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failure between replicas)

At most two of these properties hold of a given system 
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In large distributed systems, network partitions are a given, 
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But: we should think of C, A, and P 
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ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability. 

1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as :last write wins< [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its clientBs experience. For instance, the application that maintains 
customer shopping carts can choose to :merge< the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as :last write wins<.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as :node3) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 

1 http://freenetproject.org/, http://www.gnutella.org 
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environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 

1 http://freenetproject.org/, http://www.gnutella.org 
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ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability. 

1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as :last write wins< [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its clientBs experience. For instance, the application that maintains 
customer shopping carts can choose to :merge< the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as :last write wins<.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as :node3) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 
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