Curry-Howard tfor GUlIs:

classical linear linear temporal logic
(work in progress!)

Jennifer Paykin
Neel Krishnaswami

WG 2.8 2015

How do we think about GUIs?

00 A Applications £
— @)
< = o1 Ev #vox an array of buttons

0

@ 6 4 o each button waits for a click

1Pa...rd5 App Store = Aquamacs Automator

k2l i

Battle.net Calculator Calendar Chess

Contacts Dashboard Dictionary Dropbox

LS

DV...layer eclipse FaceTime Font Book

o each button has a different effect
(e.g. starts a different app)

R

logically, each button is an
independent process

&

A Callback-driven GUI API

button.onClick : (Clickbata -> 10 ()) -> 10 ()

-- add the callback to the appropriate handler
button.onClick callback =
handlers[click] := callback::('handlers[click])

O pass to the button a function to be invoked on a click event
o callback stored in a per-widget collection

o button.onClick has a continuation type

= classical logic?

Temporal Behavior

GUI widgets wait for events

handling of an event yields a natural notion of clock “tick”
o process all of the callbacks for one event

some resources are available only “now”
* e.g.the data associated with the current event

some resources are available “always” (at any point in the future)
* e.g.a callback associated with a widget

some resources are available only "eventually”
» e.g.the data from some future event

From Callbacks to Eventually

button.onClick : (Clickbata -> I0 ()) -> 10 ()
: Oo(Clickbpata -> 10 ()) -> 10 O
: (O0-Clickbata) -> 10 ()
: =O-ClickData
: OClickDbata

o callback creation ~ eventually modality of temporal logic
» also called the “possibility” modality

o classical logic (should) yield a CPS-based implementation

o Question: Can we make anything out of this observation?

Type Structure

o Ordinary Types A useable "now”
o Always Types JA useable at any (future) time

o Eventually Types OA useable at some (future) time

» See [Pfenning & Davies] for modal logic

Always Modality

o The type OA is "always A" or "necessarily A"
© Boxis a comonad.

AT A
A; . FA A; T FOA AA;T-B
A;T'=0OA A; T =B

AEA

AT HA

Always Modality

o The type OA is "always A" or "necessarily A"
© Boxis a comonad.

AT A

A; . FelA A;T Fe :OA Aa:A;T'-e, B

A; T'Fboxe:0OA A;T'+letboxa=e,ine, : B

aAEA
A;T'—a: A

Eventually Modality

o The type CA is “eventually A" or “possibly A",
o Diamond is a monad.

A; T A
A; T'HOA

A; T FOA A AFCOB
AT HOB

Eventually Modality

o The type CA is “eventually A" or “possibly A",
o Diamond is a monad.

A; T'-e:A
A; T Ffuturee: CA

AT Fe, : CA A;xiArFe, :OB
A;T'Fwaitx=e;ine, OB

Linear Temporal Logic

o The type ©CA means “eventually A",
» Would like to think of this as an “A event”
e Built-in primitives could provide other sources of CA

o But... not enough structure to order them
* In a GUI, we often think of the sequence of events

total order: foranyA,B. A <B or B<A

Branching vs Linear Time

Linear Temporal Logic

o Encode the ordering as this rule:
A; T, FOB A; A, OB = OC

A; T, -OA A; CA, B+ OC
A; T, FOC

o Call this operation “select”:

o Wait for whichever event fires first, choose a continuation based on
the outcome

» The second operation will still eventually happen

Linear Temporal Logic

o Encode the ordering as this rule:
A;T e, : OB A; a:A, b:OB ¢, : OC
A; T Fe, : CA A; a:CA, b:BFc, : OC
A; I'+selecte, | e, as
| a,b->c, : OC
| a,b->c,

o Call this operation “select”:

o Wait for whichever event fires first, choose a continuation based on
the outcome

» The second operation will still eventually happen

Linear Time, Logically

o lets us say that any two events can be ordered:

OA — OB — O(A x OB) + O(CA x B)

o also permits synchronization on “eventually always” propositions:

sync: OOA — OOB — OO(AxB)

O

O

Classical Linear Linear Temporal Logic

Ordinary Types A useable "now”
Always Types JA useable at any (future) time

Eventually Types ©OA useable at some (future) time

Classical Linear Logic = Concurrent Programming
e See e.g.[Wadler] [Pfenning]
e m-calculus notation

Benefits: similar to Rust’s affine types
e separation of resources
* race prevention

Safety

button.onClick : (Clickbata -> Safe) -> Safe

o here I0 () isthe answer type.
o this is too permissive; we don't want all terms of type I0 ()

o ...only those commands that preserve the event loop invariants

» |dea: for GUIs replace 10 () with Safe, a refinement that permits only
“good” computations

» show that safety is preserved when composing richer types

What is Safety?

A widget contains:
» Some first-order data (color, height, text, etc.)
» A collection of event handlers
» S0 a heap can be formalized as:

Data heap h = - | h,h | [:d
Queue g € Loc— Mfin(val)
Store o € Data x Queue

» Key problem: event handlers are higher-order state

Safety, Semantically

c

Vo#h. dm € Perm.
(0-¢:t) Y (m(0”)-¢:())

Saf B {77/\\ VI € Loc, e € Event.
afen = V(M| sare*((h, [qll: @)), e, q(1))

A

Ok = +(o,t,0")

Safe = [),Safe,
Safe, (0, e, ks) = T
Safe’ (0, e €) - T
Jo’ € Safe,,.
* /
Safe ,(0,ek-ks) = Ok(o, ke, a’) A

Safe*(0’, e, ks)

» Safe = heaps maintaining safety on callbacks

}

)

—

)

Separation Algebra of Safe Heaps

h#h’ = dom(h)ndom(h’) =@
(h,q)#(h’,q’) = h#h’

h, h" if h#:h
h-h - {J_ otherwise
q-q’ = Al.q(lyuqg’'(/)

© - Pﬁ h) if hh
! 7) ,rq'q/ | #
(h,q)-(h",q") = { L otherwise

Compilation Strategy

Classical . Classical
Logic Linear Logic
U U
Intuitionistic - Tensorial
Logic Logic

o Translation is double-negation (i.e. CPS translation)
o Mellies’ tensorial logic

Realizability Semantics of
Continuations

Type = {(o;v) | o € Safe}

A x B

Al +A;

DA

Double Negation (CPS)

0] =0

AeB] = [A]+[B]
=1

AeB] = [A] * [B]

[T] = -0

A&B] = —(=[A]+ ~[B])
[1] = -1

A%B] = —(=[A] * ~[B])
Al = oAl

0A] = -O-[A]

O

O

O

Status

Still nailing down the semantics
* Interaction between linearity & temporal logic
o Proofs that the safety invariants compose

Playing around with syntax
o Sequent formulations of the type system
e Pi-calculus? Mu calculus?

No implementation (yet!)

Jennifer: thinking about “composition of logical features”

e Combining semantics

Features as Computational “Worlds”

S

P

See e.g. Benton’s Linear—Nonlinear Logic .

"Adjoint functors arise everywhere..."

Type Term

Proposition Proof

Category Object Morphism Adjunction

0z0
~—

Questions

o Connection to Functional Reactive Programming?

o Behavior/Signal vs. Event
e A ~ T — A where T is the domain of Time
e CA ~ TxA

o Connection to Concurrent ML?
o first-class synchronization primitives?

Interactive Programs

-- event loop
while (true) {
let event = get_event();

event loop waits for events

programs register callbacks for (f in handlers[event]) {
with the event handler : f(event.data);
}
event loop invokes the
callbacks for each event -- handlers
handlers[key] =

f d > ..; f d -> ..;
GUI Programs are(?): [Fun g o > i

e higher-order handlers[click] =

e concurrent [fun d -> ..; fun d -> ..;]
e imperative

e CPS handlers[mouseMove] =

[fun d -> ..;]

O O O O

Linear Type Structure

Linear Types A useable exactly once “now”
Always Types OA useable once at any (future) time
Eventually Types OA useable once at some (future) time
Persistent Types 1A unrestricted uses at any time

box is a comonad
diamond is a monad
sequent calculus:

— oA, A — A A

— oA, oA — A oA

Safety

button.onClick : (Clickbata -> I0 ()) -> 10 ()
: (Clickbata -> Ssafe) -> Safe
O(Clickbata -> Safe) -> sSafe
O-ClickData -> Safe
: =0O-ClickDbata
: OClickbata

o callback creation ~ eventually modality of temporal logic
o linearity lets us characterize independence
o classical logic (should) yield a CPS-based implementation

Facts about CPS Translation

[1] = (1—>a)—a
[AxB] =(A—>B—oa)—a
[A—B] = A—(B—a)—a

o CPS is a double negation translation of the types:
A = A —a

o the "answer type”is a
o CPS translation is parametric in the answer type [Friedman 76]

