
Type Fusion

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Fusion is an indispensable tool in the arsenal of techniques
for program derivation. Less well-known, but equally valuable is type
fusion, which states conditions for fusing an application of a functor
with an initial algebra to form another initial algebra. We provide a
novel proof of type fusion based on adjoint folds and discuss several
applications: type firstification, type specialisation and tabulation.

Keywords: initial algebra, fold, fusion, adjunction, tabulation.

1 Introduction

Fusion is an indispensable tool in the arsenal of techniques for program derivation
and optimisation. The simplest instance of fusion states conditions for fusing an
application of a function with a fixed point to form another fixed point:

` (µf) = µg ⇐= ` · f = g · ` , (1)

where µ denotes the fixed point operator and f , g and ` are functions of suitable
types. The usual mode of operation is from left to right: the two-stage process
of forming the fixed point µf and then applying ` is optimised into the single
operation of forming the fixed point µg . Applied from right to left, the law
enables us to decompose a fixed point.

In this paper we discuss lifting fusion to the realm of types and type con-
structors. Type fusion takes the form

L (µF) ∼= µG ⇐= L · F ∼= G · L ,

where F, G and L are functors between suitable categories and µF denotes the
initial algebra of the endofunctor F. Similar to function fusion, type fusion allows
us to fuse an application of a functor with an initial algebra to form another
initial algebra. Type fusion has, however, one further prerequisite: L has to be
a left adjoint. We show that this condition arises naturally as a consequence of
defining the arrows witnessing the isomorphism.

Type fusion has been described before [1], but we believe that it deserves
to be better known. We provide a novel proof of type fusion based on adjoint
folds [2], which gives a simple formula for the aforementioned isomorphisms. We
illustrate the versatility of type fusion through a variety of applications relevant
to programming:

2 Ralf Hinze

– type firstification: a fixed point of a higher-order functor is transformed to
a fixed-point of a first-order one;

– type specialisation: a nesting of types is fused into a single type that is more
space-efficient;

– tabulation: functions from initial algebras can be memoised using final coal-
gebras. This example is intriguing as the left adjoint is contravariant and
higher-order.

The rest of the paper is structured as follows. To keep the paper sufficiently
self-contained, Section 2 reviews initial algebras and adjoint folds. (The material
is partly taken from [2], which introduces adjoint folds.) The central theorem,
type fusion, is given in Section 3. Sections 4, 5 and 6 discuss applications. Finally,
Section 7 reviews related work.

2 Background

2.1 Initial Algebras and Final Coalgebras

We assume cartesian closed categories C, D and E that are ω-cocomplete and ω-
complete. Furthermore, we confine ourselves to ω-cocontinuous and ω-continuous
functors.

Let F : C → C be an endofunctor. An F-algebra is a pair 〈A, f 〉 consisting
of an object A ∈ C and an arrow f ∈ C(F A,A). An F-homomorphism between
algebras 〈A, f 〉 and 〈B , g〉 is an arrow h ∈ C(A,B) such that h · f = g · F h.
Identity is an F-homomorphism and F-homomorphisms compose. Consequently,
the data defines a category. If C is ω-cocomplete and F is ω-cocontinuous, this
category possesses an initial object, the so-called initial F-algebra 〈µF, in〉. The
import of initiality is that there is a unique arrow from 〈µF, in〉 to any other
F-algebra 〈A, f 〉. This unique arrow is written Lf M and is called a fold. Expressed
in terms of the base category, it satisfies the following universal property.

x = Lf M ⇐⇒ x · in = f · F x (2)

The universal property has several important consequences [3, 4]. Setting x := id
and f := in, we obtain the reflection law : LinM = id . Substituting the left-hand
side into the right-hand side gives the computation law : Lf M ·in = f ·F Lf M. Finally
and most importantly, it implies the fusion law for fusing an arrow with a fold
to form another fold.

h · Lf M = LgM ⇐= h · f = g · F h (3)

Initial algebras provide semantics for inductive or recursive datatypes as
found, for instance, in Haskell [5]. The following example illustrates the ap-
proach. In fact, Haskell is expressive enough to replay the development within
the language.

Type Fusion 3

Example 1 Consider the datatype Stack that models stacks of naturals.

data Stack = Empty | Push (Nat × Stack)

The function total , which computes the sum of a stack of natural numbers, is a
typical example of a fold.

total : Stack → Nat
total Empty = 0
total (Push (n, s)) = n + total s

Since Haskell features higher-kinded type constructors, initial algebras can
be captured by a recursive datatype declaration.

newtypeµf = In {in◦ : f (µf)}

The definition uses Haskell’s record syntax to introduce the destructor in◦ in
addition to the constructor In. Using this definition, the type of stacks can be
factored into a non-recursive base functor that describes the structure of the
data and an application of µ that ties the recursive knot:

data Stack stack = Empty | Push (Nat × stack)
instance Functor Stack where

fmap f Empty = Empty
fmap f (Push (n, s)) = Push (n, f s)

type Stack = µStack .

Folds can be defined generically, that is, for arbitrary base functors by taking
the computation law as the defining equation.

L–M : (Functor f)⇒ (f b → b)→ (µf → b)
Lf M = f · fmap Lf M · in◦

Similar to the development on the type level, the function total can now be
factored into a non-recursive algebra and an application of fold:

total : Stack Nat → Nat
total (Empty) = 0
total (Push (n, s)) = n + s
total = LtotalM .

For emphasis, base functors, algebras and, later, base functions are typeset in
this font. ut

To understand concepts in category theory it is helpful to look at a sim-
ple class of categories: preorders. Every preorder gives rise to a category whose
objects are the elements of the preorder and whose arrows are given by the
ordering relation. These categories are special as there is at most one arrow
between two objects: a → b is inhabited if and only if a 6 b. A functor be-
tween two preorders is a monotone function, which is a mapping on objects

4 Ralf Hinze

that respects the underlying ordering: a 6 b =⇒ f a 6 f b. A natural transfor-
mation between two monotone functions corresponds to a point-wise ordering:
f 6̇ g ⇐⇒ ∀x . f x 6 g x . Throughout the section we shall specialise the devel-
opment to preorders. For type fusion, in Section 3, we turn things upside down:
we first develop the theory in the simple setting and then generalise to arbitrary
categories.

Let P be a preorder and let f : P → P be a monotone function. An f -algebra
is an element a with f a 6 a, a so-called prefix point. An initial f -algebra is the
least prefix point of f . Since there is at most one arrow between two objects in
a preorder, the theory simplifies considerably: all that matters is the type of an
arrow. The type of in corresponds to the fixed-point inclusion law :

f (µf) 6 µf , (4)

which expresses that µf is indeed a prefix point. The type of the fold operator,
Lf M ∈ C(µF,B)⇐= f ∈ C(F B ,B), translates to the fixed-point induction law :

µf 6 b ⇐= f b 6 b . (5)

It captures the property that µf is smaller than or equal to every other prefix
point. To illustrate the laws, let us prove that µf is a fixed point of f . (Generalised
to categories, this fact is known as Lambek’s Lemma [6].) The inclusion law states
f (µf) 6 µf , for the other direction we reason (left column)

µf 6 f (µf)
⇐= { induction (5) }

f (f (µf)) 6 f (µf)
⇐= { f monotone }

f (µf) 6 µf
⇐⇒ { inclusion (4) }

�

LF inM ∈ C(µF,F (µF))
⇐= { type of fold }

F in ∈ C(F (F (µF)),F (µF))
⇐= { F functor }

in ∈ C(F (µF), µF)
⇐⇒ { type of in }

�

The proof involves the type of fold, the fact that f is a functor and the type
of in. In other words, it can be seen as a typing derivation of LF inM, the inverse
of in. This is made explicit above on the right. The proof on the left is given as
a top-down backward implication, with the initial goal at top. While this style is
natural for order-theoretic arguments, it is less so for typing derivations, as the
witness, here LF inM, appears out of thin air. To follow the term construction, it
is advisable to read typing derivations from bottom to top.

Summing up, to interpret a category-theoretic result in the setting of pre-
orders, we only consider the types of the arrows. Conversely, an order-theoretic
proof can be seen as a typing derivation — we only have to provide witnesses
for the types. Category theory has been characterised as coherently constructive
lattice theory [7], and to generalise an order-theoretic result we additionally have
to establish the required coherence conditions. Continuing the example above,
to prove F (µF) ∼= µF we must show that in · LF inM = id ,

in · LF inM = id

Type Fusion 5

⇐⇒ { reflection }
in · LF inM = LinM

⇐= { fusion (3) }
in · F in = in · F in ,

and LF inM · in = id ,

LF inM · in
= { computation }

F in · F LF inM
= { F functor }

F (in · LF inM)
= { see above }

F id
= { F functor }

id .

Finally, let us remark that the development nicely dualises to F-coalgebras
and unfolds, which give a semantics to coinductive types. The final F-coalgebra
is denoted 〈νF, out〉.

2.2 Adjoint Folds and Unfolds

Folds and unfolds are at the heart of the algebra of programming. However, most
programs require some tweaking to be given the form of a fold or an unfold, and
thus make them amenable to formal manipulation.

Example 2 Consider the function shunt , which pushes the elements of the first
onto the second stack.

shunt : µStack× Stack → Stack
shunt (In Empty, y) = y
shunt (In (Push (a, x)), y) = shunt (x , In (Push (a, y)))

The function is not a fold, simply because it does not have the right type. ut

Practical considerations dictate the introduction of a more general (co-) re-
cursion scheme, christened adjoint folds and unfolds [2] for reasons to become
clear in a moment. The central idea is to allow the initial algebra or the final
coalgebra to be embedded in a context, where the context is modelled by a func-
tor (L and R below). The functor is subject to a certain condition, which we
discuss shortly. The adjoint fold LΨML ∈ C(L (µF),B) is then the unique solution
of the equation

x · L in = Ψ x , (6)

6 Ralf Hinze

where the base function Ψ has type Ψ : ∀X ∈ D . C(L X ,B) → C(L (F X),B).
It is important that Ψ is natural in X . Informally speaking, naturality ensures
termination of LΨML: the first argument of Ψ , the recursive call of x , can only be
applied to proper sub-terms of x ’s argument — each embedded in the context L.

Dually, the adjoint unfold [(Ψ)]R ∈ C(A,R (νF)) is the unique solution of the
equation

R out · x = Ψ x , (7)

where the base function Ψ has type Ψ : ∀X ∈ C . D(A,R X) → D(A,R (F X)).
Again, the base function has to be natural in X , which now ensures productivity.

We have already indicated that the functors L and R cannot be arbitrary.
For instance, for L := K A, where K : C → CD is the constant functor and
Ψ := id : C(A,B) → C(A,B), Equation (6) simplifies to the trivial x = x . One
approach for ensuring uniqueness is to express x in terms of a standard fold. This
is where adjunctions enter the scene: we require L and R to be adjoint. Briefly,
let C and D be categories. The functors L and R are adjoint, L a R,

C
≺

L

⊥
R
�

D

if and only if there is a bijection

φ : ∀A B . C(L A,B) ∼= D(A,R B) (8)

that is natural both in A and B . The isomorphism φ is called the adjoint trans-
position. It allows us to trade L in the source for R in the target, which enables us
to reduce an adjoint fold to a standard fold, for the proof see [2]. The standard
fold φ LΨML ∈ C(µF,R B) is called the transpose of LΨML.

Example 3 In the case of shunt , the adjoint functor is pairing defined L X =
X × Stack and L f = f × idStack . Its right adjoint is exponentiation defined
R Y = Y Stack and R f = f idStack . This adjunction captures currying : a function
of two arguments can be treated as a function of the first argument whose values
are functions of the second argument. To see that shunt is an adjoint fold we
factor the definition into a non-recursive base function shunt that abstracts away
from the recursive call and an adjoint equation that ties the recursive knot.

shunt : ∀x . (L x → Stack)→ (L (Stack x)→ Stack)
shunt shunt (Empty, y) = y
shunt shunt (Push (a, x), y) = shunt (x , In (Push (a, y)))
shunt : L (µStack)→ Stack
shunt (In x , y) = shunt shunt (x , y)

The last equation is the point-wise variant of shunt · L in = shunt shunt . The
transposed fold is simply the curried variant of shunt . ut

Type Fusion 7

Let us specialise the result to preorders. An adjunction is a pair of monotone
functions ` : Q → P and r : P → Q such that

` a 6 b ⇐⇒ a 6 r b . (9)

The type of the adjoint fold LΨML ∈ C(L (µF),B)⇐= Ψ ∈ ∀X ∈ D . C(L X ,B)→
C(L (F X),B) translates to the adjoint induction law.

` (µf) 6 b ⇐= (∀x ∈ Q . ` x 6 b =⇒ ` (f x) 6 b) (10)

As usual, the development dualises to final coalgebras. We leave the details
to the reader.

3 Type Fusion

Turning to the heart of the matter, the aim of this section is to lift the fusion
law (1) to the realm of objects and functors.

L (µF) ∼= µG ⇐= L · F ∼= G · L

To this end we have to construct two arrows τ : L (µF) → µG and τ◦ : µG →
L (µF) that are inverses. The type of τ◦ suggests that the arrow is an ordinary
fold. In contrast, τ looks suspiciously like an adjoint fold. Thus, we shall require
that L has a right adjoint. The diagram below summarises the type information.

C
≺

G

G
�

C
≺

L

⊥
R
�

D
≺

F

F
�

D

As a preparatory step, we establish type fusion in the setting of preorders.
The proof of the equivalence ` (µf) ∼= µg consists of two parts. We show first
that µg 6 ` (µf)⇐= g · ` 6̇ ` · f and second that ` (µf) 6 µg ⇐= ` · f 6̇ g · `.

µg 6 ` (µf)
⇐= { induction (5) }

g (` (µf)) 6 ` (µf)
⇐= { transitivity }

g (` (µf)) 6 ` (f (µf)) and ` (f (µf)) 6 ` (µf)
⇐= { assumption g · ` 6̇ ` · f }

` (f (µf)) 6 ` (µf)
⇐= { ` monotone }

f (µf) 6 µf
⇐⇒ { inclusion (4) }

�

8 Ralf Hinze

For part two, we apply adjoint induction (10), which leaves us with the
obligation ∀x ∈ Q . ` x 6 µg =⇒ ` (f x) 6 µg .

` (f x) 6 µg
⇐= { transitivity }

` (f x) 6 g (` x) and g (` x) 6 µg
⇐= { assumption ` · f 6̇ g · ` }

g (` x) 6 µg
⇐= { transitivity }

g (` x) 6 g (µg) and g (µg) 6 µg
⇐= { g monotone and inclusion (4) }

` x 6 µg

In the previous section we have seen that an order-theoretic proof can be
interpreted constructively as a typing derivation. The first proof above defines
the arrow τ◦. (The natural isomorphism witnessing L · F ∼= G · L is called swap.)

LL in · swap◦M ∈ C(µG, L (µF))
⇐= { type of fold }

L in · swap◦ ∈ C(G (L (µF)), L (µF))
⇐= { composition }

swap◦ ∈ C(G (L (µF)), L (F (µF))) and L in ∈ C(L (F (µF)), L (µF))
⇐= { assumption swap◦ : G · L →̇ L · F }

L in ∈ C(L (F (µF)), L (µF))
⇐= { L functor }

in ∈ D(F (µF), µF)
⇐⇒ { type of in }

�

Conversely, the arrow τ is the adjoint fold LΨML whose base function Ψ is given
by the second proof.

in · G x · swap ∈ C(L (F X), µG)
⇐= { composition }

swap ∈ C(L (F X),G (L X)) and in · G x ∈ C(G (L X), µG)
⇐= { assumption swap : L · F →̇ G · L }

in · G x ∈ C(G (L X), µG)
⇐= { composition }

G x ∈ C(G (L X),G (µG)) and in ∈ C(G (µG), µG)
⇐= { G functor and type of in }

x ∈ C(L X , µG)

Type Fusion 9

We may conclude that τ = Lλ x . in ·G x · swapML and τ◦ = LL in · swap◦M are the
desired arrows. The diagram below visualises the type information.

G (L (µF))

L (F (µF))
≺

swap

swap◦
�

G (µG)

≺
G τ

G τ ◦ �

L (µF)

L in L in
g

≺
τ◦

τ
� µG

in in
g

All that remains is to establish that they are inverses.

Theorem 1 (Type fusion). Let C and D be categories, let L a R be an adjoint
pair of functors L : D→ C and R : C→ D, and let F : D→ D and G : C→ C be
two endofunctors. Then

L (µF) ∼= µG ⇐= L · F ∼= G · L ; (11)
νF ∼= R (νG) ⇐= F · R ∼= R · G . (12)

Proof. We show type fusion for initial algebras (11), the corresponding statement
for final coalgebras (12) follows by duality. The isomorphisms τ and τ◦are given
as solutions of adjoint fixed point equations:

τ · L in = in · G τ · swap and τ◦ · in = L in · swap◦ · G τ◦ .

Proof of τ · τ◦ = idµG:

(τ · τ◦) · in
= { definition of τ◦ and τ }

in · G τ · swap · swap◦ · G τ◦

= { inverses }
in · G τ · G τ◦

= { G functor }
in · G (τ · τ◦) .

The equation x · in = in · G x has a unique solution — the base function Ψ x =
in · G x is a natural transformation of type ∀X ∈ C . C(X , µG) → C(G X , µG).
Since id is also a solution, the result follows.

Proof of τ◦ · τ = idL (µF):

(τ◦ · τ) · L in
= { definition of τ and τ◦ }

L in · swap◦ · G τ◦ · G τ · swap
= { G functor }

L in · swap◦ · G (τ◦ · τ) · swap .

10 Ralf Hinze

Again, x · L in = L in · swap◦ · G x · swap enjoys a unique solution — the base
function Ψ x = L in · swap◦ · G x · swap has type ∀X ∈ D . C(L X , L (µF)) →
C(L (F X), L (µF)). And again, id is also solution, which implies the result. ut

Note that in order to apply type fusion for initial algebras (11) it is sufficient
to know that the functor L is part of an adjoint situation — there is no need to
make R explicit. Likewise, for fusing final coalgebras (12) it is sufficient to know
that R has a left adjoint.

4 Application: Firstification

Abstraction by parametrisation is a central concept in programming. A program
can be made more general by abstracting away from a constant. Likewise, a type
can be generalised by abstracting away from a type constant.

Example 4 Recall the type of stacks of natural numbers.

data Stack = Empty | Push (Nat × Stack)

The type of stack elements, Nat , is somewhat arbitrary. Abstracting away from
it yields the type of parametric lists

data List a = Nil | Cons (a × List a) .

To avoid name clashes, we have renamed data and type constructors. ut

The inverse of abstraction is application or instantiation. We regain the original
concept by instantiating the parameter to the constant. Continuing Example 4,
we expect that

List Nat ∼= Stack . (13)

The isomorphism is non-trivial, as both types are recursively defined. The trans-
formation of List Nat into Stack can be seen as an instance of firstification [8]
or λ-dropping [9] on the type level: a fixed point of a higher-order functor is
reduced to a fixed-point of a first-order functor.

Perhaps surprisingly, we can fit the isomorphism into the framework of type
fusion. To this end, we have to view type application as a functor: given an object
T ∈ D define AppT : CD → C by AppT F = F T and AppT α = αT . Using type
application we can rephrase Equation (13) as AppNat (µList) ∼= µStack, where
List is the higher-order base functor of List defined

data List list a = Nil | Cons (a, list a) .

In order to apply type fusion, we have to check that AppT is part of an adjunc-
tion. It turns out that it has both a left and a right adjoint [2]. Consequently, we
can firstify both inductive and coinductive parametric types. Generalising the
original problem, Equation (13), the second-order type µF and the first-order
type µG are related by AppT (µF) ∼= µG if AppT · F ∼= G · AppT . Despite the
somewhat complicated type, the natural isomorphism swap is usually straight-
forward to define: it simply renames the constructors, as illustrated below.

Type Fusion 11

Example 5 Let us show that List Nat ∼= Stack . We have to discharge the obli-
gation AppNat · List ∼= Stack · AppNat .

AppNat · List

∼= { composition of functors and definition of App }
ΛX . List X Nat

∼= { definition of List }
ΛX . 1 + Nat ×X Nat

∼= { definition of Stack }
ΛX . Stack (X Nat)

∼= { composition of functors and definition of App }
Stack · AppNat

The proof above is entirely straightforward. The isomorphisms are

swap : ∀x . List x Nat → Stack (x Nat)
swap Nil = Empty
swap (Cons (n, x)) = Push (n, x)
swap◦ : ∀x . Stack (x Nat)→ List x Nat
swap◦ Empty = Nil
swap◦ (Push (n, x)) = Cons (n, x) .

The transformations rename Nil to Empty and Cons to Push, and vice versa.
Finally, τ and τ◦ implement Λ-lifting and Λ-dropping.

Λ-lift : µStack→ µList Nat
Λ-lift (In x) = In (swap◦ (fmap Λ-lift x))
Λ-drop : µList Nat → µStack
Λ-drop (In x) = In (fmap Λ-drop (swap x))

Since type application is invisible in Haskell, the adjoint fold Λ-drop deceptively
resembles a standard fold. ut

Transforming a higher-order fixed point into a first-order fixed point works
for so-called regular datatypes. The type of lists is regular; the type of perfect
trees [10] defined

data Perfect a = Zero a | Succ (Perfect (a × a))

is not because the recursive call of Perfect involves a change of argument. Firs-
tification is not applicable, as there is no first-order base functor Base such
that AppT · Perfect = Base · AppT . The class of regular datatypes is usually
defined syntactically. Drawing from the development above, we can provide an
alternative semantic characterisation.

Definition 1. Let F : CD → CD be a higher-order functor. The parametric
datatype µF : D → C is regular if and only if there exists a functor G : C → C
such that AppT · F ∼= G · AppT for all objects T : D. ut

12 Ralf Hinze

The regularity condition can be simplified to F H T ∼= G (H T), which makes
explicit that all occurrences of ‘the recursive call’ H are applied to the same
argument.

5 Application: Type Specialisation

Firstification can be seen as an instance of type specialisation: a nesting of types
is fused to a single type that allows for a more compact and space-efficient
representation. Let us illustrate the idea by means of an example.

Example 6 Lists of optional values, List ·Maybe, where Maybe is given by

data Maybe a = Nothing | Just a ,

can be represented more compactly using

data Seq a = Done | Skip (Seq a) | Yield (a × Seq a) .

Assuming that the constructor application C (v1, . . . , vn) requires n+ 1 cells of
storage, the compact representation saves 2n cells for a list of length n. ut

The goal of this section is to prove that

List ·Maybe ∼= Seq , (14)

or, more generally, µF · J ∼= µG for suitably related base functors F and G. The
application of Section 4 is an instance of this problem as the relation H A ∼= B
between objects can be lifted to a relation H · K A ∼= K B between functors.

To fit Equation (14) under the umbrella of type fusion, we have to view pre-
composition as a functor. Given a functor J : C → D, define the higher-order
functor PreJ : ED → EC by PreJ F = F · J and PreJ α = α · J. Using the functor
we can rephrase Equation (14) as PreMaybe (µList) ∼= µSeq.

Of course, we first have to verify that PreJ has a adjoint. It turns out that this
is a well-studied problem in category theory [11, X.3]. Similar to the situation of
the previous section, PreJ has both a left and a right adjoint, the so-called left
and right Kan extension. Instantiating Theorem 1, the parametric types µF and
µG are related by PreJ (µF) ∼= µG if PreJ · F ∼= G ·PreJ. The natural isomorphism
swap realises the space-saving transformation as illustrated below.

Example 7 Continuing Example 6 we demonstrate that PreMaybe ·List ∼= Seq ·
PreMaybe.

List X ·Maybe
∼= { definition of List and Maybe }
ΛA . 1 + (1 + A)×X (Maybe A)

∼= { × distributes over + and 1× B ∼= B }
ΛA . 1 + X (Maybe A) + A×X (Maybe A)

∼= { definition of Seq }
Seq (X ·Maybe)

Type Fusion 13

The central step is the application of distributivity: the law (A + B) × C ∼=
A×C + B ×C turns the nested type on the left into a ‘flat’ sum, which can be
represented space-efficiently in Haskell — swap’s definition makes this explicit.

swap : ∀x . ∀a . List x (Maybe a) → Seq (x ·Maybe) a
swap (Nil) = Done
swap (Cons (Nothing , x)) = Skip x
swap (Cons (Just a, x)) = Yield (a, x)

The function swap is a natural transformation, whose components are again
natural transformations, hence the nesting of universal quantifiers. ut

6 Application: Tabulation

In this section we look at an intriguing application of type fusion: tabulation.
Tabulation means to put something into tabular form. Here, the “something” is
a function. For example, it is well-known that functions from the naturals can
be memoised or tabulated using streams: X Nat ∼= Stream X , where Nat = µNat
and Stream = νStream with

data Nat nat = Zero | Succ nat
data Stream stream a = Next (a, stream a)
newtype νf a = Out◦ {out : f (νf) a } .

The last definition introduces second-order final coalgebras, which model para-
metric coinductive datatypes.

The isomorphism X Nat ∼= Stream X holds for every return type X , so it can
be generalised to an isomorphism between functors:

(−)Nat ∼= Stream . (15)

Tabulations abound. We routinely use tabulation to represent or to visu-
alise functions from small finite domains. Probably every textbook on computer
architecture includes truth tables for the logical connectives.

(∧) : BoolBool×Bool False False
False True

A function from a pair of Booleans can be represented by a two-by-two table.
Again, the construction is parametric:

(−)Bool×Bool ∼= (Id ×̇ Id) ×̇ (Id ×̇ Id) ,

where Id is the identity functor and ×̇ is the lifted product defined (F ×̇ G) X =
F X × G X .

For finite argument types such as Bool×Bool , where Bool = 1+1, tabulation
rests on the well-known laws of exponentials:

X 0 ∼= 1 , X 1 ∼= X , X A+B ∼= X A ×X B , X A×B ∼= (X B)A .

14 Ralf Hinze

Things become interesting when the types involved are recursive as in the
introductory example, and this is where type fusion enters the scene. To be
able to apply the framework, we first have to identify the left adjoint functor.
Quite intriguingly, the underlying functor is a curried version of exponentiation:
Exp : C → (CC)op with Exp K = ΛV . V K and Exp f = ΛV . V f . Using the
functor Exp, Equation (15) can be rephrased as Exp Nat ∼= Stream.

This is the first example where the left adjoint is a contravariant functor and
this will have consequences when it comes to specialising swap and τ . Before we
spell out the details, let us first determine the right adjoint of Exp, which exists
if the underlying category has so-called ends.

(CC)op(Exp A,B)
∼= { definition of (−)op }

CC(B,Exp A)
∼= { natural transformation as an end }
∀X ∈ C . C(B X ,Exp A X)

∼= { definition of Exp }
∀X ∈ C . C(B X ,X A)

∼= { − ×Y a (−)Y and Y × Z ∼= Z ×Y }
∀X ∈ C . C(A,X B X)

∼= { the functor C(A,−) preserves ends }
C(A,∀X ∈ C . X B X)

∼= { define Sel B := ∀X ∈ C . X B X }
C(A,Sel B)

The universally quantified object introduced in the second step is an end, which
corresponds to a polymorphic type in Haskell. We refer the interested reader to
Mac Lane’s textbook [11, IX.5] for further information.

The derivation shows that the right adjoint of Exp is a higher-order functor
that maps a functor B, a type of tables, to the type of selectors Sel B, polymorphic
functions that select some entry from a given table.

Since Exp is a contravariant functor, swap and τ live in an opposite category.
Moreover, µG in (CC)op is a final coalgebra in CC. Formulated in terms of arrows
in CC, type fusion takes the following form

τ : νG ∼= Exp (µF) ⇐= swap : G · Exp ∼= Exp · F ,

and the isomorphisms τ and τ◦ are defined

Exp in · τ = swap · G τ · out ; (16)
out · τ◦ = G τ◦ · swap◦ · Exp in . (17)

Both arrows are natural in the return type of the exponential. The arrow τ : νG→̇
Exp (µF) is a curried look-up function that maps a memo table to an exponential,

Type Fusion 15

which in turn maps an index, an element of µF, to the corresponding entry in the
table. Its inverse, τ◦ : Exp (µF) →̇ νG tabulates a given exponential. Tabulation
is a standard unfold, whereas look-up is an adjoint fold, whose transposed fold
maps an index to a selector function.

Before we look at a Haskell example, let us specialise the defining equations
of τ and τ◦ to the category Set, so that we can see the correspondence to the
Haskell code more clearly.

lookup (out◦ t) (in i) = swap (G lookup t) i (18)
tabulate f = out◦ (G tabulate (swap◦ (f · in))) (19)

Example 8 Let us instantiate tabulation to natural numbers and streams. The
natural isomorphism swap is defined

swap : ∀x . ∀v . Stream (Exp x) v → (Nat x → v)
swap (Next (v , t)) (Zero) = v
swap (Next (v , t)) (Succ n) = t n .

It implements V × V X ∼= V 1+X . Inlining swap into Equation (18) yields the
look-up function

lookup : ∀v . νStream v → (µNat → v)
lookup (Out◦ (Next (v , t))) (In Zero) = v
lookup (Out◦ (Next (v , t))) (In (Succ n)) = lookup t n

that accesses the nth element of a sequence. Its transpose

lookup′ : µNat→ ∀v . νStream v → v
lookup′ (In Zero) (Out◦ (Next (v , t))) = v
lookup′ (In (Succ n)) (Out◦ (Next (v , t))) = lookup′ n t

simply swaps the two value arguments: given a natural number n, it returns a
tailor-made, polymorphic access function that extracts the nth element.

The inverse of swap implements V 1+X ∼= V ×V X and is defined

swap◦ : ∀x . ∀v . (Nat x → v)→ Stream (Exp x) v
swap◦ f = Next (f Zero, f ·Succ) .

If we inline swap◦ into Equation (19), we obtain

tabulate : ∀v . (µNat→ v)→ νStream v
tabulate f = Out◦ (Next (f (In Zero), tabulate (f · In ·Succ)))

that memoises a function from the naturals. By construction, lookup and tabulate
are inverses. ut

The definitions of look-up and tabulate are generic: the same code works for
any suitable combination of F and G. The natural transformation swap on the
other hand depends on the particulars of F and G. The best we can hope for is a

16 Ralf Hinze

polytypic definition that covers a large class of functors. The laws of exponentials
provide the basis for the simple class of so-called polynomial functors.

Exp 0 ∼= K 1 (20)
Exp 1 ∼= Id (21)
Exp (A + B) ∼= Exp A ×̇ Exp B (22)
Exp (A× B) ∼= Exp A · Exp B (23)

Throughout the paper we have used λ-notation to denote functors. We can
extend tabulation to a much larger class of objects if we make this precise. The
central idea is to interpret λ-notation using the cartesian closed structure on
Alg, the category of ω-cocomplete categories and ω-cocontinuous functors. The
resulting calculus is dubbed Λ-calculus. The type constructors 0, 1, +, × and µ
are given as constants in this language. Naturally, the constants 0 and 1 are
interpreted as initial and final objects; the constructors + and × are mapped to
(curried versions of) the coproduct and the product functor. The interpretation
of µ, however, is less obvious. It turns out that the fixed point operator, which
maps an endofunctor to its initial algebra, defines a higher-order functor of type
µ : CC → C, whose action on arrows is given by µα = Lin · αM [12].

For reasons of space, we only sketch the syntax and semantics of the Λ-
calculus, see [12] for a more leisurely exposition. Its raw syntax is given below.

κ ::= ∗ | κ→ κ

T ::= C | X | T T | ΛX . T
C ::= 0 | 1 | + | × | µ

The so-called kind ∗ represents types that contain values. The kind κ1 → κ2

represents type constructors that map type constructors of kind κ1 to those of
kind κ2. The kinds of the constants in C are fixed as follows.

0, 1 : ∗ +,× : ∗→ (∗→ ∗) µ : (∗→ ∗)→∗

The interpretation of this calculus in a cartesian closed category is completely
standard [13]. We provide, in fact, two interpretations, one for the types of keys
and one for the types of memo tables, and then relate the two, showing that the
latter interpretation is a tabulation of the former.

For keys, we specialise the standard interpretation to the category Alg, fix-
ing a category C as the interpretation of ∗. For memo tables, the category of
ω-complete categories and ω-continuous functors serves as the target. The se-
mantics of ∗ is given by (CC)op, which is ω-complete since C is ω-cocomplete.
In other words, ∗ is interpreted by the domain and the codomain of the adjoint
functor Exp, respectively.

The semantics of types is determined by the interpretation of the constants.
(We use the same names both for the syntactic and the semantic entities.)

K J0K = 0 K J1K = 1 K J+K = + K J×K = × K JµK = µ
T J0K = K 1 T J1K = Id T J+K = ×̇ T J×K = · T JµK = ν

Type Fusion 17

Finally, to relate the types of keys and memo tables, we set up a kind-indexed
logical relation.

(A,F) ∈ R∗ ⇐⇒ Exp A ∼= F
(A,F) ∈ Rκ1→κ2 ⇐⇒ ∀X Y . (X ,Y) ∈ Rκ1 =⇒ (A X ,F Y) ∈ Rκ2

The first clause expresses the relation between key types and memo-table func-
tors. The second closes the logical relation under application and abstraction.

Theorem 2 (Tabulation). For closed type terms T : κ,
(K JT K,T JT K) ∈ Rκ .

Proof. We show that R relates the interpretation of constants. The statement
then follows from the ‘basic lemma’ of logical relations. Equations (20)–(23)
imply (K JC K,T JC K) ∈ Rκ for C = 0, 1, + and ×. By definition, (µ, ν) ∈
R(∗→∗)→∗ iff ∀X Y . (X ,Y) ∈ R∗→∗ =⇒ (µX , νY) ∈ R∗. Since the precon-
dition is equivalent to Exp · X ∼= Y · Exp, Theorem 1 is applicable and implies
Exp (µX) ∼= νY , as desired. ut

Note that the functors T JT K contain only products, no coproducts, hence
the terms memo table and tabulation.

7 Related Work

The initial algebra approach to the semantics of datatypes originates in the
work of Lambek on fixed points in categories [6]. Lambek suggests that lattice
theory provides a fruitful source of inspiration for results in category theory.
This viewpoint was taken up by Backhouse et al. [1], who generalise a number
of lattice-theoretic fixed point rules to category theory, type fusion being one
of them. (The paper contains no proofs; these are provided in an unpublished
manuscript [7]. Type fusion is established by showing that L a R induces an
adjunction between the categories of F- and G-algebras.) The rules are illustrated
by deriving isomorphisms between list types (cons and snoc lists) — currying is
the only adjunction considered.

Finite versions of memo tables are known as tries or digital search trees.
Knuth [14] attributes the idea of a trie to Thue [15]. Connelly and Morris [16]
formalised the concept of a trie in a categorical setting: they showed that a trie
is a functor and that the corresponding look-up function is a natural transforma-
tion. The author gave a polytypic definition of memo tables using type-indexed
datatypes [17, 18], which Section 6 puts on a sound theoretical footing. The in-
sight that a function from an inductive type is tabulated by a coinductive type
is due to Altenkirch [19]. He also mentions fusion as a way of proving tabulation
correct, but does not spell out the details. (Altenkirch attributes the idea to
Backhouse.)

Adjoint folds and unfolds were introduced in a recent paper by the author [2],
which in turn was inspired by Bird and Paterson’s work on generalised folds [20].
The fact that µ is a higher-order functor seems to be folklore, see [12] for a recent
reference. That paper also introduces the λ-calculus for types that we adopted
for Theorem 2.

18 Ralf Hinze

Acknowledgement

Thanks are due to the anonymous referees of AMAST 2010 for helpful sugges-
tions and for pointing out some presentational problems.

References

1. Backhouse, R., Bijsterveld, M., van Geldrop, R., van der Woude, J.: Categorical
fixed point calculus. In Pitt, D., Rydeheard, D.E., Johnstone, P., eds.: Proceedings
of the 6th International Conference on Category Theory and Computer Science
(CTCS ’95), Cambridge, UK. Volume 953 of Lecture Notes in Computer Science.,
Springer-Verlag (August 1995) 159–179

2. Hinze, R.: Adjoint folds and unfolds. In Bolduc, C., Desharnais, J., Ktari, B., eds.:
10th International Conference on Mathematics of Program Construction (MPC
’10). Volume 6120 of Lecture Notes in Computer Science., Springer-Verlag (July
2010) 195–228

3. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall Europe, London
(1997)

4. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming: An
Introduction. In Swierstra, S.D., Henriques, P.R., Oliveira, J.N., eds.: 3rd Inter-
national Summer School on Advanced Functional Programming, Braga, Portugal.
Volume 1608 of Lecture Notes in Computer Science. Springer-Verlag, Berlin (1999)
28–115

5. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press
(2003)

6. Lambek, J.: A fixpoint theorem for complete categories. Math. Zeitschr. 103
(1968) 151–161

7. Backhouse, R., Bijsterveld, M., van Geldrop, R., van der Woude, J.: Category
theory as coherently constructive lattice theory (1994) Available from http://

www.cs.nott.ac.uk/~rcb/MPC/CatTheory.ps.gz.

8. Hughes, J.: Type specialisation for the λ-calculus; or, A new paradigm for partial
evaluation based on type inference. In Danvy, O., Glück, R., Thiemann, P., eds.:
Partial Evaluation. Dagstuhl Castle, Germany, February 1996. Volume 1110 of
Lecture Notes in Computer Science., Springer-Verlag (1996) 183–215

9. Danvy, O.: An extensional characterization of lambda-lifting and lambda-dropping.
In Middeldorp, A., Sato, T., eds.: 4th Fuji International Symposium on Functional
and Logic Programming (FLOPS’99), Tsukuba, Japan. Volume 1722 of Lecture
Notes in Computer Science., Springer-Verlag (November 1999) 241–250

10. Hinze, R.: Functional Pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming 10(3) (May 2000) 305–317

11. Mac Lane, S.: Categories for the Working Mathematician. 2nd edn. Graduate
Texts in Mathematics. Springer-Verlag, Berlin (1998)

12. Gibbons, J., Paterson, R.: Parametric datatype-genericity. In Jansson, P., ed.:
Proceedings of the 2009 ACM SIGPLAN workshop on Generic programming, ACM
Press (August 2009) 85–93

13. Crole, R.L.: Categories for Types. Cambridge University Press (1994)

14. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. 2nd edn. Addison-Wesley Publishing Company (1998)

Type Fusion 19

15. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter
udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-Naturvidenskabelig
Klasse 1 (1912) 1–67 Reprinted in Thue’s “Selected Mathematical Papers” (Oslo:
Universitetsforlaget, 1977), 413–477.

16. Connelly, R.H., Morris, F.L.: A generalization of the trie data structure. Mathe-
matical Structures in Computer Science 5(3) (September 1995) 381–418

17. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming
10(4) (July 2000) 327–351

18. Hinze, R.: Memo functions, polytypically! In Jeuring, J., ed.: Proceedings of the
2nd Workshop on Generic Programming, Ponte de Lima, Portugal. (July 2000)
17–32 The proceedings appeared as a technical report of Universiteit Utrecht, UU-
CS-2000-19.

19. Altenkirch, T.: Representations of first order function types as terminal coalgebras.
In: Typed Lambda Calculi and Applications, TLCA 2001. Volume 2044 of Lecture
Notes in Computer Science., Springer-Verlag (2001) 62–78

20. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2) (1999) 200–222

