
1 JJ J I II 2

Generic Haskell—Practice and Theory

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

August, 2002

(Pick the slides at .../~ralf/talks.html#T33.)

2 JJ J I II 2

Overview

I Generic Haskell—Introduction

I Generic Haskell—Practice

I Generic Haskell—Theory

3 JJ J I II 2

Prerequisites

A basic knowledge of Haskell is desirable, as all the examples are given either in
Haskell or in Generic Haskell, which is an extension of Haskell (and which is the
subject of this lecture).

4 JJ J I II 2

Generic Haskell—Introduction

I Type systems

I Haskell’s data construct

I Towards generic programming

I Towards Generic Haskell

5 JJ J I II 2

Safe languages

We probably all agree that language safety is a good thing.

A few definitions stressing different aspects (taken from Pierce’s “Types and
Programming Languages”):

I A safe language is one that makes it impossible to shoot yourself in the foot
while programming.

I A safe language is one that protects its own abstractions.

I A safe language is one that that prevents untrapped errors at run time.

I A safe language is completely defined by its programmer’s manual.

Language safety can be achieved by static type checking, by dynamic type
checking, or by a combination of static and dynamic checks.

6 JJ J I II 2

Static typing

Static type checking has a number of benefits:

I Programming errors are detected at an early stage.

I Type systems enforce disciplined programming.

I Types promote abstraction (abstract data types, module systems).

I Types provide machine-checkable documentation.

However, type systems are always conservative: they must necessarily reject
programs that behave well at run time.

7 JJ J I II 2

Dynamic typing

This course has little to offer for addicts of dynamically typed languages.

8 JJ J I II 2

Polymorphic type systems

Polymorphism complements safety by flexibility.

Polymorphism allows the definition of functions that behave uniformly over all
types.

data List a = Nil | Cons a (List a)

length :: ∀a .List a → Int
length Nil = 0
length (Cons a as) = 1 + length as

The function length happens to be insensitive to the type of the list elements.

9 JJ J I II 2

However, . . .

. . . polymorphic type systems are sometimes less flexible than one would wish.

For instance, it is not possible to define a polymorphic equality function.

eq :: ∀a . a → a → Bool -- does not work

Parametricity implies that a function of this type must necessarily be constant
(roughly speaking, the two arguments cannot be inspected).

As a consequence, the programmer is forced to program a separate equality
function for each type from scratch.

10 JJ J I II 2

Haskell data construct

In Haskell new types are introduced via data declarations.

A Haskell data type is essentially a sum of products.

data String = Nil | Cons Char String

The type String is a binary sum. The first summand, Nil , is a nullary product
and the second summand, Cons , is a binary product.

11 JJ J I II 2

Haskell’s data construct

Data types may have type arguments, that is, we have (a simple form of) type
abstraction and type application.

data List a = Nil | Cons a (List a)

The type List is obtained from String by abstracting over Char .

12 JJ J I II 2

Haskell’s data construct

Type arguments may also range over type constructors.

data GRose f a = Branch a (f (GRose f a))

data Fix f = In (f (Fix f))

Haskell’s kind system ensures that type terms are well-formed. We have
GRose :: (∗ → ∗)→ (∗ → ∗) and Fix :: (∗ → ∗)→ ∗.

The ‘∗’ kind represents manifest types such as Char or Int .

The kind k → l represents type constructors that map type constructors of kind k
to those of kind l .

13 JJ J I II 2

Towards generic programming

Now, let’s define equality functions for the types above.

eqString :: String → String → Bool

eqString Nil Nil = True
eqString Nil (Cons c ′ s ′) = False
eqString (Cons c s) Nil = False
eqString (Cons c s) (Cons c ′ s ′) = eqChar c c ′ ∧ eqString s s ′

The function eqChar :: Char → Char → Bool is equality of characters.

14 JJ J I II 2

Towards generic programming

The type List is obtained from String by abstracting over Char . Likewise,
eqList is obtained from eqString by abstracting over eqChar .

eqList :: ∀a . (a → a → Bool)→ (List a → List a → Bool)

eqList eqa Nil Nil = True
eqList eqa Nil (Cons a ′ x ′) = False
eqList eqa (Cons a x) Nil = False
eqList eqa (Cons a x) (Cons a ′ x ′) = eqa a a ′ ∧ eqList eqa x x ′

15 JJ J I II 2

Towards generic programming

The type GRose abstracts over a type constructor (of kind ∗ → ∗) and over a
type (of kind ∗). The equality function eqGRose follows the type structure.

eqGRose :: ∀f . (∀a . (a → a → Bool)→ (f a → f a → Bool))
→ (∀a . (a → a → Bool)

→ (GRose f a → GRose f a → Bool))

eqGRose eqf eqa (Branch a f) (Branch a ′ f ′)
= eqa a a ′ ∧ eqf (eqGRose eqf eqa) f f ′

eqFix :: ∀f . (∀a . (a → a → Bool)→ (f a → f a → Bool))
→ (Fix f → Fix f → Bool)

eqFix eqf (In f) (In f ′) = eqf (eqFix eqf) f f ′

16 JJ J I II 2

Towards Generic Haskell

I Observation: the type of eqT depends on the kind of T . The more
complicated the kind of T , the more complicated the type of eqT .

I Apart from the typings, it’s crystal clear what the definition of eqT looks like.

I Coding the equality function is boring and error-prone.

I Generic Haskell allows to capture the commonality.

I The generic equality function works for all types of all kinds (except, of
course, for functional types).

17 JJ J I II 2

Kind-indexed types

The type of the generic equality function is captured by the following kind-indexed
type (the part enclosed in {[·]} is the kind index).

type Eq{[∗]} t = t → t → Bool
type Eq{[k → l]} t = ∀a .Eq{[k]} a → Eq{[l]} (t a)

We have eqString :: Eq{[∗]} String , eqList :: Eq{[∗ → ∗]} List , and
eqFix :: Eq{[(∗ → ∗)→ ∗]} Fix .

18 JJ J I II 2

Sums and products

I Recall that Haskell’s data types are essentially sums of products.

I To cover data types the generic programmer only has to define the generic
function for binary sums and binary products (and nullary products).

I To this end Generic Haskell provides the following data types.

data Unit = Unit

data a :*: b = a :*: b

data a :+: b = Inl a | Inr b

19 JJ J I II 2

Type-indexed values

The definition of generic equality is straightforward (eq is a type-indexed value;
the part enclosed in {|·|} is the type index).

eq{|t :: k |} :: Eq{[k]} t

eq{|Char |} = eqChar

eq{|Int |} = eqInt

eq{|Unit |} Unit Unit = True

eq{|:+:|} eqa eqb (Inl a) (Inl a ′) = eqa a a ′

eq{|:+:|} eqa eqb (Inl a) (Inr b ′) = False
eq{|:+:|} eqa eqb (Inr b) (Inl a ′) = False
eq{|:+:|} eqa eqb (Inr b) (Inr b ′) = eqb b b ′

eq{|:*:|} eqa eqb (a :*: b) (a ′ :*: b ′) = eqa a a ′ ∧ eqb b b ′

Generic Haskell takes care of type abstraction, type application and type recursion.

20 JJ J I II 2

Generic application

Given the definition above we can use generic equality at any type of any kind.

eq{|List Char |} "hello" "Hello"
=⇒ False

let sim c c ′ = eqChar (toUpper c) (toUpper c ′)

eq{|List |} sim "hello" "Hello"
=⇒ True

21 JJ J I II 2

Generic abstraction

Common idioms can be captured using generic abstractions.

similar{|t :: ∗ → ∗|} :: ∀t . t Char → t Char → Bool
similar{|t |} = eq{|t |} sim

Note that similar is only applicable to type constructors of kind ∗ → ∗.

22 JJ J I II 2

Stocktaking

Modern functional programming languages such as Haskell 98 typically have a
three level structure (ignoring the module system).

I values

I types — imposing structure on the value level

I kinds — imposing structure on the type level

23 JJ J I II 2

Stocktaking

In ‘ordinary’ programming we define

I values depending on values (called functions),

I types depending on types (called type constructors).

Generic programming adds to this list the possibility of defining

I values depending on types (called generic functions or type-indexed values),

I types depending on kinds (called kind-indexed types).

Type-safety is not compromised.

24 JJ J I II 2

* * *

25 JJ J I II 2

Overview

√
Generic Haskell: Introduction

I Generic Haskell: Practice

I Generic Haskell: Theory

26 JJ J I II 2

Generic Haskell—Practice

I Mapping functions

I Kind-indexed types and type-indexed values

I Reductions

I Pretty printing

27 JJ J I II 2

Mapping functions

A mapping function for a type constructor F of kind ∗ → ∗ lifts a given function
of type a → b to a function of type F a → F b.

The all-time favourite:

mapList :: ∀a b . (a → b)→ (List a → List b)
mapList f Nil = Nil
mapList f (Cons a as) = Cons (f a) (mapList f as)

The mapping function for lists applies the function to each list element.

28 JJ J I II 2

Mapping functions

Can we generalize mapping functions so that they work for all types of all kinds?

Yes!

Let’s tackle the type first. A first attempt:

type Map{[∗]} t = t → t -- WRONG
type Map{[k → l]} t = ∀a .Map{[k]} a → Map{[l]} (t a)

Alas, we have Map{[∗ → ∗]} List = ∀a . (a → a)→ (List a → List a), which
is not general enough.

29 JJ J I II 2

Mapping functions

We need two type arguments:

type Map{[∗]} t1 t2 = t1 → t2
type Map{[k → l]} t1 t2 = ∀a1 a2 .Map{[k]} a1 a2

→ Map{[l]} (t1 a1) (t2 a2)

map{|t :: k |} :: Map{[k]} t t

Now, Map{[∗ → ∗]} List List = ∀a1 a2 . (a1 → a2)→ (List a1 → List a2) as
desired.

30 JJ J I II 2

Mapping functions

The definition of map itself is straightforward (really!):

map{|t :: k |} :: Map{[k]} t t

map{|Char |} c = c

map{|Int |} i = i

map{|Unit |} Unit = Unit

map{|:+:|} mapa mapb (Inl a) = Inl (mapa a)
map{|:+:|} mapa mapb (Inr b) = Inr (mapb b)

map{|:*:|} mapa mapb (a :*: b) = mapa a :*: mapb b

31 JJ J I II 2

Mapping functions

Generic applications:

map{|List Char |} "hello world"
=⇒ "hello world"
map{|List |} toUpper "hello world"
=⇒ "HELLO WORLD"

Generic abstraction:

distribute{|t :: ∗ → ∗|} :: ∀a b . t a → b → t (a, b)
distribute{|t |} x b = map{|t |} (λa → (a, b)) x

32 JJ J I II 2

Kind-indexed types

In general, a kind-indexed type is defined as follows:

type Poly{[∗]} t1 . . . tn = . . .
type Poly{[k → l]} t1 . . . tn

= ∀a1 . . . an .Poly{[k]} a1 . . . an
→ Poly{[l]} (t1 a1) . . . (tn an)

The second clause is the same for all kind-indexed types.

NB. Generic Haskell allows a slightly more general form (see below).

33 JJ J I II 2

Type-indexed values

A type-indexed value is defined as follows:

poly{|t :: k |} :: Poly{[k]} t . . . t

poly{|Char |} = . . .

poly{|Int |} = . . .

poly{|Unit |} = . . .

poly{|:+:|} polya polyb = . . .

poly{|:*:|} polya polyb = . . .

We have one clause for each primitive type (Char , Int etc) and one clause for
each of the three type constructors Unit , :+:, and :*:.

NB. The type signature can be more elaborate (we will see examples of this).

34 JJ J I II 2

Equality, revisited

Recall the type of the generic equality function:

type Eq{[∗]} t = t → t → Bool
type Eq{[k → l]} t = ∀a .Eq{[k]} a → Eq{[l]} (t a)

In fact, the two arguments need not be of the same type.

type Eq{[∗]} t1 t2 = t1 → t2 → Bool
type Eq{[k → l]} t1 t2 = ∀a1 a2 .Eq{[k]} a1 a2 → Eq{[l]} (t1 a1) (t2 a2)

The definition of eq is not affected by this change!

35 JJ J I II 2

Reductions

The Haskell standard library defines a vast number of list processing functions.
Among others:

sum, product :: (Num a)⇒ [a]→ a
and , or :: [Bool]→ Bool
all , any :: (a → Bool)→ [a]→ Bool
length :: [a]→ Int
minimum,maximum :: (Ord a)⇒ [a]→ a
concat :: [[a]]→ [a]

These are examples of so-called reductions. A reductions reduces (or crushes) a
list of something to something. Reductions can be generalized from lists to
arbitrary data types.

36 JJ J I II 2

A simple case: summing up

Let’s start with a simple instance.

type Sum{[∗]} t = t → Int
type Sum{[k → l]} t = ∀a . Sum{[k]} a → Sum{[l]} (t a)

sum{|t :: k |} :: Sum{[k]} t

sum{|Char |} c = 0

sum{|Int |} i = 0

sum{|Unit |} Unit = 0

sum{|:+:|} suma sumb (Inl a) = suma a
sum{|:+:|} suma sumb (Inr b) = sumb b

sum{|:*:|} suma sumb (a :*: b) = suma a + sumb b

37 JJ J I II 2

A simple case: summing up

Generic applications.

sum{|List Int |} [2, 7, 1965]
=⇒ 0
sum{|List |} id [2, 7, 1965]
=⇒ 1974
sum{|List |} (const 1) [2, 7, 1965]
=⇒ 3

Generic abstractions.

fsum{|t :: ∗ → ∗|} :: t Int → Int
fsum{|t |} = sum{|t |} id

fsize{|t :: ∗ → ∗|} :: ∀a . t a → Int
fsize{|t |} = sum{|t |} (const 1)

38 JJ J I II 2

Reductions

We abstract away from Int , 0 and ‘+’.

type Reduce{[∗]} t x = x → (x → x → x)→ t → x
type Reduce{[k → l]} t x = ∀a .Reduce{[k]} a x → Reduce{[l]} (t a) x

Note that the type argument x is passed unchanged to the recursive calls (x can
be seen as being global to the definition).

39 JJ J I II 2

Reductions

The generic function reduce generalizes sum.

reduce{|t :: k |} :: ∀x .Reduce{[k]} t x

reduce{|Char |} e op c = e

reduce{|Int |} e op i = e

reduce{|Unit |} e op Unit = e

reduce{|:+:|} reda redb e op (Inl a) = reda e op a
reduce{|:+:|} reda redb e op (Inr b) = redb e op b

reduce{|:*:|} reda redb e op (a :*: b) = reda e op a ‘op‘ redb e op b

40 JJ J I II 2

Reductions

freduce{|t :: ∗ → ∗|} :: ∀x . x → (x → x → x)→ t x → x
freduce{|t |} = reduce{|t |} (λe op a → a)

fsum{|t |} = freduce{|t |} 0 (+)

fproduct{|t |} = freduce{|t |} 1 (∗)
fand{|t |} = freduce{|t |} True (∧)

for{|t |} = freduce{|t |} False (∨)

fall{|t |} f = fand{|t |} · map{|t |} f

fany{|t |} f = for{|t |} · map{|t |} f

fminimum{|t |} = freduce{|t |} maxBound min

fmaximum{|t |} = freduce{|t |} minBound max

fflatten{|t |} = freduce{|t |} [] (++)

41 JJ J I II 2

Pretty printing

Let’s reimplement (a simple version of) Haskell’s shows function.

Problem: we need to know the constructor names.

Solution: we introduce an additional case:

poly{|Con c|} polya = . . .

This case is invoked whenever we pass by a constructor.

The variable c is bound to a value of type ConDescr and provides information
about the name of a constructor, its arity etc.

42 JJ J I II 2

Pretty printing

data ConDescr = ConDescr{conName :: String ,
conType :: String ,
conArity :: Int ,
conLabels :: Bool ,
conFixity :: Fixity }

data Fixity = Nonfix
| Infix{prec :: Int }
| Infixl{prec :: Int }
| Infixr{prec :: Int }

43 JJ J I II 2

Pretty printing

Via ‘:+:’ we get to the constructors, Con signals that we hit a constructor, and
via ‘:*:’ we get to the arguments of a constructor.

type Shows{[∗]} t = t → ShowS
type Shows{[k → l]} t = ∀a . Shows{[k]} a → Shows{[l]} (t a)

gshows{|t :: k |} :: Shows{[k]} t

gshows{|:+:|} sa sb (Inl a) = sa a
gshows{|:+:|} sa sb (Inr b) = sb b

gshows{|Con c|} sa (Con a)
| conArity c 0 = showString (conName c)
| otherwise = showChar ’(’ · showString (conName c)

· showChar ’ ’ · sa a · showChar ’)’

gshows{|:*:|} sa sb (a :*: b) = sa a · showChar ’ ’ · sb b

gshows{|Unit |} Unit = showString ""

gshows{|Char |} = shows

gshows{|Int |} = shows

44 JJ J I II 2

Pretty printing

The generic programmer views, for instance, the list data type

data List a = Nil | Cons a (List a)

as if it were given by the following type definition.

type List a = (Con Unit) :+: (Con (a :*: List a))

45 JJ J I II 2

Pretty printing

The shows function generates one long string.

We can do better using pretty printing combinators.

empty :: Doc
(3) :: Doc → Doc → Doc
string :: String → Doc
nl :: Doc
nest :: Int → Doc → Doc
group :: Doc → Doc
ppParen :: Bool → Doc → Doc

46 JJ J I II 2

Pretty printing

type Pretty{[∗]} t = Int → t → Doc
type Pretty{[k → l]} t = ∀a .Pretty{[k]} a → Pretty{[l]} (t a)

ppPrec{|t :: k |} :: Pretty{[k]} t

ppPrec{|:+:|} ppa ppb d (Inl a) = ppa d a
ppPrec{|:+:|} ppa ppb d (Inr b) = ppb d b

ppPrec{|Con c|} ppa d (Con a)
| conArity c 0 = string (conName c)
| otherwise = group (nest 2 (ppParen (d > 9) doc))
where doc = string (conName c) 3 nl 3 ppa 10 a

ppPrec{|:*:|} ppa ppb d (a :*: b) = ppa d a 3 nl 3 ppb d b

ppPrec{|Unit |} d Unit = empty

ppPrec{|Int |} d i = string (show i)

ppPrec{|Char |} d c = string (show c)

47 JJ J I II 2

Stocktaking

I A generic function works for all types of all kinds.

I A type-indexed value has a kind-indexed type.

I Constructor names are accessed via the Con case.

48 JJ J I II 2

* * *

49 JJ J I II 2

Overview

√
Generic Haskell: Introduction

√
Generic Haskell: Practice

I Generic Haskell: Theory

50 JJ J I II 2

Generic Haskell—Theory

I Modelling data types

I The simply typed lambda calculus

I The polymorphic lambda calculus

I Specialization as an interpretation

I Bridging the gap

51 JJ J I II 2

Specialization

Generic Haskell takes a transformational approach: a generic function is translated
into a family of polymorphic functions.

This transformation can be phrased as an interpretation of the simply typed
lambda calculus (types are simply typed lambda terms with kinds playing the role
of types).

To make this precise we switch from Haskell to the polymorphic lambda calculus
(also known as Fω).

The polymorphic lambda calculus uses structural equivalence of types, whereas
Haskell’s type system is based on name equivalence. We have to do a bit of extra
work to bridge the gap.

52 JJ J I II 2

Modelling data types

Recall: the generic programmer views the data type

data List a = Nil | Cons a (List a)

as if it were given by the following type definition.

type List a = Unit :+: (a :*: List a)

NB. For simplicity, we omit the Con types.

53 JJ J I II 2

Modelling data types

Haskell offers (a simple form of) type abstraction and type application. Thus,
types can be modelled by terms of the simply typed lambda calculus.

type List = ΛA .Fix (ΛL .Unit :+: (A :*: L))

Here, Fix is the fixed point combinator and Unit , ‘:+:’, and ‘:*:’ are type
constants.

NB. We are cheating a bit here. In Haskell each data declaration introduces a
new type (which is not equal to a sum of products). We will address this point
later.

54 JJ J I II 2

The simply typed lambda calculus

Kinds.

T,U ∈ Kind ::= ∗ base kind
| (T→ U) function kind

Types.

C ∈ Const
T ,U ∈ Type ::= C type constant

| A type variable
| (ΛA :: U .T) type abstraction
| (T U) type application

We assume that Const contains at least Unit , ‘:+:’, ‘:*:’, and a family of fixed
point combinators Fix T :: (T→ T)→ T.

55 JJ J I II 2

Applicative structures

An applicative structure E is a tuple (E, app, const) such that

I E = (ET | T ∈ Type),

I app = (appT,U : ET→U → (ET → EU) | T,U ∈ Type), and

I const : Const → E with const(C :: T) ∈ ET.

An applicative structure is extensional if appT,U φ1 = appT,U φ2 implies φ1 = φ2
(that is, appT,U is one-to-one).

56 JJ J I II 2

Environment models

An applicative structure E = (E, app, const) is an environment model if it is
extensional and if the clauses below define a total meaning function.

EJC :: TKη = const(C)

EJA :: TKη = η(A)

EJ(ΛA .T) :: (S→ T)Kη = the unique φ ∈ ES→T such that

appS,T φ δ = EJT :: TKη(A := δ)

EJ(T U) :: VKη = appU,V (EJT :: U→ VKη) (EJU :: UKη)

Extensionality ensures that there is at most one φ; there is at least one φ is E has
‘enough points’ (so that S and K combinators can be defined).

57 JJ J I II 2

The polymorphic lambda calculus

Type schemes.

R, S ∈ Scheme ::= T type term
| (R → S) functional type
| (∀A :: U . S) polymorphic type

58 JJ J I II 2

The polymorphic lambda calculus

Terms.

c ∈ const
t , u ∈ Term ::= c constant

| a variable
| (λa :: S . t) abstraction
| (t u) application
| (λA :: U . t) universal abstraction
| (t R) universal application

We assume that const includes at least the polymorphic fixed point operator
fix :: ∀A . (A→ A)→ A and suitable constants for each type constant.

59 JJ J I II 2

Generic functions as models

Here is the definition of map using the syntax of the polymorphic lambda calculus.

Map{[∗]} T1 T2 = T1 → T2
Map{[T→ U]} T1 T2 = ∀A1 A2 .Map{[T]} A1 A2

→ Map{[U]} (T1 A1) (T2 A2)

map{|Unit |} = λu . u
map{|:+:|} = λA1 A2 . λmapA :: (A1 → A2) .

λB1 B2 . λmapB :: (B1 → B2) .
λs . case s of {inl a ⇒ inl (mapA a);

inr b ⇒ inr (mapB b)}
map{|:*:|} = λA1 A2 . λmapA :: (A1 → A2) .

λB1 B2 . λmapB :: (B1 → B2) .
λp . (mapA (outl p),mapB (outr p))

60 JJ J I II 2

Generic functions as models

The applicative structure M = (M, app, const) with

MT = 〈T1,T2 :: T; Map{[T]} T1 T2〉

appT,U〈F1,F2; f 〉〈A1,A2; a〉 = 〈F1 A1,F2 A2; f A1 A2 a〉

const(C) = 〈C ,C ; map{|C |}〉

is an environment model. Here, 〈T1,T2 :: T; F T1 T2〉 denotes a dependent
product.

Formally, one has to work with equivalence classes of types and terms.

61 JJ J I II 2

Fixed points

To model recursion the set of type constants includes a family of fixed point
combinators: Fix T :: (T→ T)→ T.

They can be interpreted generically, that is, the interpretation is the same for each
generic function (of the same ‘arity’).

const(Fix T) = 〈Fix T,Fix T;λF1 F2 . λf :: MapT→T F1 F2 .
lfp (f (Fix T F1) (Fix T F2))〉,

where lfp :: ∀A . (A→ A)→ A is the fixed point combinator on the term level
(its type argument MapT (Fix T F1) (Fix T F2) is omitted above).

62 JJ J I II 2

An example

As a simple example let us specialize map for the type Matrix .

Matrix :: ∗ → ∗
Matrix = ΛA .List (List A)

MJMatrixK = 〈Matrix ,Matrix ; mapMatrix 〉

mapMatrix :: ∀A1 A2. (A1 → A2)→ (Matrix A1 → Matrix A2)
mapMatrix = λA1 A2. λmapA :: (A1 → A2) .

mapList (List A1) (List A2) (mapList A1 A2 mapA)

63 JJ J I II 2

Bridging the gap

In Haskell, the type List A is not equal to Unit :+: (a :*: List a). We have to
perform some impedance-matching.

We introduce generic representation types, which mediate between the two
representations. For instance, the generic representation type for List is given by

type List ◦ a = Unit :+: a ∗ List a.

NB. List ◦ is not recursive.

Idea: generate code for poly{|List ◦|} and then implement poly{|List |} by applying
a representation transformer.

64 JJ J I II 2

Conversion

The type List ◦ A is isomorphic to List A.

fromList :: ∀A .List A→ List ◦ A
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (x :*: xs)

toList :: ∀A .List ◦ A→ List A
toList (Inl Unit) = Nil
toList (Inr (x :*: xs)) = Cons x xs

65 JJ J I II 2

Embedding-projection maps

The conversion functions must be applied at the appropriate places.

Take as examples:

type GShows = ΛT .T → String → String
type GReads = ΛT . String → [(T , String)].

We have to convert a function of type GShows (List ◦ A) to a function of type
GShows (List A) and a function of type GReads (List ◦ A) to a function of type
GReads (List A).

That’s exactly what a mapping function is good for.

66 JJ J I II 2

Embedding-projection maps

We need functions that convert back and fro (the operators ‘+’, ‘∗’, ‘→’ denote
the ‘ordinary’ mapping functions).

data EP A1 A2 = EP{from :: A1 → A2, to :: A2 → A1}
idE :: ∀A .EP A A
idE = EP{from = id , to = id }
(+E) :: ∀A1 A2 .EP A1 A2 → ∀B1 B2 .EP B1 B2

→ EP (A1 :+: B1) (A2 :+: B2)
f +E g = EP{from = from f + from g , to = to f + to g }
(∗E) :: ∀A1 A2 .EP A1 A2 → ∀B1 B2 .EP B1 B2

→ EP (A1 :*: B1) (A2 :*: B2)
f ∗E g = EP{from = from f ∗ from g , to = to f ∗ to g }
(→E) :: ∀A1 A2 .EP A1 A2 → ∀B1 B2 .EP B1 B2

→ EP (A1 → B1) (A2 → B2)
f →E g = EP{from = to f → from g , to = from f → to g }

67 JJ J I II 2

Embedding-projection maps

MapE{[∗]} T1 T2 = EP T1 T2
MapE{[T→ U]} T1 T2 = ∀A1 A2 .MapE{[T]} A1 A2

→ MapE{[U]} (T1 A1) (T2 A2)

mapE{|T :: T|} :: MapE{[T]} T T
mapE{|Char |} = idE

mapE{|Int |} = idE

mapE{|Unit |} = idE

mapE{|:+:|} mA mB = mA +E mB
mapE{|:*:|} mA mB = mA ∗E mB
mapE{|→|} mA mB = mA→E mB

68 JJ J I II 2

The grand final

convList :: ∀A .EP (List A) (List ◦ A)
convList = EP{from = fromList , to = toList }

gshows{|List |} sa = mapE{|GShows|} convList (gshows{|List ◦|} sa)

greads{|List |} sa = mapE{|GReads|} convList (greads{|List ◦|} sa)

NB. Of course, mapE{|Poly |} has to be generated ‘by hand’.

69 JJ J I II 2

Stocktaking

I Generic Haskell takes a transformational approach: a generic function is
translated into a family of polymorphic functions.

I Specialization can be seen as an interpretation of type terms.

I Adapting the techniques to Haskell involves systematic application of
representation changers.

I The basic proof method of the simply typed lambda calculus, based on
so-called logical relations, can be used to show properties of generic functions.

70 JJ J I II 2

Concluding remarks

I Generic programming considerably adds to the expressive power of
polymorphic type systems.

I A generic program can be made to work for all types of all kinds. A
type-indexed value is assigned a kind-indexed type.

I Generic Haskell is a full implementation of the theory. Moreover, it offers
several extensions: access to constructor names, generic abstractions etc.

