ⊔ 4 = ⊤

Works fine, since 4 ⊔ 4 = 4

num

do!
 fork (put num 4) !
 get num

get blocks until threshold is reached
threshold set elements

must be 	

pairwise incompatible

Data structure author’s	

obligation:

7

counter

!

"

1

2

#

3

do!
 fork (incr1 counter) !
 fork (incr42 counter)

Works fine, since incrs commute

8

counter

!

"

1

2

#

3

do!
 fork (incr1 counter) !
 fork (incr42 counter)

Works fine, since incrs commute

do!
 fork (incr1 counter) !
 fork (incr42 counter)!
 get counter 2

get blocks until threshold is reached

8

counter

!

"

1

2

#

3

do!
 fork (incr1 counter) !
 fork (incr42 counter)

Works fine, since incrs commute

do!
 fork (incr1 counter) !
 fork (incr42 counter)!
 get counter 2

get blocks until threshold is reached

unblocks when counter is at least 2	

exact contents of counter not observable

8

9

Distributed
programming

(Eventual) consistency

CRDTs

10

10

10

1
1

1

1

getKey Book
getKey Book

getKey Book

10

1
1

1

1

getKey Book
getKey Book

getKey Book

10

1

1

1

11

getKey
getKey

getKey

1
1

1

1

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Availability (all replicas can read or write at all times)
Partition tolerance (the system is robust to communication
failure between replicas)

11

getKey
getKey

getKey

1
1

1

1

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Availability (all replicas can read or write at all times)
Partition tolerance (the system is robust to communication
failure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

11

getKey
getKey

getKey

1
1

1

1

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Availability (all replicas can read or write at all times)
Partition tolerance (the system is robust to communication
failure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

11

getKey
getKey

getKey

1
1

1

1

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Availability (all replicas can read or write at all times)
Partition tolerance (the system is robust to communication
failure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

But: we should think of C, A, and P
as more continuous than binary [Brewer, 2012]

11

getKey
getKey

getKey

1
1

1

1

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Availability (all replicas can read or write at all times)
Partition tolerance (the system is robust to communication
failure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

But: we should think of C, A, and P
as more continuous than binary [Brewer, 2012]

We can opt for eventual consistency [Vogels, 2009]

Dynamo: Amazon+s Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels
Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of AmazonBs
core services use to provide an Calways-onD experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION
Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on AmazonBs platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

One of the lessons our organization has learned from operating
AmazonBs platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such AmazonBs software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for AmazonBs platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. AmazonBs platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on AmazonBs platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOSP%07, October 14Y17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

195205

The next design choice is who performs the process of conflict
resolution. This can be done by the data store or the application. If
conflict resolution is done by the data store, its choices are rather
limited. In such cases, the data store can only use simple policies,
such as :last write wins< [22], to resolve conflicting updates. On
the other hand, since the application is aware of the data schema it
can decide on the conflict resolution method that is best suited for
its clientBs experience. For instance, the application that maintains
customer shopping carts can choose to :merge< the conflicting
versions and return a single unified shopping cart. Despite this
flexibility, some application developers may not want to write
their own conflict resolution mechanisms and choose to push it
down to the data store, which in turn chooses a simple policy such
as :last write wins<.

Other key principles embraced in the design are:

Incremental scalability: Dynamo should be able to scale out one
storage host (henceforth, referred to as :node3) at a time, with
minimal impact on both operators of the system and the system
itself.

Symmetry: Every node in Dynamo should have the same set of
responsibilities as its peers; there should be no distinguished node
or nodes that take special roles or extra set of responsibilities. In
our experience, symmetry simplifies the process of system
provisioning and maintenance.

Decentralization: An extension of symmetry, the design should
favor decentralized peer-to-peer techniques over centralized
control. In the past, centralized control has resulted in outages and
the goal is to avoid it as much as possible. This leads to a simpler,
more scalable, and more available system.

Heterogeneity: The system needs to be able to exploit
heterogeneity in the infrastructure it runs on. e.g. the work
distribution must be proportional to the capabilities of the
individual servers. This is essential in adding new nodes with
higher capacity without having to upgrade all hosts at once.

3. RELATED WORK
3.1 Peer to Peer Systems
There are several peer-to-peer (P2P) systems that have looked at
the problem of data storage and distribution. The first generation
of P2P systems, such as Freenet and Gnutella1, were
predominantly used as file sharing systems. These were examples
of unstructured P2P networks where the overlay links between
peers were established arbitrarily. In these networks, a search
query is usually flooded through the network to find as many
peers as possible that share the data. P2P systems evolved to the
next generation into what is widely known as structured P2P
networks. These networks employ a globally consistent protocol
to ensure that any node can efficiently route a search query to
some peer that has the desired data. Systems like Pastry [16] and
Chord [20] use routing mechanisms to ensure that queries can be
answered within a bounded number of hops. To reduce the
additional latency introduced by multi-hop routing, some P2P
systems (e.g., [14]) employ O(1) routing where each peer
maintains enough routing information locally so that it can route
requests (to access a data item) to the appropriate peer within a
constant number of hops.

Various storage systems, such as Oceanstore [9] and PAST [17]
were built on top of these routing overlays. Oceanstore provides a
global, transactional, persistent storage service that supports
serialized updates on widely replicated data. To allow for
concurrent updates while avoiding many of the problems inherent
with wide-area locking, it uses an update model based on conflict
resolution. Conflict resolution was introduced in [21] to reduce
the number of transaction aborts. Oceanstore resolves conflicts by
processing a series of updates, choosing a total order among them,
and then applying them atomically in that order. It is built for an
environment where the data is replicated on an untrusted
infrastructure. By comparison, PAST provides a simple
abstraction layer on top of Pastry for persistent and immutable
objects. It assumes that the application can build the necessary
storage semantics (such as mutable files) on top of it.

3.2 Distributed File Systems and Databases
Distributing data for performance, availability and durability has
been widely studied in the file system and database systems
community. Compared to P2P storage systems that only support
flat namespaces, distributed file systems typically support
hierarchical namespaces. Systems like Ficus [15] and Coda [19]
replicate files for high availability at the expense of consistency.
Update conflicts are typically managed using specialized conflict
resolution procedures. The Farsite system [1] is a distributed file
system that does not use any centralized server like NFS. Farsite
achieves high availability and scalability using replication. The
Google File System [6] is another distributed file system built for
hosting the state of GoogleBs internal applications. GFS uses a
simple design with a single master server for hosting the entire
metadata and where the data is split into chunks and stored in
chunkservers. Bayou is a distributed relational database system
that allows disconnected operations and provides eventual data
consistency [21].

Among these systems, Bayou, Coda and Ficus allow disconnected
operations and are resilient to issues such as network partitions
and outages. These systems differ on their conflict resolution
procedures. For instance, Coda and Ficus perform system level
conflict resolution and Bayou allows application level resolution.
All of them, however, guarantee eventual consistency. Similar to
these systems, Dynamo allows read and write operations to
continue even during network partitions and resolves updated
conflicts using different conflict resolution mechanisms.
Distributed block storage systems like FAB [18] split large size
objects into smaller blocks and stores each block in a highly
available manner. In comparison to these systems, a key-value
store is more suitable in this case because: (a) it is intended to
store relatively small objects (size < 1M) and (b) key-value stores
are easier to configure on a per-application basis. Antiquity is a
wide-area distributed storage system designed to handle multiple
server failures [23]. It uses a secure log to preserve data integrity,
replicates each log on multiple servers for durability, and uses
Byzantine fault tolerance protocols to ensure data consistency. In
contrast to Antiquity, Dynamo does not focus on the problem of
data integrity and security and is built for a trusted environment.
Bigtable is a distributed storage system for managing structured
data. It maintains a sparse, multi-dimensional sorted map and
allows applications to access their data using multiple attributes
[2]. Compared to Bigtable, Dynamo targets applications that
require only key/value access with primary focus on high
availability where updates are not rejected even in the wake of
network partitions or server failures.

1 http://freenetproject.org/, http://www.gnutella.org

198208

[DeCandia et al., 2007]

12

Dynamo: Amazon+s Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels
Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of AmazonBs
core services use to provide an Calways-onD experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION
Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on AmazonBs platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

One of the lessons our organization has learned from operating
AmazonBs platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such AmazonBs software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for AmazonBs platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. AmazonBs platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on AmazonBs platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOSP%07, October 14Y17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

195205

The next design choice is who performs the process of conflict
resolution. This can be done by the data store or the application. If
conflict resolution is done by the data store, its choices are rather
limited. In such cases, the data store can only use simple policies,
such as :last write wins< [22], to resolve conflicting updates. On
the other hand, since the application is aware of the data schema it
can decide on the conflict resolution method that is best suited for
its clientBs experience. For instance, the application that maintains
customer shopping carts can choose to :merge< the conflicting
versions and return a single unified shopping cart. Despite this
flexibility, some application developers may not want to write
their own conflict resolution mechanisms and choose to push it
down to the data store, which in turn chooses a simple policy such
as :last write wins<.

Other key principles embraced in the design are:

Incremental scalability: Dynamo should be able to scale out one
storage host (henceforth, referred to as :node3) at a time, with
minimal impact on both operators of the system and the system
itself.

Symmetry: Every node in Dynamo should have the same set of
responsibilities as its peers; there should be no distinguished node
or nodes that take special roles or extra set of responsibilities. In
our experience, symmetry simplifies the process of system
provisioning and maintenance.

Decentralization: An extension of symmetry, the design should
favor decentralized peer-to-peer techniques over centralized
control. In the past, centralized control has resulted in outages and
the goal is to avoid it as much as possible. This leads to a simpler,
more scalable, and more available system.

Heterogeneity: The system needs to be able to exploit
heterogeneity in the infrastructure it runs on. e.g. the work
distribution must be proportional to the capabilities of the
individual servers. This is essential in adding new nodes with
higher capacity without having to upgrade all hosts at once.

3. RELATED WORK
3.1 Peer to Peer Systems
There are several peer-to-peer (P2P) systems that have looked at
the problem of data storage and distribution. The first generation
of P2P systems, such as Freenet and Gnutella1, were
predominantly used as file sharing systems. These were examples
of unstructured P2P networks where the overlay links between
peers were established arbitrarily. In these networks, a search
query is usually flooded through the network to find as many
peers as possible that share the data. P2P systems evolved to the
next generation into what is widely known as structured P2P
networks. These networks employ a globally consistent protocol
to ensure that any node can efficiently route a search query to
some peer that has the desired data. Systems like Pastry [16] and
Chord [20] use routing mechanisms to ensure that queries can be
answered within a bounded number of hops. To reduce the
additional latency introduced by multi-hop routing, some P2P
systems (e.g., [14]) employ O(1) routing where each peer
maintains enough routing information locally so that it can route
requests (to access a data item) to the appropriate peer within a
constant number of hops.

Various storage systems, such as Oceanstore [9] and PAST [17]
were built on top of these routing overlays. Oceanstore provides a
global, transactional, persistent storage service that supports
serialized updates on widely replicated data. To allow for
concurrent updates while avoiding many of the problems inherent
with wide-area locking, it uses an update model based on conflict
resolution. Conflict resolution was introduced in [21] to reduce
the number of transaction aborts. Oceanstore resolves conflicts by
processing a series of updates, choosing a total order among them,
and then applying them atomically in that order. It is built for an
environment where the data is replicated on an untrusted
infrastructure. By comparison, PAST provides a simple
abstraction layer on top of Pastry for persistent and immutable
objects. It assumes that the application can build the necessary
storage semantics (such as mutable files) on top of it.

3.2 Distributed File Systems and Databases
Distributing data for performance, availability and durability has
been widely studied in the file system and database systems
community. Compared to P2P storage systems that only support
flat namespaces, distributed file systems typically support
hierarchical namespaces. Systems like Ficus [15] and Coda [19]
replicate files for high availability at the expense of consistency.
Update conflicts are typically managed using specialized conflict
resolution procedures. The Farsite system [1] is a distributed file
system that does not use any centralized server like NFS. Farsite
achieves high availability and scalability using replication. The
Google File System [6] is another distributed file system built for
hosting the state of GoogleBs internal applications. GFS uses a
simple design with a single master server for hosting the entire
metadata and where the data is split into chunks and stored in
chunkservers. Bayou is a distributed relational database system
that allows disconnected operations and provides eventual data
consistency [21].

Among these systems, Bayou, Coda and Ficus allow disconnected
operations and are resilient to issues such as network partitions
and outages. These systems differ on their conflict resolution
procedures. For instance, Coda and Ficus perform system level
conflict resolution and Bayou allows application level resolution.
All of them, however, guarantee eventual consistency. Similar to
these systems, Dynamo allows read and write operations to
continue even during network partitions and resolves updated
conflicts using different conflict resolution mechanisms.
Distributed block storage systems like FAB [18] split large size
objects into smaller blocks and stores each block in a highly
available manner. In comparison to these systems, a key-value
store is more suitable in this case because: (a) it is intended to
store relatively small objects (size < 1M) and (b) key-value stores
are easier to configure on a per-application basis. Antiquity is a
wide-area distributed storage system designed to handle multiple
server failures [23]. It uses a secure log to preserve data integrity,
replicates each log on multiple servers for durability, and uses
Byzantine fault tolerance protocols to ensure data consistency. In
contrast to Antiquity, Dynamo does not focus on the problem of
data integrity and security and is built for a trusted environment.
Bigtable is a distributed storage system for managing structured
data. It maintains a sparse, multi-dimensional sorted map and
allows applications to access their data using multiple attributes
[2]. Compared to Bigtable, Dynamo targets applications that
require only key/value access with primary focus on high
availability where updates are not rejected even in the wake of
network partitions or server failures.

1 http://freenetproject.org/, http://www.gnutella.org

198208

[DeCandia et al., 2007]

12

Conflict-free replicated data types	

[Shapiro et al., 2011]

Dynamo: Amazon+s Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels
Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of AmazonBs
core services use to provide an Calways-onD experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION
Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on AmazonBs platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

One of the lessons our organization has learned from operating
AmazonBs platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such AmazonBs software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for AmazonBs platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. AmazonBs platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on AmazonBs platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOSP%07, October 14Y17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

195205

The next design choice is who performs the process of conflict
resolution. This can be done by the data store or the application. If
conflict resolution is done by the data store, its choices are rather
limited. In such cases, the data store can only use simple policies,
such as :last write wins< [22], to resolve conflicting updates. On
the other hand, since the application is aware of the data schema it
can decide on the conflict resolution method that is best suited for
its clientBs experience. For instance, the application that maintains
customer shopping carts can choose to :merge< the conflicting
versions and return a single unified shopping cart. Despite this
flexibility, some application developers may not want to write
their own conflict resolution mechanisms and choose to push it
down to the data store, which in turn chooses a simple policy such
as :last write wins<.

Other key principles embraced in the design are:

Incremental scalability: Dynamo should be able to scale out one
storage host (henceforth, referred to as :node3) at a time, with
minimal impact on both operators of the system and the system
itself.

Symmetry: Every node in Dynamo should have the same set of
responsibilities as its peers; there should be no distinguished node
or nodes that take special roles or extra set of responsibilities. In
our experience, symmetry simplifies the process of system
provisioning and maintenance.

Decentralization: An extension of symmetry, the design should
favor decentralized peer-to-peer techniques over centralized
control. In the past, centralized control has resulted in outages and
the goal is to avoid it as much as possible. This leads to a simpler,
more scalable, and more available system.

Heterogeneity: The system needs to be able to exploit
heterogeneity in the infrastructure it runs on. e.g. the work
distribution must be proportional to the capabilities of the
individual servers. This is essential in adding new nodes with
higher capacity without having to upgrade all hosts at once.

3. RELATED WORK
3.1 Peer to Peer Systems
There are several peer-to-peer (P2P) systems that have looked at
the problem of data storage and distribution. The first generation
of P2P systems, such as Freenet and Gnutella1, were
predominantly used as file sharing systems. These were examples
of unstructured P2P networks where the overlay links between
peers were established arbitrarily. In these networks, a search
query is usually flooded through the network to find as many
peers as possible that share the data. P2P systems evolved to the
next generation into what is widely known as structured P2P
networks. These networks employ a globally consistent protocol
to ensure that any node can efficiently route a search query to
some peer that has the desired data. Systems like Pastry [16] and
Chord [20] use routing mechanisms to ensure that queries can be
answered within a bounded number of hops. To reduce the
additional latency introduced by multi-hop routing, some P2P
systems (e.g., [14]) employ O(1) routing where each peer
maintains enough routing information locally so that it can route
requests (to access a data item) to the appropriate peer within a
constant number of hops.

Various storage systems, such as Oceanstore [9] and PAST [17]
were built on top of these routing overlays. Oceanstore provides a
global, transactional, persistent storage service that supports
serialized updates on widely replicated data. To allow for
concurrent updates while avoiding many of the problems inherent
with wide-area locking, it uses an update model based on conflict
resolution. Conflict resolution was introduced in [21] to reduce
the number of transaction aborts. Oceanstore resolves conflicts by
processing a series of updates, choosing a total order among them,
and then applying them atomically in that order. It is built for an
environment where the data is replicated on an untrusted
infrastructure. By comparison, PAST provides a simple
abstraction layer on top of Pastry for persistent and immutable
objects. It assumes that the application can build the necessary
storage semantics (such as mutable files) on top of it.

3.2 Distributed File Systems and Databases
Distributing data for performance, availability and durability has
been widely studied in the file system and database systems
community. Compared to P2P storage systems that only support
flat namespaces, distributed file systems typically support
hierarchical namespaces. Systems like Ficus [15] and Coda [19]
replicate files for high availability at the expense of consistency.
Update conflicts are typically managed using specialized conflict
resolution procedures. The Farsite system [1] is a distributed file
system that does not use any centralized server like NFS. Farsite
achieves high availability and scalability using replication. The
Google File System [6] is another distributed file system built for
hosting the state of GoogleBs internal applications. GFS uses a
simple design with a single master server for hosting the entire
metadata and where the data is split into chunks and stored in
chunkservers. Bayou is a distributed relational database system
that allows disconnected operations and provides eventual data
consistency [21].

Among these systems, Bayou, Coda and Ficus allow disconnected
operations and are resilient to issues such as network partitions
and outages. These systems differ on their conflict resolution
procedures. For instance, Coda and Ficus perform system level
conflict resolution and Bayou allows application level resolution.
All of them, however, guarantee eventual consistency. Similar to
these systems, Dynamo allows read and write operations to
continue even during network partitions and resolves updated
conflicts using different conflict resolution mechanisms.
Distributed block storage systems like FAB [18] split large size
objects into smaller blocks and stores each block in a highly
available manner. In comparison to these systems, a key-value
store is more suitable in this case because: (a) it is intended to
store relatively small objects (size < 1M) and (b) key-value stores
are easier to configure on a per-application basis. Antiquity is a
wide-area distributed storage system designed to handle multiple
server failures [23]. It uses a secure log to preserve data integrity,
replicates each log on multiple servers for durability, and uses
Byzantine fault tolerance protocols to ensure data consistency. In
contrast to Antiquity, Dynamo does not focus on the problem of
data integrity and security and is built for a trusted environment.
Bigtable is a distributed storage system for managing structured
data. It maintains a sparse, multi-dimensional sorted map and
allows applications to access their data using multiple attributes
[2]. Compared to Bigtable, Dynamo targets applications that
require only key/value access with primary focus on high
availability where updates are not rejected even in the wake of
network partitions or server failures.

1 http://freenetproject.org/, http://www.gnutella.org

198208

[DeCandia et al., 2007]

12

Conflict-free replicated data types	

[Shapiro et al., 2011]

1, 1

1 1

13

CvRDTs CmRDTs

“Convergent” “Commutative”
“state-based” “operation-based”

1, 1

1 1

put · put

= put · put

Two flavors of CRDTs

13

CvRDTs CmRDTs

“Convergent” “Commutative”
“state-based” “operation-based”

1, 1

1 1

put · put

= put · put

⇔
[Shapiro et al., 2011]

Two flavors of CRDTs

14

LVars vs. CvRDTs
Threshold reads	

(deterministic)
Ordinary reads	

(non-deterministic)

Shared Replicated!

Least-upper-bound writes	

(every write computes a lub)

Inflationary, commutative writes	

(only replica merges must be lubs)

14

Generalize LVars to inflationary, commutative writes	

This gives us non-idempotent, incrementable counters	

(we were using them anyway…)

Extend CvRDTs with threshold queries	

Systems in the wild (e.g., Amazon SimpleDB) already
allow consistency choices at per-read granularity

LVars vs. CvRDTs
Threshold reads	

(deterministic)
Ordinary reads	

(non-deterministic)

Shared Replicated!

Least-upper-bound writes	

(every write computes a lub)

Inflationary, commutative writes	

(only replica merges must be lubs)

So, to join forces:

14

Generalize LVars to inflationary, commutative writes	

This gives us non-idempotent, incrementable counters	

(we were using them anyway…)

Extend CvRDTs with threshold queries	

Systems in the wild (e.g., Amazon SimpleDB) already
allow consistency choices at per-read granularity

LVars vs. CvRDTs
Threshold reads	

(deterministic)
Ordinary reads	

(non-deterministic)

Shared Replicated!

Least-upper-bound writes	

(every write computes a lub)

Inflationary, commutative writes	

(only replica merges must be lubs)

So, to join forces:

15

Deterministic threshold queries of CvRDTs:	

!
Block only until a threshold element appears	

at one replica (that’s all we need!)

1, 1

1 1

getKey Book
getKey Book

getKey Book

1
1

1

1

16

Programming Systems Lab
(We’re hiring! Email me!)

