
ZU064-05-FPR Editorial 21 September 2010 14:7

Under consideration for publication in J. Functional Programming 1

Special Issue on Generic Programming
Editorial

RALF HINZE
Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze@comlab.ox.ac.uk

Generic programming is about making programs more adaptable by making them more
general. Generic programs often embody non-traditional kinds of polymorphism; ordinary
programs are obtained from them by suitably instantiating their parameters. In contrast to
normal programs, the parameters of a generic program are often quite rich in structure; for
example they may be other programs, types or type constructors, classes, concepts, or even
programming paradigms.

This special issue documents state-of-the-art research in the broad field of Generic
Programming. It is an outgrowth of the series of Workshops on Generic Programming,
which started in 1998 and which continues this year with an ICFP affiliated workshop
in Baltimore. Participants of the workshops were invited to submit a suitably revised and
expanded version of their workshop paper to the special issue. The call for papers was,
however, open. Other contributions were equally welcomed and were encouraged.

Eleven papers were submitted in response to the call. Each submission was reviewed
by at least four referees, including an expert and an informed outsider. The following five
articles were finally selected for inclusion in this special issue:

• Generic programs enjoy generic proofs. The article “Formal Polytypic Programs
and Proofs” by Wendy Verbruggen, Edsko de Vries and Arthur Hughes describes a
verified implementation of Generic Haskell in the proof assistant Coq, with added
support for conducting machine-verified generic proofs.

• Different programming languages differ in their support for generic programming.
Haskell scores well in this regard because of its type classes, so does C++ ex-
tended with the notion of concepts. The article “Generic Programming with C++
Concepts and Haskell Type Classes” by Jean-Philippe Bernardy, Patrik Jansson,
Marcin Zalewski and Sibylle Schupp provides an in-depth comparison between these
two features and is potentially useful both to language designers and practising
programmers.

• Another hot competitor in this arena is Scala. The article “Scala for Generic Pro-
grammers” by Bruno Oliveira and Jeremy Gibbons compares Haskell and Scala
support for generic programming, arguing that Scala is in many ways a better choice.

• Generic programs enjoy generic optimisations. The article “Factorising Folds for
Faster Functions” by Graham Hutton, Mauro Jaskelioff and Andy Gill introduces a



ZU064-05-FPR Editorial 21 September 2010 14:7

2 R. Hinze

generic variant of the worker/wrapper transformation, illustrating the technique with
numerous examples.

• The article “A Lightweight Approach to Datatype-generic Rewriting” by Thomas
van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Johan Jeuring, Bastiaan
Heeren and José Pedro Magalhaẽs presents an application of generic programming
to term rewriting. The authors carefully describe the design and the implementation
of a generic rewriting library, written in Haskell extended with GADTs and type
families.

I would like to thank the authors and the numerous referees for their efforts in producing
and reviewing these articles. Furthermore, special thanks go to Matthias Felleisen and
Xavier Leroy for the opportunity to publish the articles as a special issue of the Journal of
Functional Programming.

Ralf Hinze
Special Issue Editor


