
Just do It:
Simple Monadic Equational Reasoning

Jeremy Gibbons and Ralf Hinze
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road
Oxford, OX1 3QD, England

http://www.cs.ox.ac.uk/{jeremy.gibbons,ralf.hinze}/

Abstract
One of the appeals of pure functional programming is that it is so
amenable to equational reasoning. One of the problems of pure
functional programming is that it rules out computational effects.
Moggi and Wadler showed how to get round this problem by us-
ing monads to encapsulate the effects, leading in essence to a phase
distinction—a pure functional evaluation yielding an impure im-
perative computation. Still, it has not been clear how to reconcile
that phase distinction with the continuing appeal of functional pro-
gramming; does the impure imperative part become inaccessible
to equational reasoning? We think not; and to back that up, we
present a simple axiomatic approach to reasoning about programs
with computational effects.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs, Programming by contract; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Asser-
tions, Logics of programs, Pre- and post-conditions, Specification
techniques; F.3.3 [Studies of Program Constructs]: Functional
constructs.

General Terms Languages, Theory, Verification.

Keywords Monads, equational reasoning, Lawvere theories, alge-
braic specification.

1. Introduction
Pure functional programming languages are good for equational
reasoning [36]: non-strict semantics supports algebraic manipula-
tion through the principle of ‘substitution of equals for equals’. But
on the face of it, purity is very limiting: many programs of inter-
est involve impure computational effects, such as mutable state and
nondeterminism. Famously, Moggi [16] and Wadler [38] showed
how monads can be used to neatly encapsulate these effects. A pure
program can assemble a representation of an effectful computation
as a plain value, which can then be executed at the top level instead
of being printed out—‘Haskell is the world’s finest imperative pro-
gramming language’ [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . .$10.00.

Nevertheless, little work has been done on the combination of
equational reasoning and programs exhibiting computational ef-
fects. Current practice involves simulating an effectful computation
as a pure function, and conducting the reasoning on this pure value;
for example, a recent paper by Hutton and Fulger [9] presents a
proof of correctness of a stateful computation using equational rea-
soning in terms of pure state-transforming functions. This works,
but it is unsatisfactory in a number of ways: for one thing, it
breaches the abstraction boundary provided by the monadic inter-
face, inhibiting any reuse of proof efforts across programs using
different classes of effect; and for another, not all computational
effects can be adequately simulated in this way.

In this paper, we present a simple axiomatic approach to equa-
tional reasoning with monadic programs, preserving the monadic
abstraction. The key idea is to exploit the algebraic properties of
both the generic monad interface (the ‘return’ and ‘bind’ operators,
and their associativity and unit laws) and the specific operations
used to support a particular class of effects (for example, the ‘put’
and ‘get’ operations of mutable state, or the ‘choice’ points in non-
deterministic computations). In essence, this is an approach based
more on the ‘algebraic theory’ interpretation of universal algebra
within category theory [13] than on the later ‘monad’ interpretation
[14] more familiar to functional programmers. Either can be used
to model computational effects in a pure setting [10], with nearly
equivalent expressiveness, but the ‘algebraic theory’ interpretation
emphasizes the specifics of a particular class of effects, whereas the
‘monad’ interpretation focusses on the general notion of effectful
computations and says little about specific effects.

In passing, we present (what we believe to be) a novel approach
to reasoning about programs that exploit both nondeterministic and
probabilistic choice. The monad of nondeterminism (that is, the
list functor, or more accurately the finite powerset functor) is very
familiar to functional programmers [38, 20]. Less well known in
functional programming circles, but nevertheless well established
in programming language semantics, is the monad of probability
distributions [5, 11, 27, 3]. We show that these two monads com-
bine neatly, providing a simple unified model of nondeterminism
and probability, supporting the same simple equational reasoning
as any other monad. Models for this combination of effects have
been given before (see for example [15]), but we believe that none
are as straightforward as ours.

The remainder of the paper is structured as follows. We warm up
in Section 3 with a discussion of a simple problem involving effect-
ful computation—counting the disc moves in the Towers of Hanoi
puzzle. In Sections 4, 5, and 6 we consider some more interest-
ing effects: nondeterminism, exceptions, and mutable state, respec-
tively. In Section 7 we look at programs that combine two classes
of effect, nondeterminism and state; and in Section 8 we look at

2

probabilistic computations, and their combination with nondeter-
minism. Finally, we return to Hutton and Fulger’s tree relabelling
problem in Section 9, and Section 10 concludes. But we start in
Section 2 with some background on monads.

2. Background
As is well known [16, 38], the categorical notion of a monad pre-
cisely expresses an abstraction of sequential computations, which
is necessary for controlling the consequences of computational ef-
fects in a lazy functional programming language. The ‘return’ and
‘bind’ methods model the identity and sequential composition of
computations, respectively. They are captured in the following type
class:

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

The two operations are required to satisfy three laws, corresponding
to the monoidal properties of sequential composition:

return x>>= k = k x
mx>>= return = mx
(mx>>= k)>>= k′ = mx>>=(λx→ k x>>= k′)

We will make use of two important specializations of the operations
associated with a monad, which more precisely match the idea of
the identity computation and sequential composition:

skip :: Monad m⇒ m ()
skip = return ()

(>>) :: Monad m⇒ m a→ m b→ m b
mx>>my = mx>>= const my

We will also make significant use of the derived operator

liftM :: Monad m⇒ (a→ b)→ m a→ m b
liftM f mx = mx>>= return◦ f

The reader may enjoy checking that the unit and associativity
properties imply that liftM satisfies the map laws of a functor:

liftM id = id
liftM (f ◦g) = liftM f ◦ liftM g

An uncurried version of Haskell’s liftM2 can be defined as liftM f ◦
pair, where pair sequences a pair of monadic computations:

pair :: Monad m⇒ (m a,m a)→ m (a,a)
pair (mx,my) = mx>>=λx→ my>>=λy→ return (x,y)

2.1 Imperative functional programming
The return and bind operations of the Monad class are sufficient
to support a very convenient monad comprehension or ‘do’ nota-
tion for computations, offering an elegant imperative programming
style [37, 23]. The body of a do expression consists of a non-empty
sequence of qualifiers, which may be expressions, generators, or
local definitions—except for the last qualifier, which must be an
expression. In this paper, we restrict attention to patterns consisting
of simple variables or tuples of such; then the do notation can be
defined in terms of just >>= and ordinary let (and return, which is
usually needed for the final expression):

do {e} = e
do {e ; es} = e>>do {es}
do {x← e ; es} = e>>=λx→ do {es}
do {let decls ; es}= let decls in do {es}

For example, an alternative definition of pair is

pair (mx,my) = do {x← mx ; y← my ; return (x,y)}

(More generally, the pattern match against a generated value might
be refutable; then some mechanism for handling failed matches is
necessary. In Haskell, the Monad class has an additional operation
fail for this purpose; we will do without.)

The do notation makes it clearer that the monad laws are not
awkward impositions, but properties essential for manipulating se-
quential compositions and blocks:

do {y← return x ; k y} = do {k x}
do {x← mx ; return x} = do {mx}
do {x← mx ; y← k x ; k′ y}= do {y← do {x← mx ; k x} ; k′ y}

where, in the third law, x is not free in k′. The first two laws state
that return is a unit of sequential composition, and the third that
nested blocks can be flattened, given appropriate care over bound
variables.

3. A counter example: Towers of Hanoi
The Monad class specifies only the very basic general-purpose
plumbing of sequential composition. To obtain any interesting
computational effects, one must augment the interface with ad-
ditional methods. In this paper, we will consistently do this by
defining subclasses of Monad, rather than by declaring instances of
Monad with additional operations; and we will studiously program
and reason according to the interface, not to a particular implemen-
tation.

For example, here is a class of monads supporting a simple
effect of counting:

class Monad m⇒MonadCount m where
tick :: m ()

And here is a program for solving the Towers of Hanoi problem—it
ticks the counter once for each move of a disc.

hanoi :: MonadCount m⇒ Int→ m ()
hanoi 0 = skip
hanoi (n+1) = hanoi n>> tick >>hanoi n

We claim that

hanoi n = rep (2n−1) tick

where rep repeats a unit computation a fixed number of times:

rep :: Monad m⇒ Int→ m ()→ m ()
rep 0 mx = skip
rep (n+1) mx = mx>> rep n mx

(This is a type specialization of the function replicateM in the
Haskell standard library.) Note that

rep 1 mx = mx
rep (m+n) mx = rep m mx>> rep n mx

The verification of hanoi is by induction on n. The base case is
trivial; for the inductive step, we assume the result for n, and
calculate:

hanoi (n+1)
= [[definition of hanoi]]

hanoi n>> tick >>hanoi n
= [[inductive hypothesis]]

rep (2n−1) tick >> tick >> rep (2n−1) tick
= [[property of rep]]

rep ((2n−1)+1+(2n−1)) tick
= [[arithmetic]]

rep (2n+1−1) tick

3

This is a very simple example, because the additional algebraic
structure in MonadCount is free—no laws were imposed on tick,
and the only equivalences between counting programs are those
induced by the monoidal structure of sequential composition. In
the rest of the paper, we will look at more interesting classes of
effect.

4. Nondeterministic computations
Nondeterministic programs are characterized by the ability to
choose between multiple results, and (sometimes) by the possi-
bility of returning no result at all. We express these as two separate
subclasses of Monad.

4.1 Failure
We consider failure first, because it is the simpler feature:

class Monad m⇒MonadFail m where
fail :: m a

The fail operation is a left zero of sequential composition:

fail>>m = fail

but not a right zero—a computation of the form mx >> fail might
yield some effects from mx before failing, and so be different from
fail alone.

Note that this is a different design from that in Haskell standard
[22], which provides a fail method in the Monad class itself (as
discussed in Section 2.1), as well as an mzero method as part of a
more extensive MonadPlus class (which we will discuss below)—
but which is silent on the properties expected of fail. There is a
proposal dating from 2006 on the Haskell Wiki [39] to reform the
standard along the lines we have chosen, but the situation is still
open.

We will make significant use of the function guard, which
checks that a boolean condition holds, and fails if it does not:

guard :: MonadFail m⇒ Bool→ m ()
guard b = if b then skip else fail

and, later on, a related function that takes a predicate:

assert :: MonadFail m⇒ (a→ Bool)→ m a→ m a
assert p mx = do {x← mx ; guard (p x) ; return x}

4.2 Choice
Choice is modelled by the class MonadAlt:

class MonadAlt m where
(�) :: m a→ m a→ m a

subject to the axiom that � is associative, and composition dis-
tributes leftwards over it:

(m � n) � p = m � (n � p)
(m � n)>>= k = (m>>= k) � (n>>= k)

Following [7], and in contrast to the ‘additive monads’ of Gon-
charov et al. [6], we do not always require composition to distribute
rightwards over choice: in general,

m>>=λx→ k1 x � k2 x 6= (m>>= k1) � (m>>= k2)

As was the case above with fail on the right of a composition, this
is a dubious proposition when m has non-idempotent effects, such
as writing output: on the left-hand side above, the effects happen
once, and on the right, twice. Sometimes, though, we do want this
distributivity property; Section 7 is a case in point.

4.3 Nondeterminism
We model nondeterministic programs as those using the combina-
tion of failure and choice features:

class (MonadFail m,MonadAlt m)⇒MonadNondet m where

There are no additional operations; the body of this class def-
inition is empty, and the operations of MonadNondet are just
those of MonadFail (namely fail) together with those of MonadAlt
(namely �). However, there are additional laws, beyond those of
MonadFail and MonadAlt considered in isolation: fail should be a
unit of � , giving a monoidal structure altogether.

The obvious model of the specification (indeed, the initial one)
is given by lists:

instance Monad [] where
return a = [a]
mx>>= k = concat (map k mx)

instance MonadFail [] where
fail = []

instance MonadAlt [] where
(�) = (++)

However, sometimes we do not want to treat the ordering of ele-
ments as significant, so we might sometimes impose an additional
axiom that � is commutative, in which case finite bags form the
initial model. And sometimes we do not want to treat multiplic-
ity of results as significant either, so we add the axiom that � is
idempotent; then finite sets form the initial model.

Note that MonadNondet is rather like the Haskell standard’s
MonadPlus class [22]. However, as we shall see in Section 5, there
is an alternative interpretation of the same monoidal structure—
intuitively, as exceptions rather than nondeterminism. The signa-
tures of the operations are the same, but the laws are different, so
the two interpretations should most definitely not be confused with
each other. (In particular, it makes no sense at all to suppose that
the catch operator in exception handling is commutative!)

4.4 Permutations
Here is a simple example of a nondeterministic program. The
function select takes a non-empty list and nondeterministically
chooses an element, returning that element and the remaining list;
it fails on the empty list.

select :: MonadNondet m⇒ [a]→ m (a, [a])
select [] = fail
select (x : xs) = return (x,xs) �

do {(y,ys)← select xs ; return (y,x : ys)}

Using select, the function perms nondeterministically generates a
permutation of a (finite) list.

perms :: MonadNondet m⇒ [a]→ m [a]
perms [] = return []
perms xs = do {(y,ys)← select xs ; zs← perms ys ; return (y : zs)}

We will exploit the laws of nondeterminism in Section 7 and 8.

5. Exceptional computations
Before we explore the ramifications of reasoning about nondeter-
minism monadically, it is worth pausing to consider again the im-
portance of the laws associated with a class. There is another in-
terpretation of the signature of the class MonadNondet, namely a
monad with an imposed monoidal structure; but the additional laws
are quite different, and hence so of course is the computational be-
haviour.

4

We have in mind the class of effect called exceptions. As with
nondeterminism, there is a special constant fail, which is a left
zero of composition. There is also a binary operator, which we
will call catch, which forms a monoid in conjunction with fail. We
capture the latter by means of a distinct subclass MonadExcept of
MonadFail:

class MonadFail m⇒MonadExcept m where
catch :: m a→ m a→ m a

The idea is that fail raises an exception, and that catch m h executes
body m, but passes control to the handler h if an exception is raised
during the execution of m. This operational intuition is expressed
axiomatically by the laws—that catch and fail form a monoid:

catch fail h = h
catch m fail = m
catch m (catch h h′) = catch (catch m h) h′

that unexceptional bodies need no handler:

catch (return x) h = return x

and that exceptions are left-zeros of sequential composition:

fail>>mx = fail

No other properties are expected; in particular, we expect that in
general distributivity of composition over exception handlers will
fail:

(catch m h)>>= k 6= catch (m>>= k) (h>>= k)

—exceptions raised by k on the left-hand side may be erroneously
handled on the right-hand side. Conversely, with nondeterminism
there is no requirement that pure computations are left zeros of � .

5.1 Fast product
We can illustrate reasoning with exceptions via the ‘fast product’
algorithm, which multiplies the elements of a list of integers, but
raises an exception if it finds a zero, subsequently catching the
exception and returning zero for the overall product. We define

fastprod :: MonadExcept m⇒ [Int]→ m Int
fastprod xs = catch (work xs) (return 0)

where work is specified by

work :: MonadFail m⇒ [Int]→ m Int
work xs = if 0 ∈ xs then fail else return (product xs)

And we calculate:

fastprod xs
= [[definition of fastprod]]

catch (work xs) (return 0)
= [[specification of work]]

catch (if 0 ∈ xs then fail else return (product xs)) (return 0)
= [[lift out the conditional]]

if 0 ∈ xs then catch fail (return 0)
else catch (return (product xs)) (return 0)

= [[laws of catch, fail, and return]]
if 0 ∈ xs then return 0 else return (product xs)

= [[arithmetic: 0 ∈ xs =⇒ product xs = 0]]
if 0 ∈ xs then return (product xs) else return (product xs)

= [[redundant conditional]]
return (product xs)

Thus, fastprod is pure, never throwing an unhandled exception.
Moreover, work may be refined separately, to eliminate the multiple
traversals; one can use the universal property of foldr to derive

work = foldr next (return 1) where
next n mx = if n 0 then fail else liftM (n×) mx

The two steps of the calculation concerning conditionals depend
only on pure reasoning: for non-bottom boolean b, we have:

if b then f x else f y = f (if b then x else y)
if b then x else x = x

6. Stateful computations
Perhaps the foremost class of effect that springs to mind is that of
stateful computations. These are captured by the interface

class Monad m⇒MonadState s m | m→ s where
get :: m s
put :: s→ m ()

Here, the class MonadState s m denotes monads m involving func-
tions that transform a state of type s; the declaration includes a
functional dependency, declaring that m determines s. The opera-
tion get yields a copy of the current state, and put overwrites the
state with a new value (returning unit); they are related by four ax-
ioms:

put s>>put s′ = put s′

put s>>get = put s>> return s
get >>=put = skip
get >>=λ s→ get >>= k s = get >>=λ s→ k s s

6.1 Eight queens
As an example of a stateful computation, we consider a few pro-
grams for the ‘n queens’ problem. First, we start with a purely func-
tional implementation, implicitly placing one queen in each column
of the board, and explicitly assigning the rows of the queens from
the permutation of the column numbers, so that by construction
it is only the diagonals that are potential threats. The main data
structure we manipulate is a pair of lists recording the up-diagonals
and down-diagonals threatened by the queens to the right of a given
column, where a queen in position (c,r) threatens up-diagonal r−c
and down-diagonal r + c.

For notational brevity, we define

type Square a = (a,a)

square :: (a→ b)→ (Square a→ Square b)
square f (a,b) = (f a, f b)

and write ‘a2’ and ‘f 2’ for ‘Square a’ and ‘square f ’, respectively.
The essence of the program is the following function test, which

takes a (column, row) position for a queen, and lists of already
threatened up- and down-diagonals, and returns a pair consisting
of a boolean for whether this queen position is safe, and updated
lists of threatened up- and down-diagonals.

test :: Int2→ [Int]2→ (Bool, [Int]2)
test (c,r) (ups,downs) =

(u /∈ ups ∧ d /∈ downs,(u : ups,d : downs))
where (u,d) = (r− c,r + c)

Predicate safe1 checks a putative placement of queens for safety,
using a fold from right to left over the list of column-row pairs. The
carrier (Bool, [Int]2) of the fold consists of a boolean indicating
whether the queens to the right, which have already been checked,
are safe, and the up- and down-diagonals under threat from the
queens considered so far.

safe1 :: [Int]2→ [Int2]→ (Bool, [Int]2)
safe1 = foldr step1 ◦ start1

5

start1 :: [Int]2→ (Bool, [Int]2)
start1 updowns = (True,updowns)

step1 :: Int2→ (Bool, [Int]2)→ (Bool, [Int]2)
step1 cr (restOK,updowns) = (thisOK ∧ restOK,updowns′)

where (thisOK,updowns′) = test cr updowns

To allow convenient expression below of the relationship be-
tween safe1 and some later variants, we have factored out the initial
value ([], []) for the threatened diagonals, and have not projected
away the final diagonals; so the actual test for whether a list crs
of column-row pairs is safe is fst (safe1 ([], []) crs). In particular,
the safe arrangements of n queens can be computed in a generate-
and-test fashion, nondeterministically choosing row lists as permu-
tations and discarding the unsafe ones:

queens :: MonadNondet m⇒ Int→ m [Int]
queens n

= do {rs← perms [1 . .n] ;
guard (fst (safe1 empty (place n rs))) ; return rs}

place n rs = zip [1 . .n] rs
empty = ([], [])

6.2 Queens, statefully
Rather than do the whole safety computation as a pure function,
we now consider a version that uses a stateful computation to build
up the sets of up- and down-diagonals threatened by the queens
considered so far. The function returns a boolean, while statefully
constructing the lists of threatened diagonals.

safe2 :: MonadState [Int]2 m⇒ [Int2]→ m Bool
safe2 = foldr step2 start2

start2 :: MonadState [Int]2 m⇒ m Bool
start2 = return True

step2 :: MonadState [Int]2 m⇒ Int2→ m Bool→ m Bool
step2 cr k

= do {b′← k ; uds← get ; let (b,uds′) = test cr uds ;
put uds′ ; return (b ∧ b′)}

In Figure 1, we prove using the axioms of get and put that

safe2 crs
= do {uds← get ; let (ok,uds′) = safe1 uds crs ;

put uds′ ; return ok}
by showing that this do expression satisfies the universal property
of the fold in safe2. This explains how the stateful computation
safe2 relates to the pure function safe1. However, in order to revise
the definition of queens to use safe2 instead of safe1, we need to
reconcile the different computational settings: perms is nondeter-
ministic, and safe2 is stateful. We could flatten the stateful com-
putation to a pure function: if we assume also the existence of a
reification function

run :: MonadState s m⇒ m a→ (s→ (a,s))

then we have

run (safe2 crs) updowns = safe1 updowns crs

and obtain a plug-in replacement for the use of safe1 in queens. We
will not do that; instead, we will lift the two components perms and
safe2 into one unified setting, providing both nondeterministic and
stateful effects.

7. Combining effects
One distinct advantage of the axiomatic approach to reasoning with
effects is that it is straightforward to take reasoning conducted in

one setting and reuse it in another—that is, indeed, the general
benefit of ‘programming to an interface’.

In the case of the n-queens problem, we have a nondeterministic
program generating candidate solutions (namely, permutations of
the rows of the chessboard), and a stateful program testing those
candidates (namely, the safety check acting on a pair of lists of
diagonals). To that end, we name the combination of effects:

class (MonadState s m,MonadNondet m)⇒
MonadStateNondet s m | m→ s

There are no additional operations; MonadStateNondet’s oper-
ations are just those of MonadState (namely, get and put) to-
gether with those of MonadNondet (namely, fail and �). But,
as with MonadNondet itself earlier, we need to specify how the
two classes of effect interact. In this case, we want backtrackable
state, with nondeterministic behaviour taking priority over stateful
behaviour—a failing computation should discard any accumulated
stateful effects, and choice points should be explored from a com-
mon starting state. This is captured equationally by stipulating that
failure is a right zero of sequential composition:

m>> fail = fail

and that composition distributes rightwards over choice:

m>>=λx→ k1 x � k2 x = (m>>= k1) � (m>>= k2)

Recall that the MonadNondet class already requires fail to be a left
zero of composition, and composition to distribute leftwards over
choice. It would be unreasonable to require the additional two laws
in general, because not all effects are backtrackable; but this is
not an issue for state transformations. The alternative is to ‘keep
calm and carry on’—state persists over failure, and is threaded
linearly through choice points—but this is not what we want for
the n-queens problem. (Failure happens in selecting from the empty
list when generating a permutation, and when discovering that a
putative queen position is already threatened, and in both cases
we should abandon that alternative and try an alternative. Choices
take place between permutations, and each permutation should
be checked starting from a clean slate.) The types s → [(a,s)]
and s→ ([a],s) are both models of stateful and nondeterministic
computations, but only the first is a model of backtrackable state.

A crucial consequence of failure being a left and right zero of
composition (and skip being a left and right unit) is that guards
commute with anything:

guard b>>m = m>>=λx→ guard b>> return x

Indeed, the same applies for any expression involving only the
effects of MonadFail: if mx has type MonadFail m⇒ m a and my
has type MonadStateNondet m⇒ m b, then

do {x← mx ; y← my ; return (x,y)}
= do {y← my ; x← mx ; return (x,y)}

7.1 Queens, statefully and nondeterministically
Now, from the axiom of state that get >>=put = skip, we have

queens n = do {s← get ; put s ; queens n}
and from that we can calculate using basic properties of monads,
together with the fact that perms is independent of the state and so
commutes with put, that

queens n
= do {s← get ; rs← perms [1 . .n] ; put empty ;

ok← safe2 (place n rs) ; put s ; guard ok ; return rs}
This program is a little clumsy, but it does accurately capture the re-
lationship with the non-stateful version of queens: when interpreted

6

For the empty list, we have:

do {uds← get ; let (ok,uds′) = safe1 uds [] ; put uds′ ; return ok}
= [[definition of safe1]]

do {uds← get ; let (ok,uds′) = start1 uds ; put uds′ ; return ok}
= [[definition of start1]]

do {uds← get ; let (ok,uds′) = (True,uds) ; put uds′ ; return ok}
= [[lifting the let; get >>=put = return ()]]

return True
= [[definition of safe2]]

safe2 []

while for non-empty lists, we have:

do {uds← get ; let (ok,uds′) = safe1 uds (cr : crs) ; put uds′ ; return ok}
= [[definition of safe1 as a foldr]]

do {uds← get ; let (ok,uds′) = step1 cr (safe1 uds crs) ; put uds′ ; return ok}
= [[introduce a let]]

do {uds← get ; let (b′,uds′′) = safe1 uds crs ; let (ok,uds′) = step1 cr (b′,uds′′) ; put uds′ ; return ok}
= [[definition of step1]]

do {uds← get ; let (b′,uds′′) = safe1 uds crs ; let (b,uds′′′) = test cr uds′′ ; let (ok,uds′) = (b ∧ b′,uds′′′) ; put uds′ ; return ok}
= [[put s>>put s′ = put s′]]

do {uds← get ; let (b′,uds′′) = safe1 uds crs ; let (b,uds′′′) = test cr uds′′ ; let (ok,uds′) = (b ∧ b′,uds′′′) ; put uds′′ ; put uds′ ; return ok}
= [[move two of the lets]]

do {uds← get ; let (b′,uds′′) = safe1 uds crs ; put uds′′ ; let (b,uds′′′) = test cr uds′′ ; let (ok,uds′) = (b ∧ b′,uds′′′) ; put uds′ ; return ok}
= [[put s>>get >>= k = put s>> k s]]

do {uds← get ; let (b′,uds′′) = safe1 uds crs ; put uds′′ ;
uds′′′′← get ; let (b,uds′′′) = test cr uds′′′′ ; let (ok,uds′) = (b ∧ b′,uds′′′) ; put uds′ ; return ok}

= [[associativity of >>=]]
do {b′← do {uds← get ; let (ok,uds′′) = safe1 uds crs ; put uds′′ ; return ok} ;

uds′′′′← get ; let (b,uds′′′) = test cr uds′′′′ ; let (ok,uds′) = (b ∧ b′,uds′′′) ; put uds′ ; return ok}
= [[definition of step2]]

step2 cr (do {uds← get ; let (ok,uds′′) = safe1 uds crs ; put uds′′ ; return ok})

Figure 1. Proving the relationship between safe2 and safe1

in a stateful setting, it amounts to remembering the current state s,
executing a stateful version of queens, and restoring the original
state s again.

7.2 Queens, exploratively
There is a more natural generate-and-test algorithm for the n-
queens problem: rather than computing a boolean ok for whether
an arrangement of queens is safe, and then asserting ok, we explore
the possible threats to each queen in turn, and immediately aban-
don this arrangement if ever two queens conflict. How does this
algorithm relate to the previous one? Very straightforwardly, as it
turns out.

Since guards commute with anything, in the version of the
queens program from Section 7.1, the put s and guard ok in par-
ticular commute, and we have:

queens n
= do {s← get ; rs← perms [1 . .n] ; put empty ;

ok← safe2 (place n rs) ; guard ok ; put s ; return rs}

Let us therefore define

safe3 crs = safe2 crs>>=guard

so that

queens n
= do {s← get ; rs← perms [1 . .n] ; put empty ;

safe3 (place n rs) ; put s ; return rs}

Now, let us investigate safe3. Recall that safe2 is a fold. Moreover,
(>>=guard) combines with that fold using the fusion property, as
we now show. The initial value is simple:

start2 >>=guard = guard True = skip

For the inductive step, we have:

step2 cr k >>=guard
= [[definition of step2]]

do {b′← k ; uds← get ; let (b,uds′) = test cr uds ;
put uds′ ; return (b ∧ b′)}>>=guard

= [[do-notation]]
do {b′← k ; uds← get ; let (b,uds′) = test cr uds ;

put uds′ ; guard (b ∧ b′)}
= [[guard distributes over conjunction]]

do {b′← k ; uds← get ; let (b,uds′) = test cr uds ;
put uds′ ; guard b ; guard b′}

= [[guards commute with anything]]
do {b′← k ; guard b′ ; uds← get ; let (b,uds′) = test cr uds ;

put uds′ ; guard b}
= [[associativity of >>=]]

do {(k >>=guard) ; uds← get ; let (b,uds′) = test cr uds ;
put uds′ ; guard b}

= [[definition of step3 (see below)]]
step3 cr (k >>=guard)

where we define

7

step3 cr m = m>>
do {uds← get ; let (b,uds′) = test cr uds ; put uds′ ; guard b}

Therefore, by fold fusion, we have

safe3 crs = foldr step3 skip

We have derived this ‘exploratory’ version of the n-queens algo-
rithm from the merely ‘stateful and nondeterministic’ one using
plain old-fashioned equational reasoning. Of course, it is still a
rather inefficient algorithm; we have simply used the problem as a
vehicle for demonstrating the modularity achievable using the ax-
iomatic approach to specifying effects.

8. Probabilistic computations
The observation that probability distributions form a monad is
fairly well known; the first published description appears to date
from 1981 [5], but (as with so many things) the credit seems to
go back to an observation by Lawvere twenty years earlier [12].
Jones and Plotkin [11] use this theory to construct a powerdomain
of probability distributions, allowing them to give a semantics to
recursive programs with probabilistic features; Ramsey and Pfeffer
[27] use it to define a probabilistic lambda calculus for finitely sup-
ported distributions; Erwig and Kollmansberger [3] describe a little
monadic Haskell library for programming with finitely supported
distributions.

We suppose a type Prob of probabilities (say, the rationals in the
closed unit interval), and define a type class of finitely supported
probability distributions by:

class Monad m⇒MonadProb m where
choice :: Prob→ m a→ m a→ m a

The idea is that choice p mx my behaves as mx with probability p
and as my with probability 1− p. From now on, we will write ‘p̄’
for 1−p, and following Hoare [8], write choice in infix notation,
‘mx / p . my’, because this makes the laws more transparent. We
have two identity laws:

mx/0.my = my
mx/1.my = mx

a skewed commutativity law:

mx/p.my = my/ p̄.mx

idempotence:

mx/p.mx = mx

and quasi-associativity:

mx/p. (my/q.mz) = (mx/ r .my)/ s.mz
⇐= p = r s ∧ s̄ = p̄ q̄

(As informal justification for the associativity law, observe that
the likelihoods of mx,my,mz on the left are p, p̄q, p̄ q̄, and on the
right are r s, r̄ s, s̄, and a little algebra shows that these are pairwise
equal, given the premise.) Moreover, bind distributes leftwards and
rightwards over choice:

(mx/p.my)>>= k = (mx>>= k)/p. (my>>= k)
mx>>=λx→ k1 x/p. k2 x = (mx>>= k1)/p. (mx>>= k2)

where, in the second law, x is assumed not to occur free in p.
For example, here is a function to generate a uniform distribu-

tion from a finite list of outcomes:

uniform :: MonadProb m⇒ [a]→ m a
uniform [x] = return x
uniform (x : xs) = return x/ 1/length (x:xs) .uniform xs

Note that uniform xs is side-effect-free (uniform xs >> m = m),
because bind distributes leftwards over choice.

8.1 The Monty Hall Problem
As an example, consider the so-called Monty Hall Problem [28],
which famously caused a controversy following its discussion in
Marilyn vos Savant’s column in Parade magazine in 1990 [35].
Vos Savant described the problem as follows (quoting a letter from
a reader, Craig F. Whitaker):

Suppose you’re on a game show, and you’re given the choice
of three doors: Behind one door is a car; behind the others,
goats. You pick a door, say No. 1, and the host, who knows
what’s behind the doors, opens another door, say No. 3,
which has a goat. He then says to you, “Do you want to
pick door No. 2?” Is it to your advantage to switch your
choice?

Implicitly, the car is equally likely to be behind each of the three
doors, the car is the prize and the goats are booby prizes, the host
always opens a door, and it always differs from the one you pick
and always reveals a goat, and you always get the option to switch.

We might model this as follows. There are three doors:

data Door = A | B | C deriving (Eq,Show)

doors :: [Door]
doors = [A,B,C]

First, the host hides the car behind one of the doors, chosen uni-
formly at random:

hide :: MonadProb m⇒ m Door
hide = uniform doors

Second, you pick one of the doors, also randomly:

pick :: MonadProb m⇒ m Door
pick = uniform doors

Third, the host teases you by opening one of the doors—not the
one that hides the car, nor the one you picked—to reveal a goat,
choosing randomly among the one or two remaining doors:

tease :: MonadProb m⇒ Door→ Door→ m Door
tease h p = uniform (doors\\ [h,p])

(Here, the expression xs\\ys denotes the list of those elements of xs
absent from ys.) Fourth, the host offers you the choice between two
strategies—either to switch to the door that is neither your original
choice nor the opened one:

switch :: MonadProb m⇒ Door→ Door→ m Door
switch p t = return (head (doors\\ [p, t]))

or to stick with your original choice:

stick :: MonadProb m⇒ Door→ Door→ m Door
stick p t = return p

(In either case, you know p and t but not h.) Here’s the whole game,
parametrized by your strategy, returning whether you win the car:

play :: MonadProb m⇒ (Door→ Door→ m Door)→ m Bool
play strategy =

do
h← hide -- host hides the car behind door h
p← pick -- you pick door p
t← tease h p -- host teases you with door t (6= h,p)
s← strategy p t -- you choose, based on p and t
return (s h) -- you win iff your choice s equals h

We will show below that the switching strategy is twice as good as
the sticking strategy:

8

play switch = uniform [True,True,False]
play stick = uniform [False,False,True]

The key is the fact that uniform choices are independent, in the
sense that choosing consecutively from two uniform distributions is
equivalent to choosing simultaneously from their cartesian product:

pair (uniform x,uniform y) = uniform (cp x y)

where

cp :: [a]→ [b]→ [(a,b)]
cp x y = [(a,b) | a← x,b← y]

We omit the straightforward proof by induction.
Expanding definitions and exploiting independence of uniform

choices, we have

play strategy
= do {(h,p)← uniform (cp doors doors) ; t← tease h p ;

s← strategy p t ; return (s h)}
So we calculate:

play stick
= [[definition of play]]

do {(h,p)← uniform (cp doors doors) ;
t← tease h p ; s← stick p t ; return (s h)}

= [[stick p t = return p]]
do {(h,p)← uniform (cp doors doors) ;

t← tease h p ; return (p h)}
= [[t unused, and uniform side-effect-free; liftM]]

liftM (uncurry ()) (uniform (cp doors doors))
= [[naturality of uniform; definition of cp,]]

uniform [True,False,False,False,True,False,False,False,True]
= [[simplifying: three Trues, six Falses]]

uniform [True,False,False]

and

play switch
= [[definition of play]]

do {(h,p)← uniform (cp doors doors) ; t← tease h p ;
s← switch p t ; return (s h)}

= [[switch p t = return (the (doors\\ [p, t]))—see below]]
do {(h,p)← uniform (cp doors doors) ; t← tease h p ;

s← return (the (doors\\ [p, t])) ; return (s h)}
= [[return is left unit]]

do {(h,p)← uniform (cp doors doors) ;
t← tease h p ; return (h the (doors\\ [p, t]))}

= [[case analysis on h p—see below]]
do {(h,p)← uniform (cp doors doors) ;

if (h p) then return False else return True}
= [[lift out conditional; booleans]]

do {(h,p)← uniform (cp doors doors) ; return (h 6 p)}
= [[definition of liftM]]

liftM (uncurry (6)) (uniform (cp doors doors))
= [[naturality of uniform; definition of cp,]]

uniform [False,True,True,True,False,True,True,True,False]
= [[simplifying: three Falses, six Trues]]

uniform [False,True,True]

For the second step above, note that t is by construction distinct
from p, and so doors\\ [p, t] is a singleton; we therefore introduce
the function the such that the [a] = a.

Now for the case analysis. For the case h = p, we have:

do {t← tease h p ; return (h the (doors\\ [p, t]))}
= [[using h = p]]

do { t← tease h p ; return (h the (doors\\ [h, t]))}

= [[h is not in doors\\ [h, t]]]
do { t← tease h p ; return False}

= [[t unused, and uniform x side-effect-free]]
do {return False}

And for the case h 6= p, we have:

do { t← tease h p ; return (h the (doors\\ [p, t]))}
= [[definition of tease]]

do { t← uniform (doors\\ [h,p]) ;
return (h the (doors\\ [p, t]))}

= [[h 6= p, so doors\\ [h,p] is a singleton]]
do { let t = the (doors\\ [h,p]) ;

return (h the (doors\\ [p, t]))}
= [[h 6= p, and t 6= h,p; so t,h,p distinct]]

do { let t = the (doors\\ [h,p]) ; return (h h)}
= [[t unused]]

do {return True}
This concludes our proof that vos Savant was right, and that the
many mathematics PhDs who wrote in to Parade magazine chas-
tizing her were—at best—thinking about a different problem.

8.2 Probability and nondeterminism
One might argue that a more accurate representation of the Monty
Hall scenario allows the host a nondeterministic rather than prob-
abilistic choice in hiding and teasing: Monty is in charge, and no-
body says that he has to play fair.

The interaction of nondeterministic and probabilistic choice is
notoriously tricky [40, 15], but it turns out to be mostly straightfor-
ward to give a model in terms of monads. We combine the two
classes MonadAlt (interpreted commutatively and idempotently)
and MonadProb of effects:

class (MonadAlt m,MonadProb m)⇒MonadAltProb m where

As before, there are no new operations. But there is an additional
law, relating the two kinds of choice—probabilistic choice should
distribute over nondeterministic:

m/p. (n1 � n2) = (m/p.n1) � (m/p.n2)

Intuitively, no freedom is lost from the program on the left by
making the nondeterministic choice before the probabilistic one
rather than afterwards.

As a consequence of this distribution property, the semantic
model is roughly as sets of distributions, as for example with the
probabilistic predicate transformer work of McIver and Morgan
[15]. But not quite sets; in order to retain the idempotence of
probabilistic choice

mx/p.mx = mx

we have to live with equivalence up to convex closure [33]—that is,
if a computation may yield any two distributions d,d′, then it may
also yield their convex combination r×d+ r̄×d′ for any r with 06
r 6 1. This is intuitively reasonable; if d,d′ are possible outcomes
of an experiment, then a sequence of experiments may yield any
combination of ds and d′s. The alternative solution, promoted by
Varacca [34], is to abandon idempotence; this is unappealing to us,
because it means that unused choices, such as Monty’s tease in the
face of the stick strategy, cannot be discarded.

As a simple example of a computation that mixes nondetermin-
istic and probabilistic features, consider the basic operations of a
fair coin toss [15]:

coin :: MonadProb m⇒ m Bool
coin = return True/ 1/2 . return False

and an arbitrary boolean choice:

9

arb :: MonadAlt m⇒ m Bool
arb = return True � return False

sequentially combined in either order:

arbcoin,coinarb :: MonadAltProb m⇒ m Bool
arbcoin = do {a← arb ; c← coin ; return (a c)}
coinarb = do {c← coin ; a← arb ; return (a c)}

These two differ; informally, in coinarb the nondeterministic
choice can depend on the result of the coin toss, whereas in arbcoin
it cannot—and of course, the fair probabilistic choice does not de-
pend on the arbitrary nondeterministic choice either—otherwise
it wouldn’t be fair. As sets of distributions (here represented as
weighted lists), arbcoin has two possible outcomes, both being a
50–50 distribution, so really only a single possible outcome:

arbcoin = { [(True,1/2),(False,1/2)], [(False,1/2),(True,1/2)]}

whereas coinarb offers four possible outcomes—a 50–50 distribu-
tion, in two different ways, or always False or always True:

coinarb = {[(True,1/2),(False,1/2)], [(False,1/2),(True,1/2)],
[(False,1/2),(False,1/2)], [(True,1/2),(True,1/2)]}

whose convex closure is in fact the set of all boolean distributions;
that is, the nondeterministic choice in arbcoin provides no flexibil-
ity, but the one in coinarb can engineer any distribution whatsoever.

Returning to the Monty Hall problem, we could allow the host
to make nondeterministic rather than probabilistic choices:

hide :: MonadAlt m⇒ m Door
hide = arbitrary doors

tease :: MonadAlt m⇒ Door→ Door→ m Door
tease h p = arbitrary (doors\\ [h,p])

where

arbitrary :: MonadAlt m⇒ [a]→ m a
arbitrary = foldr1 (�)◦map return

As it happens, making this change has no effect on the game. The
first two choices—the host’s choice of where to hide the car, and
your initial choice of door—can still be combined, because bind
distributes leftwards over nondeterministic choice:

pair (hide,pick)
= [[let k = λh→ liftM (h,) pick]]

hide>>= k
= [[definition of hide]]

(return A � return B � return C)>>= k
= [[distributivity]]

(return A>>= k) � (return B>>= k) � (return C >>= k)
= [[return is left unit]]

k A � k B � k C
= [[definition of k]]

liftM (A,) pick � liftM (B,) pick � liftM (C,) pick

(where, for brevity, we have written (A,) for the function λx→
(A,x)). The remainder of the reasoning proceeds just as before, and
the conclusion is still that the strategy switch wins two times in
three, and stick only one time in three.

9. Tree relabelling
Finally, we turn our attention to the question that inspired our
interest in reasoning about monadic programs in the first place.
Hutton and Fulger [9] present a nice problem involving effectful
computation with mutable state, concerning relabelling of trees.
Given is a polymorphic datatype of trees,

data Tree a = Tip a | Bin (Tree a)2

(we continue to use the (-)2 shorthand for pairs from Section 6.1)
and a type of symbols

newtype Symbol = ... deriving (Eq)

with which to relabel. The problem is to prove that for some
suitable definition of a function relabel that takes trees t :: Tree a
to relabelled trees u :: Tree Symbol, we have distinct (labels u) for
each such u, where

labels :: Tree Symbol→ [Symbol]
labels (Tip a) = [a]
labels (Bin (t,u)) = labels t ++ labels u

distinct :: [Symbol]→ Bool
distinct [] = True
distinct (l : ls) = l /∈ ls ∧ distinct ls

For calculational convenience, in this section we will use uncurried
versions of some familiar operators:

add :: Int2→ Int
add = uncurry (+)

cat :: [a]2→ [a]
cat = uncurry (++)

disjoint :: Eq a⇒ [a]2→ Bool
disjoint = null◦uncurry intersect

We will also write simply ‘M’ in place of liftM throughout Sec-
tion 9, for brevity.

9.1 Fresh symbols
We’ll assume a class of monads supporting fresh symbols:

class Monad m⇒MonadFresh m where
fresh :: m Symbol

The operation fresh is not completely unconstrained; it has to gen-
erate symbols that are indeed fresh. We specify this by asserting
that any sequence of fresh symbols will be distinct. That is, given
an operation to generate a given number of fresh symbols:

symbols :: MonadFresh m⇒ Int→ m [Symbol]
symbols n = sequence (replicate n fresh)

we require that

assert distinct ◦ symbols = symbols

Note that we are again combining classes of effect, this time of
MonadFresh and MonadFail: the two sides of the equation speci-
fying fresh have the stronger type qualification MonadFreshFail m,
where

class (MonadFresh m,MonadFail m)⇒MonadFreshFail m

As with the combination of state and nondeterminism, to relate the
two classes of effect we add the axiom that failure is a right zero
of composition; that is, we again take a backtracking interpretation,
and indeed, one might think of MonadFresh as modelling a kind of
stateful computation (where the state is the store of fresh symbols).

As it turns out, the only property we will require of the predicate
distinct is that it is segment-closed. Predicate p is segment-closed if

p (x++ y) =⇒ p x ∧ p y

The significance of this property is that assert p can be promoted
through list concatenation: there is another predicate q on pairs of
symbol lists such that

assert p◦M cat ◦pair = M cat ◦assert q◦pair ◦ (assert p)2

10

In particular, when p = distinct, then q = disjoint suffices: the
concatenation of two lists is all distinct if both lists are all distinct,
and they are also disjoint.

For the remainder of the section, we will use only p and q,
not distinct and disjoint themselves. Abstracting out the relevant
properties of the predicate is helpful, because it means that the
reasoning to follow can be generalized to other problems. For
example, we might suppose that the Symbol type is not just an
equality type, but an enumeration, and we want to prove that tree
relabelling yields a contiguous segment of the enumeration of all
symbols—informally, that no fresh symbols are wasted. Then the
same condition on symbols suffices, but where the predicate p is ‘is
a contiguous segment of the enumeration’—this is segment closed,
with q being the predicate on pairs ‘are adjacent segments’:

q (xs,ys) = null xs ∨ null ys ∨ (succ (last xs) head ys)

9.2 Tree relabelling
Tree relabelling is a tree fold, using fresh at each tip. Given a fold
combinator

foldt :: (a→ b)→ (b2→ b)→ Tree a→ b
foldt f g (Tip a) = f a
foldt f g (Bin (t,u)) = g (foldt f g t, foldt f g u)

then we define

relabel :: MonadFresh m⇒ Tree a→ m (Tree Symbol)
relabel = foldt (M Tip◦ const fresh) (M Bin◦pair)

Extracting the distinct symbol list from a tree is another fold, but
this time within MonadFail:

dlabels :: MonadFail m⇒ Tree Symbol→ m [Symbol]
dlabels = foldt (return◦wrap) (M cat ◦assert q◦pair)

where wrap a = [a] makes a singleton list.
Our claim is that the composition of dlabels and relabel never

fails—the symbol list satisfies the predicate, and we always get a
proper symbol list of the appropriate length:

dlabels• relabel = symbols◦ size

where m•n = join◦M m◦n is Kleisli composition, and

size :: Tree a→ Int
size = foldt (const 1) add

We justify that claim in the next section.

9.3 Verifying tree relabelling
First, we show that relabelling a tree and extracting its distinct
symbols fuse to a single fold. We have

(dlabels• relabel)◦Tip
= [[Kleisli composition]]

join◦M dlabels◦ relabel◦Tip
= [[definition of relabel as a fold]]

join◦M dlabels◦M Tip◦ const fresh
= [[functors; definition of dlabels as a fold]]

join◦M (return◦wrap)◦ const fresh
= [[functors, monads]]

M wrap◦ const fresh

and

(dlabels• relabel)◦Bin
= [[Kleisli composition]]

join◦M dlabels◦ relabel◦Bin
= [[definition of relabel as a fold]]

join◦M dlabels◦M Bin◦pair ◦ relabel2

= [[functors; definition of dlabels as a fold]]
join◦M (M cat ◦assert q◦pair ◦dlabels2)◦pair ◦ relabel2

= [[functors; naturality of pair and join]]
M cat ◦ join◦M (assert q◦pair)◦pair ◦ (M dlabels◦ relabel)2

= [[commutativity of assertions—see below]]
M cat ◦assert q◦ join◦M pair ◦pair ◦ (M dlabels◦ relabel)2

= [[join and pairs—see below]]
M cat ◦assert q◦pair ◦ (join◦M dlabels◦ relabel)2

= [[Kleisli composition]]
M cat ◦assert q◦pair ◦ (dlabels• relabel)2

and so, by the universal property of fold,

dlabels• relabel = foldt drTip drBin

where

drTip = M wrap◦ const fresh
drBin = M cat ◦assert q◦pair

There are two non-trivial steps. The first is ‘commutativity of as-
sertions’

join◦M (assert q) = assert q◦ join

which follows from guards commuting with anything. The second
is the ‘join and pairs’ step

join◦ listM pair ◦pair = pair ◦ join2

This does not hold in general. It does hold for commutative mon-
ads; but our MonadFreshFail is not commutative. However, it also
holds on pairs (mmx,mmy) in the special case that the inner com-
putation in the mmx has effects only from MonadFail, because
those effects commute with those of mmy. In our case, mmx =
M dlabels (relabel t), and indeed dlabels introduces only the possi-
bility of failure, not any statefulness.

Now we show that symbols◦ size is the same fold. We have

symbols◦ size◦Tip
= [[definition of size as a fold]]

symbols◦ const 1
= [[property of symbols]]

M wrap◦ const fresh

and

symbols◦ size◦Bin
= [[specification of symbols]]

assert p◦ symbols◦ size◦Bin
= [[definition of size]]

assert p◦ symbols◦add ◦ size2

= [[properties of symbols; functors]]
assert p◦M cat ◦pair ◦ (symbols◦ size)2

= [[assert p distributes over concatenation]]
M cat ◦assert q◦pair ◦ (assert p◦ symbols◦ size)2

= [[specification of symbols]]
M cat ◦assert q◦pair ◦ (symbols◦ size)2

and so, again by the universal property of fold,

symbols◦ size = foldt drTip drBin

also. (The two ‘properties of symbols’ referred to are that

symbols◦ const 1 = M wrap◦ const fresh
symbols◦add = M cat ◦pair ◦ symbols2

which follow easily from the definition of symbols by simple equa-
tional reasoning.)

11

10. Conclusions
10.1 Related work
We were inspired to write this paper by reading Hutton and Fulger
on reasoning about effects [9]. We learned about the tree relabelling
problem from them, although the same problem is also used as
Example 4.4 in the APPSEM 2000 lecture notes on monads and
effects by Benton, Hughes and Moggi [1]. That particular problem
admits a number of different approaches—not only in abstracting
from the specifics of the class of computational effects, as we have
done here, but also in abstracting from the pattern of control, which
we discuss in a related paper [4].

Hoare Type Theory [17] is a technique for introducing Hoare
triples into a dependently typed language, allowing pre- and post-
conditions to be tracked by the type checker. It is based around
a type constructor {P} x : A {Q} of Hoare triples, denoting com-
putations that, when run in a heap satisfying precondition P, will
return a result x of type A and an updated heap that together satisfy
postcondition Q. It has been embedded into the Coq proof system
as an axiomatic extension called Ynot [18], and used as the basis
for an implementation of separation logic [19]. Similarly, Schröder
and Mossakowski [29] develop a monad-independent Hoare logic
within the HASCASL algebraic specification language, and use this
logic for reasoning about dynamic references. Either of these ap-
proaches makes a sound basis for certified development of effectful
programs in the Hoare–Floyd style.

Like we do, Swierstra [31] also starts with Hutton and Fulger’s
tree relabelling problem, and with the observation that it is unfortu-
nate to have to expand the definitions of return and bind for a par-
ticular monad in order to reason about a program using that monad.
He uses these as a springboard for taking a lightweight approach
to Hoare Type Theory, based on the state monad but not involv-
ing a heap. Roughly speaking, rather than a single monolithic type
State s a = (s→ (a,s)) of state transformers (for fixed state type s
and varying return type a), Swierstra introduces a family of types
HoareState p a q indexed by pre- and postconditions, such that the
input must be a state satisfying the precondition p, and the out-
put will a pair establishing the postcondition q. This allows him
to conduct Hoare-Floyd-style reasoning for programs in the state
monad, such as the tree relabelling problem; but the approach does
not seem to be directly applicable to other monads.

Peyton Jones [21] discusses the ‘awkward squad’ of teletype
I/O, concurrency, exceptions, and interfacing to foreign functions,
all of which are effects wrapped up in the Haskell IO monad.
He gives an operational semantics for the first three, but does
not discuss reasoning about programs exploiting those classes of
effect. Swierstra and Altenkirch [32] provide a simple functional
implementation of teletype I/O, mutable state, and concurrency,
using the free monad generated by the algebra of the operations
supporting each class of effect—so in fact, taking an approach more
closely aligned with algebraic theories, like we do. (Swierstra’s
doctoral thesis [30] extends this work to software transactional
memory and distributed arrays too.)

10.2 Hoare-style reasoning
As we were developing the calculational approach to reasoning
about effectful programs in this paper, we explored a technique
owing more to Hoare triples than to algebraic specifications. In
the end, we concluded that the Hoare-style technique was less
convenient than the algebraic one exhibited in the rest of the paper,
and (at least for all the examples we considered) unnecessary.
Nevertheless, for completeness, we outline the technique here, and
explain why we think it did not work so well.

The essence of the Hoare-style technique is the use of asser-
tions, so for this section we work within MonadFail. For notational

brevity, we will usually write ‘p!’ for ‘guard p’. We’ll also write
‘mx {p}’ for the assertion that monadic computation mx establishes
boolean postcondition p, a shorthand for

do {mx ; p!}= do {mx}
in the simple case that mx returns unit. More generally, mx may
return a meaningful result; more generally still, we might make
an assertion s1 ; ... ; sn {p} about a sequence of qualifiers. If these
n statements stmts = s1 ; ... ; sn contain m generators with patterns
u1, ...,um, the returns should be of the m-tuple pats = (u1, ...,um)
of those patterns; so the assertion is a shorthand for the equality:

do {stmts ; p! ; return pats}= do {stmts ; return pats}
(We assume for simplicity that no binding shadows any other,
although this doesn’t actually cause a problem. When there is just
one generator, the return should be the value of that pattern; when
there are no generators, the return should be the empty tuple. A
similar construction is used by Erkök and Launchbury [2].)

Some monadic operations are particularly amenable to manipu-
lation, because they are discardable, copyable, and relatively com-
mutable; we call them queries. These characteristic properties of
queries q,q′ are expressed as follows:

do { ← q ; return ()} = return ()
do {x← q ; y← q ; return (x,y)}= do {x← q ; return (x,x)}
do {x← q ; y← q′ ; return (x,y)}

= do {y← q′ ; x← q ; return (x,y)}
For example, the get operation of the state monad is a query. But
if we were to extend the MonadCount class in Section 3 with an
operation reset to reset the counter, this would be copyable but
not discardable; in a similar ‘latch’ monad, set and reset methods
would be copyable but not relatively commutable; and the prob-
abilistic operation coin in Section 8.2 is discardable but not copy-
able. (Schröder and Mossakowski [29] call queries ‘pure’; however,
in general, queries are not ‘pure’ in the sense of being instances of
return.)

To illustrate the assertional style, recall the Towers of Hanoi
problem from Section 3. We work here with an extended version of
the MonadCount type class, offering also an operation to yield the
current value of the counter:

class Monad m⇒MonadCount m where
tick :: m ()
total :: m Int

Now we no longer intend the free interpretation of this interface;
an implementation is constrained by the facts that total is a query,
and that tick increments the total:

m← total ; tick ; n← total {n = m+1}
The operation total is intended a ‘ghost variable’, used only for
reasoning and not for execution. We can therefore consider the
same program as before:

hanoi :: MonadCount m⇒ Int→ m ()
hanoi 0 = skip
hanoi (n+1) = do {hanoi n ; tick ; hanoi n}

The ‘correctness property’ of hanoi is that

t← total ; hanoi n ; u← total {u−t 2n−1}
The general approach to discharging such a proof obligation is to
expand out definitions until the final assertion is evidently redun-
dant and can be eliminated. The proof is by induction on n; the
base case is straightforward:

do { t← total ; hanoi 0 ; u← total ; (u−t 20−1)! ;
return (t,u)}

12

= [[definition of hanoi]]
do {t← total ; skip ; u← total ; (u−t 20−1)! ;

return (t,u)}
= [[skip is a unit of composition]]

do {t← total ; u← total ; (u−t 20−1)! ; return (t,u)}
= [[total is a query]]

do {t← total ; (t−t 20−1)! ; return (t, t)}
= [[arithmetic; True! is just skip]]

do {t← total ; return (t, t)}
= [[reversing first three steps]]

do {t← total ; hanoi 0 ; u← total ; return (t,u)}
For the inductive step, we assume the statement for n, and calculate:

do {t← total ; hanoi (n+1) ; u← total ;
(u−t 2n+1−1)! ; return (t,u)}

= [[definition of hanoi]]
do {t← total ; hanoi n ; tick ; hanoi n ; u← total ;

(u−t 2n+1−1)! ; return (t,u)}
= [[inserting some queries]]

do {t← total ; hanoi n ; u′← total ; tick ; t′← total ;
hanoi n ; u← total ; (u−t 2n+1−1)! ; return (t,u)}

= [[inductive hypothesis; property of tick]]
do {t← total ; hanoi n ; u′← total ; (u′−t = 2n−1)! ;

tick ; t′← total ; (t′ = u′+1)! ; hanoi n ; u← total ;
(u−t′ = 2n−1)! ; (u−t 2n+1−1)! ; return (t,u)}

= [[arithmetic: final guard follows from the others]]
do {t← total ; hanoi n ; u′← total ; (u′−t = 2n−1)! ; tick ;

t′← total ; (t′ = u′+1)! ; hanoi n ; u← total ;
(u−t′ = 2n−1)! ; return (t,u)}

= [[reversing first two steps]]
do {t← total ; hanoi (n+1) ; u← total ; return (t,u)}

This proof is significantly more verbose than the one in Sec-
tion 3, because it phrased indirectly. Calculations tend to have
a rightwards-pointing triangular (‘.’) shape—definitions are ex-
panded, the final assertion eliminated, and definitions contracted
again—and the second half of each calculation is a mirror image of
the first half.

Perhaps the reader feels that the Towers of Hanoi problem is too
trivial to form the basis of any verdict. We felt so too, and although
we could easily see the simpler solution for that problem, it took
a long time to find the corresponding solution shown in Section 9
for the tree relabelling problem. As with the Towers of Hanoi, we
extended the monad with a ghost operation:

class Monad m⇒MonadFresh m where
fresh :: m Symbol
used :: m (Set Symbol)

so that used is a query, returning the set of symbols used so far, and
fresh returns and uses up some fresh symbols:

x← used ; n← fresh ; y← used {x⊆ y ∧ n ∈ y−x}
The problem is then to prove that for some suitable definition of a
function

relabel :: MonadFresh m⇒ Tree a→ m (Tree Symbol)

we have

u← relabel t {distinct u}
for every t, where

distinct :: Tree Symbol→ Bool
distinct (Tip a) = True
distinct (Bin (t,u)) = distinct t ∧ distinct u ∧ (labels t∩ labels u /0)

and

labels :: Tree Symbol→ Set Symbol
labels (Tip a) = {a}
labels (Bin (t,u)) = labels t∪ labels u

As it happens, the correctness condition is too weak to support an
inductive argument, and it has to be strengthened to

x← used ; t′← relabel t ; y← used
{distinct t′ ∧ x⊆ y ∧ labels t′ ⊆ y−x}

The resulting calculation was rather longwinded, and we much
prefer the proof presented in Section 9.

As well as the verbosity of the Hoare-style approach, it seems
a little odd that we used only postconditions and not preconditions.
We might define the Hoare triple {p} m {q} as a shorthand for the
identity

do {p! ; x← m ; q! ; return x}= do {p! ; m}
But note that this is equivalent to the earlier notation for assertions,
since

{p} m {q}= p! ; m {q}
and in particular

{True} m {q}= m {q}
Others have come to the same conclusion; for example, Schröder
and Mossakowski’s monad-independent Hoare logic [29] simi-
larly defines Hoare triples in terms of ‘global evaluation formulae’,
which are analogous to our assertions.

10.3 Discussion
We have presented an approach to effectful functional program-
ming that treats classes of effects as an abstract datatype, with an
algebraic specification capturing its operations and equations. We
didn’t start out this way, but it turns out that the approach to which
we have been led has less to do with monads as introduced into
functional programming by Moggi [16] and Wadler [38], and more
to do with so-called Lawvere theories [13].

Fundamentally, monads arise from adjunctions—classically, be-
tween algebraic constructions such as term algebras in one direc-
tion, and an underlying forgetful functor in the other direction.
Lawvere theories arise more directly from equational theories of
operations and their laws. Both were developed as categorical for-
mulations of universal algebra [10], but Lawvere theories start
off with the associated operations and their equational properties,
whereas with monads these are a secondary notion. Indeed, the ad-
junction classically arising from the construction of the free model
of an equational theory yields precisely the monad in Moggi’s sense
[24]; but the additional operations and equations to support a class
of effects play little part in the story that starts with monads. Nev-
ertheless, the monadic view makes a convenient interface for pro-
gramming, and of course is embedded within the design of pro-
gramming languages such as Haskell; so we do not wish to aban-
don it. (Power [10] points out that monads are in fact slightly more
general than Lawvere theories: in particular, the monads for con-
tinuations and for partiality do not arise from operations and their
equations in the same way as the other monads familiar to func-
tional programmers.)

There is an intriguing duality in the Lawvere theory approach
between algebraic operations and effect handlers [25]. For exam-
ple, the catch operation of MonadExcept is an effect handler in
this sense; technically it doesn’t form an ‘operation’ of a Lawvere
theory, because it doesn’t have the right distributivity properties
with respect to >>=. Operations and handlers can be seen as ‘effect
constructors’ and ‘effect deconstructors’, respectively; and the han-
dlers can be defined as folds over the initial algebra induced by the

13

free model of the algebraic operations [26]. Given the amenability
of folds to equational reasoning, we feel that this development has
consequences worthy of further investigation.

Acknowledgements
We gratefully acknowledge the many helpful comments from mem-
bers of the Algebra of Programming research group at Oxford, es-
pecially Richard Bird, and from participants of the IFIP WG 2.8
meeting in Marble Falls and the European Workshop on Com-
putational Effects in Ljubljana, all of which have improved the
presentation of this paper. This work was partially supported by
UK Engineering and Physical Sciences Research Council grant
EP/G034516/1 on Reusability and Dependent Types.

References
[1] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In

G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, APPSEM 2000,
volume 2395 of LNCS, pages 42–122. Springer, 2002.

[2] L. Erkök and J. Launchbury. Recursive monadic bindings. In ICFP,
pages 174–185. ACM, September 2000.

[3] M. Erwig and S. Kollmansberger. Probabilistic functional program-
ming in Haskell. J. Funct. Prog., 16(1):21–34, 2006.

[4] J. Gibbons and R. Bird. Effective reasoning about effectful traversals.
Work in progress, Mar. 2011.

[5] M. Giry. A categorical approach to probability theory. In Categorical
Aspects of Topology and Analysis, volume 915 of LNM, pages 68–85.
Springer, 1981.

[6] S. Goncharov, L. Schröder, and T. Mossakowski. Kleene monads:
Handling iteration in a framework of generic effects. In CALCO,
volume 5728 of LNCS, pages 18–33, 2009.

[7] R. Hinze. Prolog’s control constructs in a functional setting: Axioms
and implementation. Intern. J. Found. Comput. Sci., 12(2):125–170,
2001.

[8] C. A. R. Hoare. A couple of novelties in the propositional calculus.
Z. Math. Logik Grundlag. Math., 31(2):173–178, 1985.

[9] G. Hutton and D. Fulger. Reasoning about effects: Seeing the wood
through the trees. In TFP, May 2008.

[10] M. Hyland and J. Power. The category theoretic understanding of
universal algebra: Lawvere theories and monads. Electron. Notes
Theoret. Comput. Sci., 172:437–458, 2007.

[11] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations.
In LICS, pages 186–195, 1989.

[12] F. W. Lawvere. The category of probabilistic mappings. Preprint—we
haven’t managed to obtain a copy of this manuscript, 1962.

[13] F. W. Lawvere. Functorial Semantics of Algebraic Theories. PhD
thesis, Columbia University, 1963. Also available with commentary
as Theory and Applications of Categories Reprint 5.

[14] S. Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, 1971.

[15] A. McIver and C. Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer Verlag, 2005.

[16] E. Moggi. Notions of computation and monads. Inform. & Comput.,
93(1), 1991.

[17] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Type Theory,
polymorphism and separation. J. Funct. Prog., 18(5,6):865–911,
2008.

[18] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In ICFP, pages
229–240, 2008.

[19] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In POPL, pages 268–280, 2004.

[20] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell.
O’Reilly, 2008.

[21] S. Peyton Jones. Tackling the awkward squad: Monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell.
In T. Hoare, M. Broy, and R. Steinbrüggen, editors, Engineering
Theories of Software Construction, volume 180 of NATO Science
Series, pages 47–96. IOS Press, 2001.

[22] S. Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[23] S. Peyton Jones and P. Wadler. Imperative functional programming.
In POPL, pages 71–84, 1993.

[24] G. Plotkin and J. Power. Notions of computation determine monads.
In FOSSACS, volume 2303 of LNCS, pages 342–356, 2002.

[25] G. Plotkin and J. Power. Algebraic operations and generic effects.
Appl. Cat. Struct., 11(1):69–94, 2003.

[26] G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In ESOP,
volume 5502 of LNCS, pages 80–94, 2009.

[27] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[28] J. Rosenhouse. The Monty Hall Problem: The Remarkable Story of
Math’s Most Contentious Brain Teaser. Oxford University Press,
2009.

[29] L. Schröder and T. Mossakowski. HASCASL: Integrated higher-order
specification and program development. Theoretical Comput. Sci.,
410(12-13):1217–1260, 2009.

[30] W. Swierstra. A Functional Specification of Effects. PhD thesis,
University of Nottingham, November 2008.

[31] W. Swierstra. A Hoare logic for the state monad. In TPHOLs, volume
5674 of LNCS, pages 440–451. Springer-Verlag, 2009.

[32] W. Swierstra and T. Altenkirch. Beauty in the beast. In Haskell
Workshop, pages 25–36, 2007.

[33] R. Tix. Continuous D-Cones: Convexity and Powerdomain Construc-
tions. PhD thesis, Technische Universität Darmstadt, 1999.

[34] D. Varacca and G. Winskel. Distributing probability over non-
determinism. Math. Struct. Comput. Sci., 16(1):87–113, 2006.

[35] M. Vos Savant. Ask Marilyn. Parade Magazine, 9th September
1990. See also http://www.marilynvossavant.com/
articles/gameshow.html.

[36] P. Wadler. A critique of Abelson and Sussman: Why calculating is
better than scheming. SIGPLAN Not., 22(3):8, 1987.

[37] P. Wadler. Comprehending monads. Math. Struct. Comput. Sci.,
2(4):461–493, 1992.

[38] P. Wadler. Monads for functional programming. In M. Broy, editor,
Program Design Calculi: Proceedings of the Marktoberdorf Summer
School, 1992.

[39] A. Yakeley, et al. MonadPlus reform proposal. http://
www.haskell.org/haskellwiki/MonadPlus_reform_
proposal, Jan. 2006.

[40] W. Yi and K. G. Larsen. Testing probabilistic and nondeterministic
processes. In Protocol Specification, Testing and Verification XII,
pages 47–61, 1992.

14

