[Vars for distributed programming
or, LVars and CRDTs join forces

Lindsey Kuper
Programming Systems Lab, Intel Labs

IFIP WG 2.8 Meeting
May 26, 2015

n
§ H=HH
4 B

Shared-memory
parallel programming

L Vars

Observable) determinism

.
Gresarg ‘

waradhstan

aghaistan
rabsan

india

N
Auslralie ’

b Bew
f Zeysno

¥ Active Cables

= Future Cables

Distributed
programming

CRDTs

(Eventual) consistency

Shared-memory
parallel programming

LVars

Observable) determinism

data Item

Book | Shoes |

Vo 6 6 & & NN
b & & 6 6 AXNNNNINN LY,
& OO NANNNN 2%,
& OO NN 274742y
OGO NNYNYY
OO0 OSSN NN
OO 06066766
O OSSN NN

b

data Item = Book | Shoes |

I0 (Map Item Int)

e 66 6 6 A NONININGN .
O 6 ¢ & NNNYNNN N LY,
& OO NANNNN 2%,
CSOS O OO OO SNSOSONMN
OO OO SO NN
OO OSSN N
OO NN N YN
OO NONNNNNNY

data Item = Book | Shoes | ...

:: IO (Map Item Int)

p
P do cart <- newIORef empty

A — '—‘\\\

\ W o w
\ WYY NN AV AT AT AT AR,
\Y/////////////
\0 ¢ & XN NANININ/NYAY, Y,
\\\////////////,
XN O OO NSNS
OO N INISTNNNTN
OISO NN
N IS OSTSMNT NN

o o

data Item = Book | Shoes | ...

:: IO (Map Item Int)

do cart <- newIORef empty ILr;ttr(t)idcl:ecst::éoorder

p
P

Segond Edition

B.A. Davey
H.A. Priestley

‘/«/~///////W////
) & & & 6 SXNANNINNNY,Y,
& 6 OXNANANNININY A%,
& OO NN 274742y
OO OO SN NN
OO OSSN YN
OO NN YN YN
OXOYA 474 AAAAYA

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

p = do cart <- newIORef empty
—

L e—

WASAANARR NI, .
\V%%W&WN//H
N oK
/}0 ’06@%4}@@‘30(// // // /// l

669606‘605(/ /////////

data Item =

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
2 — —

Book | Shoes | ..

-

\\\\' ¢
\\QOEEaT Ty 77

s
\\\\\ \: }‘;QGQ@"@G’Q’(/ / / // \ / // {

X e 44 /
\>A6"‘0'6‘a‘a(/ AAAS

o o

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
T — TT—— <

data Item =

Book | Shoes | ...

\ (N

IIIII
”4 M@O‘”/

>:QN AAN

v Q@Q“’/ NN / /
\ //’.’.’Q“‘Q"(/////// /N

(NSO

G‘QQQ/////

$
A.IVK/////

data Item =

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
2 — —

Book | Shoes | ..

-

\\\\' ¢
\\QOEEaT Ty 77

\ T K
INUAORRXGE
OO Tae's

SHVAﬂme/

o o

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

p
P

— —
WASAAS 4
,//%@@@Q‘&;@”’(/Q////////
OO
/}QQ{)@'@’Q NN
\ ~("6’$‘0“/6§/‘ (X
\ \Q‘AQOQAQAQIA’A”@////

Q\/; %

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)

p
P

T e ————TT
-
EEN

',/(VVV‘P,‘V v
///?G{’@é%@‘?“{/////////
FOUOOOOKSS S
OO0
/)“/69)0‘@‘@‘(6/ OO
OO0 a4
\ tjA’Q‘é‘Qé‘A/'A’A'/‘ AN

g/: ,

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res
T — T——— -

"/’ VVV"TVV
) /%{»@éf‘g“’(/z////////
CHOOOOOO(/17
SOOOOSS S
/}‘ "GQ’{iQe‘QéA(‘ 6/////////
AAA 7 44
\ t‘iAQOQCQécd/'A’A'/‘ 6/ / ol

g/: ,

(What happens when we run this?)

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res
T — T——— -

EEN
"/'/V‘.';'!'Tv v
N/ ‘f’@%ﬁ‘@"‘.{/o////////
RO XX XSt
N
/H/Qé@’éé’(/ NSNS
RO X ate
3 ANAAARA A

g/: ,

data Item

p
p:

(\m™=_(insert Book 1 m, (
async 4atomicModifyIORef cart

(\m =>—(insert Shoes 1 m, (

Book | Shoes | ...

I0 (Map Item Int)
do Cart <- ,»'. ReT _emnt o
asynq/“étomicModifyIORef cart

4

\ 7/

res <- async (readIORefcart)
walt res

—

L ———]

-,

e\

WATAANARR
TN

OO0
\ y»"éﬁ)’ OCRSas
\ e ANAAAANA

g/: |

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newlIORef empty
asyncy/ atomchodlfyIORef cart
(\mxa>¥_1nsert Book 1 m, ()
async,~s’omcho-1 yIORef cart
(\m >>(insert Shoes 1 m, ()
res <- async (readIORef cart)
wait res
T = D -
Vars: single writes, blocking (but exact) reads H‘ﬁ.} N
[Arvind et al., 1989] ’//G’ X ”6‘(000K
/’VV@ﬂ/QZ/
Vars: commutative and inflationary writes, ;‘ AKX
blocking threshold reads (O—G

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef e
atomchodlfyIORef cart
(\m\a,¥_1nsert Book 1 m, ()
z‘omcho-l yIORef cart
Lnsert Shoes 1 m, (
(readIORef cart)

asyncy/

async(~
res <- async
walit res

7

T —

— -

Vars: single writes, blocking (but exact) reads z?} N
Arvind et al., 1989] ’//0’ Al ”6./ CSARN
/ "Q‘@’é’@’(//////////l

. . . : (0 n@b‘é%”//

Vars: commutative and inflationary writes, /‘ SOACALARY
vlocking threshold reads CO—G

*actually a bounded join-semilattice

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empt

asynq/”éfbmicModifyIORef cart

(\m™>=_(insert Book 1 m, ()
async 4atomicModifyIORef cart
(\m =>—(insert Shoes 1 m, ()
res <- async (readIORef cart)
walt res
Vars: single writes, blocking (but exact) reads e
Arvind et al, 1989] Wt L AX

S OO000S T
f)"‘/@Q&“@ eréA(*é/ %/ XX !

| Vars: commutative and inflationary writes, NN

)
blocking threshold reads <?o o)

*actually a bounded join-semilattice

Raises an error;since 3 U4 =T

num do
T fork (put num 3)
//§77§§§\\ fork (put num 4)
012 3 4 - —

‘\\iik ééi/// Works fine,since 4 u 4 =4
do

fork (put num 4)
fork (put num 4)

——-— ——v

'Raises an errorsince 3u4 =T

do
fork (put num 3)
fork (put num 4)

— —

Works fine,since4 u4 =4
do

fork (put num 4)
fork (put num 4)

—-’ —

get blocks until threshold Is reached

do
fork (put num 4)
get num

—i —

'Raises an errorsince 3 U4 =T

num do
T fork (put num 3)
//§77§§§\\ fork (put num 4)
R R T T —

‘\\iik ééi/// Works fine,since 4 u 4 =4
do

fork (put num 4)
fork (put num 4)

: — —
Data structure author's
obligation: get blocks until threshold is reached
threshold setielements | do
must be fork (put num 4)
pairwise incompatible get num

T — T ———T

counter

Works fine, since incrs commute

do

fork (incrl counter)
fork (incr42 counter)

T —

EE—

counter

Works fine, since incrs commute

do

fork (incrl counter)
fork (incr42 counter)

T —

EE—

get blocks until threshold Is reached

do

fork (incrl counter)
fork (incr42 counter)
get counter 2

*—

—*

Works fine, since incrs commute

counter do
- fork (incrl counter)
fork (incr42 counter)

3 . .
| get blocks until threshold Is reached
2 do

fork (incrl counter)
fork (incr42 counter)
(get counter 2 >

unblocks when counter is at least 2
exact contents of counter not observable

Distributed
programming

CRDTs

(Eventual) consistency

|0

|0

|0

getKey Book

getKey Book

|0

getKey Book

getKey Book

|0

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Avallability (all replicas can read or write at all times)

Partition tolerance (the system is robust to communication
fallure between replicas)

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Avallability (all replicas can read or write at all times)

Partition tolerance (the system is robust to communication
fallure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Avallability (all replicas can read or write at all times)

Partition tolerance (the system is robust to communication
fallure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Avallability (all replicas can read or write at all times)

Partition tolerance (the system is robust to communication
fallure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

But: we should think of C, A, and P
as more continuous than binary [Brewer, 20| 2]

Replication requires us to trade off between:
Consistency (all replicas agree on the data)
Avallability (all replicas can read or write at all times)

Partition tolerance (the system is robust to communication
fallure between replicas)

At most two of these properties hold of a given system
[Brewer, 2000; Gilbert and Lynch, 2002]

In large distributed systems, network partitions are a given,
so we have to give up one of C or A

But: we should think of C, A, and P
as more continuous than binary [Brewer, 20| 2]

VWe can opt for eventual consistency [Vogels, 2009]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Parfamn cnn

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
2 is probably the best known. This paper presents the
lementation of Dynamo, another highly available

fributed data store built for Amazon’s platform.

{ to manage the state of services that have very

requirements and need tight control over the

since the application 1s aware of the data schema 1t & G S e o

can decide on the conflict resolution method that 1s best suited for

Amazon’s platform has a very diverse set of
4 different storage requirements. A select set of
ires a storage technology that is flexible enough
designers configure their data store appropriately
> tradeoffs to achieve high availability and

its client’s experience. For instance, the application that maintains s nse i e

customer shopping carts can choose to “merge” the conflicting

versions and return a single unified shopping cart.

N e—
[DeCandia et al.,, 2007]

—7

— __m 10 Cupy
otherwise, or republish, to post on" servi lists,

requires prior specific permission and/or a fee.
SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

services on Amazon’s platform that only need
2ss to a data store. For many services, such as
ide best seller lists, shopping carts, customer
on management, sales rank, and product catalog,
3 of using a relational database would lead to
1'limit scale and availability. Dynamo provides a
gey only interface to meet the requirements of

3.

synthesis of well known techniques to achieve
vailability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

L

12

Conflict-free replicated data types
[Shapiro et al,, 201 |]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Parfamn cnn

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
2 is probably the best known. This paper presents the
lementation of Dynamo, another highly available

fributed data store built for Amazon’s platform.

{ to manage the state of services that have very

requirements and need tight control over the

since the application 1s aware of the data schema 1t & G S e o

can decide on the conflict resolution method that 1s best suited for

Amazon’s platform has a very diverse set of
4 different storage requirements. A select set of
ires a storage technology that is flexible enough
designers configure their data store appropriately
> tradeoffs to achieve high availability and

its client’s experience. For instance, the application that maintains s nse i e

customer shopping carts can choose to “merge” the conflicting

versions and return a single unified shopping cart.

N e—
[DeCandia et al.,, 2007]

—7

— __m 10 Cupy
otherwise, or republish, to post on" servi lists,

requires prior specific permission and/or a fee.
SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

services on Amazon’s platform that only need
2ss to a data store. For many services, such as
ide best seller lists, shopping carts, customer
on management, sales rank, and product catalog,
3 of using a relational database would lead to
1'limit scale and availability. Dynamo provides a
gey only interface to meet the requirements of

3.

synthesis of well known techniques to achieve
vailability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

L

12

S

Conflict-free replicated data types
[Shapiro et al,, 201 |]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Parfacmn ~an:

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
2 is probably the best known. This paper presents the
lementation of Dynamo, another highly available

fributed data store built for Amazon’s platform.

{ to manage the state of services that have very

requirements and need tight control over the

since the application 1s aware of the data schema 1t & G S e o

can decide on the conflict resolution method that 1s best suited for

Amazon’s platform has a very diverse set of
4 different storage requirements. A select set of
ires a storage technology that is flexible enough
designers configure their data store appropriately
> tradeoffs to achieve high availability and

its client’s experience. For instance, the application that maintains s nse i e

customer shopping carts can choose to “merge” the conflicting

versions and return a single unified shopping cart.

R —
[DeCandia et al.,, 2007]

- “otherwise, or repub 1s!, to post on*rvm,

requires prior specific permission and/or a fee.
SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

services on Amazon’s platform that only need
2ss to a data store. For many services, such as
ide best seller lists, shopping carts, customer
on management, sales rank, and product catalog,
stn of using a relational database would lead to
1'limit scale and availability. Dynamo provides a
gey only interface to meet the requirements of

3.

synthesis of well known techniques to achieve
vailability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v

T

12

wo flavors of CRDTs

“Convergent” “Commutative”
“state-based” ‘operation-based”

CvRDTs CmRDTs

wo flavors of CRDTs

“Convergent” “"Commutative”
“state-based"” @ ‘operation-based”
CvRDTs [Shapiro et al., 201 |] CmRDTs

[Vars vs. CvRD Ts

Threshold reads
(deterministic)

L east-upper-bound writes
(every write computes a lub)

Shared

Ordinary reads
(non-deterministic)

Inflationary, commutative writes
(only replica merges must be lubs)

Replicated!

| 4

[Vars vs. CvRD Ts

Threshold reads Ordinary reads

(deterministic) (non-deterministic)
Least-upper-bound writes Inflationary, commutative writes
(every write computes a lub) (only replica merges must be lubs)

Shared Replicated!

50, to join forces:

» Generalize LVars to inflationary, commutative writes

This gives us non-idempotent, incrementable counters
(we were using them anyway...)

» Extend CvRD Ts with threshold queries

Systems In the wild (e.g., Amazon SimpleDB) already
allow consistency choices at per-read granularity

| 4

[Vars vs. CvRD Ts

(Threshold reads \|

i Ordmary reads
(determiﬂiStiC/)/ detel"mlﬂlSJ[lQ

—+eastupperbouna-writes | | Inﬂat|onary commutative writes N\
‘{eversuurde computesalubd Qﬂly replica merges must be Iubs) |

Shared Rephcated' f

50, to join forces:

» Generalize LVars to inflationary, commutative writes

This gives us non-idempotent, incrementable counters
(we were using them anyway...)

» Extend CvRD Ts with threshold queries

Systems In the wild (e.g., Amazon SimpleDB) already
allow consistency choices at per-read granularity

| 4

Deterministic threshold queries of CvRDTs:

Block only until a threshold element appears
at one replica (that’s all we need!)

-

Bt

:;‘?
-
getKey Bool 71/

&1

getKey Book

-
=
getKey Book

|5

Programming Systems Lab
(We're hiring! Email mel)

|6

