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How do we think about GUIs? 
◦  an array of buttons 

◦  each button waits for a click 

◦  each button has a different effect 
(e.g. starts a different app) 

◦  logically, each button is an 
independent process 



A Callback-driven GUI API 

◦  pass to the button a function to be invoked on a click event 

◦  callback stored in a per-widget collection 

◦  button.onClick has a continuation type 

 
button.onClick : (ClickData -> IO ()) -> IO ()  
 
-- add the callback to the appropriate handler 
button.onClick callback =  

 handlers[click] := callback::(!handlers[click]) 
 

⇒	  classical	  logic?	  



Temporal Behavior 
◦  GUI widgets wait for events 
◦  handling of an event yields a natural notion of clock “tick” 

•  process all of the callbacks for one event 

◦  some resources are available only “now” 
•  e.g. the data associated with the current event 

◦  some resources are available “always” (at any point in the future) 
•  e.g. a callback associated with a widget 

◦  some resources are available only “eventually” 
•  e.g. the data from some future event 



From Callbacks to Eventually 

◦  callback creation ~ eventually modality of temporal logic 
•  also called the “possibility” modality 

◦  classical logic (should) yield a CPS-based implementation 

◦  Question: Can we make anything out of this observation? 

button.onClick  : (ClickData -> IO ()) -> IO () 
     : (ClickData -> IO ()) -> IO () 
     : ( ¬ClickData) -> IO () 
     : ¬ ¬ClickData 
     : ♢ClickData 



Type Structure 
◦  Ordinary Types     A   useable “now” 
◦  Always Types    ︎A  useable at any (future) time 
◦  Eventually Types   ♢A  useable at some (future) time 

•  See [Pfenning & Davies] for modal logic 
 



Always Modality 
◦  The type Α is “always A” or “necessarily A”. 
◦  Box is a comonad. 

Δ; Γ ⊢ Α

Δ;  .  ⊢ Α
Δ; Γ ⊢ Α

Δ; Γ  ⊢ Α    Δ,Α; Γ ⊢ Β
Δ; Γ ⊢ Β

Α ∈ Δ
Δ; Γ ⊢ Α



Always Modality 
◦  The type Α is “always A” or “necessarily A”. 
◦  Box is a comonad. 

Δ; Γ ⊢ Α

Δ;  .  ⊢ e	  :	  Α
Δ; Γ ⊢ box	  e	  : Α

Δ; Γ  ⊢ e1	  :	   Α    Δ,	  a:Α; Γ ⊢ e2	  :	  Β
Δ; Γ ⊢ let	  box	  a	  =	  e1	  in	  e2	  	  :	  Β

a:Α ∈ Δ
Δ; Γ ⊢ a	  :	  Α



Eventually Modality 

Δ;  Γ  ⊢  Α
Δ;  Γ ⊢ ♢Α

Δ; Γ  ⊢ ♢Α    Δ; Α ⊢ ♢Β
Δ; Γ ⊢ ♢Β

◦  The type ♢Α is “eventually A” or “possibly A”. 
◦  Diamond is a monad. 



◦  The type ♢Α is “eventually A” or “possibly A”. 
◦  Diamond is a monad. 

Eventually Modality 

Δ;  Γ  ⊢  e	  :	  Α
Δ;  Γ ⊢ future	  e	  :	  ♢Α

Δ; Γ  ⊢ e1	  :	  ♢Α    Δ; x:Α ⊢ e2	  :♢Β
Δ; Γ ⊢ wait	  x	  =	  e1	  in	  e2	  :♢Β



Linear Temporal Logic 
◦  The type ♢Α means “eventually A”. 

•  Would like to think of this as an “A event” 
•  Built-in primitives could provide other sources of ♢Α  

◦  But… not enough structure to order them 
•  In a GUI, we often think of the sequence of events 

 	  total	  order:	  	  	  	  for	  any	  A,	  B.	  	  	  	  	  A	  	  	  ≤	  	  B	  	  	  	  or	  	  	  	  B	  	  ≤	  	  A	  	  	  	  



Branching vs Linear Time 

♢A	  
♢B	  

A	  

B	  

A	   B	  ♢A	  
♢B	  



Linear Temporal Logic 
◦  Encode the ordering as this rule: 

◦  Call this operation “select”: 
•  Wait for whichever event fires first, choose a continuation based on 

the outcome 
•  The second operation will still eventually happen 

Δ; Γ2  ⊢ ♢Α           Δ; ♢Α, Β ⊢ ♢C
Δ; Γ1,Γ2 ⊢ ♢C

Δ; Γ1  ⊢ ♢Β           Δ; Α, ♢Β ⊢ ♢C



Linear Temporal Logic 
◦  Encode the ordering as this rule: 

◦  Call this operation “select”: 
•  Wait for whichever event fires first, choose a continuation based on 

the outcome 
•  The second operation will still eventually happen 

Δ; Γ  ⊢ e2	  : ♢Α           Δ; a:♢Α, b:Β ⊢ c2	  :	  ♢C
Δ; Γ ⊢ select	  e1	  |	  e2	  as	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  a	  ,	  b	  -‐>	  c1	  	  	  	  	  	  	  	  :	  ♢C
	  	  	  	  	  	  	  	  	  	  	  |	  	  a	  ,	  b	  -‐>	  c2

Δ; Γ  ⊢ e1	  : ♢Β           Δ; a:Α, b:♢Β ⊢ c1	  :	  ♢C



Linear Time, Logically 
◦  lets us say that any two events can be ordered: 

 

◦  also permits synchronization on “eventually always” propositions: 

 

♢A  ⟶	  	  ♢B  ⟶  ♢(A x ♢B) + ♢(♢A x B)   

sync:    ♢ A  ⟶  ♢ B  ⟶  ♢ (A x B) 



Classical Linear Linear Temporal Logic 

◦  Ordinary Types     A   useable “now” 
◦  Always Types    ︎A  useable at any (future) time 
◦  Eventually Types   ♢A  useable at some (future) time 

◦  Classical Linear Logic ⇒ Concurrent Programming 
•  See e.g. [Wadler] [Pfenning] 
•   π-calculus notation  

◦  Benefits: similar to Rust’s affine types 
•  separation of resources 
•  race prevention 

 



Safety 

◦  here IO () is the answer type. 

◦  this is too permissive;   we don’t want all terms of type IO () 
 
◦  … only those commands that preserve the event loop invariants 

•  Idea: for GUIs replace IO () with Safe, a refinement that permits only 
“good” computations 

•  show that safety is preserved when composing richer types 

 
button.onClick : (ClickData -> IO ()) -> IO () 

 

 
button.onClick : (ClickData -> Safe) -> Safe 

 



What is Safety? Towards an Algebra of Widgets

A widget contains:
… Some first-order data (color, height, text, etc.)
… A collection of event handlers
… So a heap can be formalized as:

Data heap h ::= · | h,h | l : d
Queue q 2 Loc!Mfin(Val)
Store � 2 Data⇥ Queue

… Key problem: event handlers are higher-order state
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Safety, Semantically Safe States Respect the Event Loop Invariant

Ok =

⇢
(�, t,�0)
����
��#h. �� 2 Perm.
h� · �; ti +
⌦
�(�0) · �; ()
↵
�

Safen =

8
<
:

�z }| {
(h,q)

������
�l 2 Loc,e 2 Event.

Safe�n ((h, [q|l :�]),e,q(l))

9
=
;

Safe =
T

n Safen

Safe�0 (�,e,ks) = >

Safe�n+1(�,e,�) = >

Safe�n+1(�,e,k · ks) =
��0 2 Safen.

Ok(�,k e,�0) �
Safe�n (�

0,e,ks)

… Safe = heaps maintaining safety on callbacks
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Separation Algebra of Safe Heaps 
A Separation Algebra for Safe Heaps

A Partial Commutative Monoid on Heaps

h#h0 ¨ dom(h) \ dom(h0) =�
(h,q)#(h0,q0) ¨ h#h0

h · h =

⇢
h,h0 if h#h
? otherwise

q · q0 = �l. q(l) [ q0(l)

� = (·, [])
(h,q) · (h0,q0) =

⇢
(h · h0,q · q0) if h#h
? otherwise

Main difficulty: composition of safe heaps is safe
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Compilation Strategy 

Classical 
Logic 

:: Classical 
Linear Logic 

⇓  ⇓  
Intuitionistic 

Logic 
:: Tensorial 

Logic 

◦  Translation is double-negation (i.e. CPS translation) 
◦  Mellies’ tensorial logic 



Realizability Semantics of 
Continuations 

Realizability Semantics of Continuations

Type = {h�;vi | � 2 Safe}

1 =
�⌦
�; ()

↵ 

A� B =

⇢⌦
�A · �B; (a,b)

↵ ����
h�A;ai 2 A �
h�B;bi 2 B

�

0 = �
A1 +A2 = {h�; ini vi | h�;vi 2 Ai}

¬A =

⇢
hh;ki

����
� hh0;ai 2 A.
if h#h0 then hh · h0;k ai 2 Safe

�

ÉA =
�
(h,box(v))

�� �n,h0. if h)n h0 then (h0,v) 2 A
 

This is a temporal extension of Mellies’ Tensorial Logic
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Double Negation (CPS) 
Linear Temporal Classical Linear Logic

Proposition
` � in CLL if and only if [[�?]] ` in tensorial logic.

[[0]] = 0
[[A� B]] = [[A]] + [[B]]

[[I]] = 1
[[A⌦ B]] = [[A]] � [[B]]

[[>]] = ¬0
[[A&B]] = ¬(¬[[A]] +¬[[B]])

[[?]] = ¬1
[[A`B]] = ¬(¬[[A]] �¬[[B]])

[[ÉA]] = É[[A]]
[[ÜA]] = ¬É¬[[A]]
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Status 
◦  Still nailing down the semantics 

•  Interaction between linearity & temporal logic 
•  Proofs that the safety invariants compose 

◦  Playing around with syntax 
•  Sequent formulations of the type system 
•  Pi-calculus?  Mu calculus? 

◦  No implementation (yet!) 

◦  Jennifer: thinking about “composition of logical features” 
•  Combining semantics  



Eventually,	  
Linearly	  

Now,	  
Linearly	  

Always,	  
Linearly	  

Pure	  
FuncHonal	  

Features as Computational “Worlds” 

See	  e.g.	  Benton’s	  Linear—Nonlinear	  Logic	  



"Adjoint functors arise everywhere..." 

Type	  System	   Type	   Term	  

Logic	   ProposiHon	   Proof	  

Category	   Object	   Morphism	   AdjuncHon	  



Questions 
◦  Connection to Functional Reactive Programming? 
◦  Behavior/Signal vs. Event 
•  A     ~     T  ⟶  A            where T is the domain of Time 
•  ♢A  ~  T x A 
 

◦  Connection to Concurrent ML? 
•  first-class synchronization primitives? 



Interactive Programs 
◦  event loop waits for events 

◦  programs register callbacks 
with the event handler 

◦  event loop invokes the 
callbacks for each event 

◦  GUI Programs are(?): 
•  higher-order 
•  concurrent 
•  imperative 
•  CPS 

-- event loop 
while (true) { 
  let event = get_event(); 
  for (f in handlers[event]) { 

  f(event.data); 
  } 
} 
 
-- handlers 
handlers[key] = 
   [fun d -> …; fun d -> …;] 
 
handlers[click] = 
   [fun d -> …; fun d -> …;] 
 
handlers[mouseMove] = 
   [fun d -> …;] 



Linear Type Structure 
◦  Linear Types     A   useable exactly once “now” 
◦  Always Types   ︎A  useable once at any (future) time 
◦  Eventually Types  ♢A   useable once at some (future) time 
◦  Persistent Types   !A   unrestricted uses at any time 
 
 
◦  box is a comonad 
◦  diamond is a monad 
◦  sequent calculus: 

LPC for CP

May 22, 2015

1 Linear Temporal Logic

We start by incorporating a classical modal logic a la Pfenning’s Judgmental Reconstruction of Linear Logic.
Types are extended with the modal operator ˝ and its dual ˛:

A ::“ ¨ ¨ ¨ | ˝A | ˛A

We add the following inference rules for box and diamond:

$ ˛�,A
$ ˛�, ˝A

$ �,A
$ �, ˛A

In the style of adjoint logic, we wish to separate out classes of types as having a di↵erent kind of semantic
interpretation. These are summarized below:

Type Interpretation
Linear (A) Usable exactly once right now
Always (˝A) Usable exactly once at any time

Eventually (˛A) Usable exactly once at some point in the future
Producer (!A) Usable as many times as you want at any time

Our intuition about (linear-time) temporal logic tells us that the following two properties should hold:

t˛ ˝ A1u ( tt˛ ˝ A2u ( ˛ pt˝A1u b ˝A2qu (1)

t˛ ˝ Au ( ˝ ˛ A (2)

but both properties are unprovable in the current system. Notice that (1) does imply (2), but possibly only
in the classical framework?

$ ˝ ˛ tA

K
u, ˝ ˛ A, ˛ pt˝Au b ˝ tA

K
uq

$ A

K,A

$ A

K, ˛A

$ ˛ tA

K
u, ˛A

$ ˝ pt˛ tA

K
uu ` ˛Aq

$ ˝ ˛ tA

K
u, ˝ ˛ A

$ t˛ ˝ Au ( ˝ ˛ A

So it now su�ces to prove property (1). But this property does not hold in our system, and the reason can
be traced back to modal logic. The classical logic presented here corresponds to S4, in which the underlying
reachability relation must be reflexive and transitive. In modal logic, consider a set of possible worlds W ,
along with a reachability relation R on W . We define a relation w ( A to mean that the proposition A holds
in a world w as follows:

w ( ˝A i↵ @w1, w R w1
Ñ w1

( A

w ( ˛A i↵ Dw1, w R w1
^ w1

( A

1



Safety 

◦  callback creation ~ eventually modality of temporal logic 
◦  linearity lets us characterize independence 
◦  classical logic (should) yield a CPS-based implementation 

button.onClick  : (ClickData -> IO ()) -> IO () 
     : (ClickData -> Safe) -> Safe 
     : (ClickData -> Safe) -> Safe 
     : ¬ClickData -> Safe 
     : ¬ ¬ClickData 
     : ♢ClickData 



Facts about CPS Translation 

◦  CPS is a double negation translation of the types: 
      ¬A = A ⟶ a 

◦  the “answer type” is a 
◦  CPS translation is parametric in the answer type [Friedman 76] 

⟦1⟧   =  (1 ⟶ a) ⟶ a 
⟦A × B⟧  =  (A ⟶ B ⟶ a) ⟶ a 
⟦A ⟶ B⟧  =  A ⟶ (B ⟶ a) ⟶ a 


