
Scans and Convolutions
A Calculational Proof of Moessner’s Theorem

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. The paper introduces two corecursion schemes for stream-
generating functions, scans and convolutions, and discusses their proper-
ties. As an application of the framework, a calculational proof of Paasche’s
generalisation of Moessner’s intriguing theorem is presented.

1 Introduction

In the 1950s Alfred Moessner discovered the following intriguing scheme for gen-
erating the natural kth powers [1]: From the sequence of natural numbers, delete
every kth number and form the sequence of partial sums. From the resulting se-
quence, delete every (k− 1)-st number and form again the partial sums. Repeat
this step k − 1 times.

The second simplest instance of the process yields the squares by summing
up the odd numbers. (Of course if we repeat the transformation 0 times, we
obtain the 1st powers of the naturals.)

1 2/ 3 4/ 5 6/ 7 8/ . . .
1 4 9 16 . . .

For generating the cubes we perform two deletion-and-summation steps.

1 2 3/ 4 5 6/ 7 8 9/ 10 11 12�� . . .
1 3/ 7 12�� 19 27�� 37 48�� . . .
1 8 27 64 . . .

The second sequence is probably unfamiliar—the numbers are the “three-quarter
squares” (A0770431)—but the final sequence is the desired sequence of cubes.

Actually, it is not surprising that we get near the kth powers by repeated
summations. If we omit the deletions, we obtain the columns of Pascal’s triangle,
the binomial coefficients, which are related to the falling factorial powers [3].

1 2 3 4 5 . . .
1 3 6 10 15 . . .
1 4 10 20 35 . . .
1 5 15 35 70 . . .

1 Most sequences defined in this paper are recorded in Sloane’s On-Line Encyclopedia
of Integer Sequences [2]. Keys of the form Annnnnn refer to entries in that database.

2 Ralf Hinze

It is surprising that the additional deletion step is exactly what is needed to
generate the kth powers. However, the magic does not stop here. In the original
scheme we deleted numbers at regular intervals. What happens if we steadily
increase the size of the intervals?

1/ 2 3/ 4 5 6/ 7 8 9 10�� 11 12 13 14 15�� . . .
2/ 6 11�� 18 26 35�� 46 58 71 85�� . . .

6/ 24 50�� 96 154 225�� . . .
24�� 120 274�� . . .

120�� . . .

We obtain the factorials! The crossed-out numbers form the right sides of ��-
shaped triangles of increasing size. The numbers in the lower left corner make up
the resulting sequence. What sequence do we obtain if we start off by deleting
the squares or the cubes? The general scheme becomes visible if we rewrite the
preceding example slightly. We began by deleting the numbers

1 = 1∗1
3 = 2∗1 + 1∗1
6 = 3∗1 + 2∗1 + 1∗1

10 = 4∗1 + 3∗1 + 2∗1 + 1∗1

and obtained at the end of Moessner’s process the sequence

1 = 1^1
2 = 2^1 ∗ 1^1
6 = 3^1 ∗ 2^1 ∗ 1^1

24 = 4^1 ∗ 3^1 ∗ 2^1 ∗ 1^1 .

Now if we delete, say, the numbers

2 = 1∗2
11 = 2∗2 + 1∗7
26 = 3∗2 + 2∗7 + 1∗6
46 = 4∗2 + 3∗7 + 2∗6 + 1∗5 ,

where 2, 7, 6, 5 is the prefix of some arbitrary sequence, we obtain the numbers

1 = 1^2
4 = 2^2 ∗ 1^7

1152 = 3^2 ∗ 2^7 ∗ 1^6
2239488 = 4^2 ∗ 3^7 ∗ 2^6 ∗ 1^5 .

Quite magically, factors have become exponents and sums have become products.
A purpose of this paper is to formalise Moessner’s process, in fact, Paasche’s

generalisation of it [4], and to establish the relationship between the sequence
of deleted positions and the resulting sequence of numbers. Of course, this is
not the first published proof of Moessner’s theorem: several number-theoretic
arguments have appeared in the literature [5, 4, 6]. We approach the problem
from a different angle: Moessner’s process can be captured by a corecursive

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 3

program that operates on streams, which are infinite sequences. In this setting
Moessner’s theorem amounts to an equivalence of two corecursive functions.

A central message of the paper is that a programming-language perspective
on concrete mathematics is not only feasible, but also beneficial: the resulting
proofs have more structure and require little mathematical background. Last
but not least, since the artifacts are executable programs, we can play with the
construction, check conjectures, explore variations etc.

The overall development is based on a single proof method: the principle of
unique fixed points [7]. Under some mild restrictions, recursion equations over
a coinductive datatype possess unique solutions. Uniqueness can be exploited
to prove that two elements of a codatatype are equal: if they satisfy the same
recursion equation, then they are!

Along the way we introduce two corecursion schemes for stream-generating
functions, scans and convolutions, which are interesting in their own right. Scans
generalise the anti-difference or summation operator, which is one of the building
blocks of finite calculus, and convolutions generalise the convolution product,
which is heavily used in the theory of generating functions. Using the unique-
fixed-point principle, we show that the two combinators satisfy various fusion
and distributive laws, which generalise properties of summation and convolution
product. These laws are then used to establish Moessner’s theorem.

The rest of the paper is structured as follows. To keep the development self-
contained, Section 2 provides an overview of streams and explains the main
proof principle; the material is taken partly from “Streams and Unique Fixed
Points” [7]. Sections 3 and 4 introduce scans and convolutions, respectively. Us-
ing this vocabulary, Section 5 then formalises Moessner’s process and Section 6
proves it correct. Finally, Section 7 reviews related work and Section 8 concludes.

2 Streams

The type of streams, Stream α, is like Haskell’s list datatype [α], except that
there is no base constructor so we cannot construct a finite stream. The Stream
type is not an inductive type, but rather a coinductive type, whose semantics is
given by a final coalgebra [8].2

data Stream α = Cons {head :: α,
tail :: Stream α}

infixr 5 ≺
(≺) :: α→ Stream α→ Stream α
a ≺ s = Cons a s

Streams are constructed using ≺, which prepends an element to a stream. They
are destructed using head and tail , which yield the first element and the rest of
the stream, respectively.
2 The definitions are given in the purely functional programming language Haskell [9].
Since Haskell has a CPO semantics, initial algebras and final coalgebras actually
coincide [10].

4 Ralf Hinze

We say a stream s is constant iff tail s = s. We let the variables s, t and u
range over streams and c over constant streams.

2.1 Operations

Most definitions we encounter later on make use of the following functions, which
lift n-ary operations (n = 0, 1, 2) to streams.

repeat :: α→ Stream α
repeat a = s where s = a ≺ s

map :: (α→ β)→ (Stream α→ Stream β)
map f s = f (head s) ≺ map f (tail s)
zip :: (α→ β → γ)→ (Stream α→ Stream β → Stream γ)
zip f s t = f (head s) (head t) ≺ zip f (tail s) (tail t)

The call repeat 0 constructs a sequence of zeros (A000004). Clearly a constant
stream is of the form repeat k for some k . We refer to repeat as a parametrised
stream and to map and zip as stream operators.

The definitions above show that Stream is a so-called applicative functor or
idiom [11]: pure is repeat and idiomatic apply can be defined in terms of zip.

pure :: α→ Stream α
pure = repeat
infixl 9 �
(�) :: Stream (α→ β)→ (Stream α→ Stream β)
s � t = zip ($) s t

Here, $ denotes function application. Conversely, we can define the ‘lifting oper-
ators’ in terms of the idiomatic primitives: repeat = pure, map f s = pure f � s
and zip g s t = pure g � s � t . We will freely switch between these two views.

Of course, we have to show that pure and � satisfy the idiom laws.

pure id � s = s (identity)
pure (·) � s � t � u = s � (t � u) (composition)
pure f � pure a = pure (f a) (homomorphism)
s � pure a = pure ($ a) � s (interchange)

We postpone the proofs until we have the prerequisites at hand.
Furthermore, we lift the arithmetic operations to streams, for convenience

and conciseness of notation. In Haskell, this is easily accomplished using type
classes. Here is an excerpt of the necessary code.

instance (Num a)⇒ Num (Stream a) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate -- unary minus
fromInteger i = repeat (fromInteger i)

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 5

This instance declaration allows us, in particular, to use integer constants as
streams—in Haskell, unqualified 3 abbreviates fromInteger (3 :: Integer). Also
note that since the arithmetic operations are defined point-wise, the familiar
arithmetic laws also hold for streams.

Using this vocabulary we can define the usual suspects: the natural numbers
(A001477) and the factorial numbers (A000142).

nat = 0 ≺ nat + 1
fac = 1 ≺ nat ′ ∗ fac

Note that we use the convention that the identifier x ′ denotes the tail of x .
Furthermore, note that ≺ binds less tightly than +. For instance, 0 ≺ nat + 1 is
grouped 0 ≺ (nat + 1).

Another useful function is iterate, which builds a stream by repeatedly ap-
plying a given function to a given value.

iterate :: (α→ α)→ (α→ Stream α)
iterate f a = a ≺ iterate f (f a)

Thus, iterate (+1) 0 is an alternative definition of the stream of naturals.

2.2 Definitions

Not every legal Haskell definition of type Stream τ actually defines a stream.
Two simple counterexamples are s = tail s and s = head s ≺ tail s. Both of
them loop in Haskell; when viewed as stream equations they are ambiguous.3 In
fact, they admit infinitely many solutions: every constant stream is a solution of
the first equation and every stream is a solution of the second. This situation is
undesirable from both a practical and a theoretical standpoint. Fortunately, it is
not hard to restrict the syntactic form of equations so that they possess unique
solutions. We insist that equations adhere to the following form:

x = h ≺ t ,

where x is an identifier of type Stream τ ; h is an expression of type τ ; and t
is an expression of type Stream τ possibly referring to x , or some other stream
identifier in the case of mutual recursion. However, neither h nor t may use
head x or tail x .

If x is a parametrised stream or a stream operator

x x1 . . . xn = h ≺ t ,

then h or t may use head xi or tail xi provided xi is of the right type. Furthermore,
t may contain recursive calls to x , but we are not allowed to take the head or
3 There is a slight mismatch between the theoretical framework of streams and the
Haskell implementation of streams. Since products are lifted in Haskell, Stream τ
additionally contains partial streams such as ⊥, a0 ≺ ⊥, a0 ≺ a1 ≺ ⊥ and so forth.
We simply ignore this extra complication here.

6 Ralf Hinze

tail of a recursive call. There are no further restrictions regarding the arguments
of a recursive call. For a formal account of these requirements, we refer the
interested reader to “Streams and Unique Fixed Points” [7], which also contains
a constructive proof that equations of this form indeed have unique solutions.

2.3 Proofs

Uniqueness can be exploited to prove that two streams are equal: if they satisfy
the same recursion equation, then they are! If s = ϕ s is an admissible equation
in the sense of Section 2.2, we denote its unique solution by fix ϕ. (The equation
implicitly defines a function in s. A solution of the equation is a fixed point of
this function and vice versa.) The fact that the solution is unique is captured by
the following universal property of fix .

fix ϕ = s ⇐⇒ ϕ s = s

Read from left to right it states that fix ϕ is indeed a solution of x = ϕ x . Read
from right to left it asserts that any solution is equal to fix ϕ. So, if we want to
prove s = t where s = fix ϕ, then it suffices to show that ϕ t = t .

As an example, let us prove the idiom homomorphism law.

pure f � pure a
= { definition of � }

(head (pure f)) (head (pure a)) ≺ tail (pure f) � tail (pure a)
= { definition of pure }

f a ≺ pure f � pure a

Consequently, pure f � pure a equals the unique solution of x = f a ≺ x , which
by definition is pure (f a).

So far we have been concerned with proofs about streams, however, the proof
technique applies equally well to parametrised streams or stream operators! As
an example, let us show the so-called iterate fusion law, which amounts to the
free theorem of (α→ α)→ (α→ Stream α).

map h · iterate f1 = iterate f2 · h ⇐= h · f1 = f2 · h

We show that both map h · iterate f1 and iterate f2 · h satisfy the equation x a =
h a ≺ x (f1 a). Since the equation has a unique solution, the law follows.

(map h · iterate f1) a
= { definition of iterate }

map h (a ≺ iterate f1 (f1 a))
= { definition of map }

h a ≺ (map h · iterate f1) (f1 a)

(iterate f2 · h) a
= { definition of iterate }

h a ≺ iterate f2 (f2 (h a))
= { assumption: h · f1 = f2 · h }

h a ≺ (iterate f2 · h) (f1 a)

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 7

The fusion law implies map f · iterate f = iterate f · f , which in turn is the key
for proving that iterate f a is the unique solution of x = a ≺ map f x .

iterate f a
= { definition of iterate }

a ≺ iterate f (f a)
= { iterate fusion law: h = f1 = f2 = f }

a ≺ map f (iterate f a)

Consequently, nat = iterate (+1) 0.

3 Scans

Let’s meet some old friends. Many list-processing functions can be ported to
streams, in fact, most of the functions that generate lists, such as repeat or
iterate. Functions that consume lists, such as foldr or foldl , can be adapted with
varying success, depending on their strictness. The tail-strict foldl , for instance,
cannot be made to work with streams. We can however turn scanr and scanl ,
the list-producing variants of foldr and foldl , into stream operators.

scanr :: (α→ β → β)→ β → (Stream α→ Stream β)
scanr (~) e s = t where t = e ≺ zip (~) s t
scanl :: (β → α→ β)→ β → (Stream α→ Stream β)
scanl (~) e s = t where t = e ≺ zip (~) t s

If we follow our convention of abbreviating zip (~) s t by s ~ t , the definitions of
the ts become t = e ≺ s ~ t and t = e ≺ t ~ s, emphasising the symmetry of
the two scans. The schema below illustrates the working of scanr (~) e s.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · ·
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ · · ·

e t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 · · ·

= = = = = = = = = = = · · ·
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · ·

The diagram makes explicit that scanr (·) e (s0 ≺ s1 ≺ s2 ≺ s3 ≺ · · ·) generates

e ≺ s0 · e ≺ s1 · (s0 · e) ≺ s2 · (s1 · (s0 · e)) ≺ · · · ,

that is, the expressions are nested to the right, but the elements appear in re-
verse order.4 For instance, scanr (:) [] generates partial reversals of the argument
stream and scanr (·) id partially ‘forward composes’ a stream of functions.

4 While scanl is the true counterpart of its list namesake, scanr isn’t. The reason is
that the list version of scanr is not incremental : in order to produce the first element
of the output list it consumes the entire input list.

8 Ralf Hinze

We shall also need unary versions of the scans.

scanr1 :: (α→ α→ α)→ (Stream α→ Stream α)
scanr1 (~) s = scanr (~) (head s) (tail s)
scanl1 :: (α→ α→ α)→ (Stream α→ Stream α)
scanl1 (~) s = scanl (~) (head s) (tail s)

Note that the types of scanr1 and scanl1 are more restricted than the types of
scanr and scanl .

Two important instances of scanr are summation, which we will need time
and again, and product.

Σ = scanr (+) 0 Σ
′ = scanr1 (+)

Π = scanr (∗) 1 Π
′ = scanr1 (∗)

Both stream operators satisfy a multitude of laws [7]. For instance,

Σ(c ∗ s) = c ∗Σ s
Σ(s + t) = Σ s +Σ t

Π(s ^ c) = Π s ^ c
Π(s ∗ t) = Π s ∗Π t .

The laws are in fact instances of general properties of scans. First of all, scans
enjoy two fusion properties.

map h (scanr (~) e s) = scanr (⊕) n s (fusion)
⇐= h e = n ∧ h (a ~ b) = a ⊕ h b

scanr (~) e (map h s) = scanr (⊕) e s (functor fusion)
⇐= h a ~ b = a ⊕ b

scanr (~) e = scanl (flip (~)) e (flip)

The flip law relates scanr to scanl ; the function flip is given by flip f a b = f b a.
The fusion laws can be shown using parametricity [12]. The type of scanr

contains two type variables, α and β, the fusion law amounts to the free theorem
in β and the functor fusion law to the free theorem in α. However, we need not
rely on parametricity as we can also employ the unique-fixed-point principle.
For fusion we show that map h (scanr (~) e s) = pure h � scanr (~) e s satisfies
x = n ≺ s ⊕ x , the recursion equation of scanr (⊕) n s.

pure h � scanr (~) e s
= { definition of scanr and � }

h e ≺ pure h � (s ~ scanr (~) e s)
= { assumption: h e = n and h (a ~ b) = a ⊕ h b lifted to streams }

n ≺ s ⊕ (pure h � scanr (~) e s)

The proof of functor fusion can be found in Appendix A, along with most of the
remaining purely structural proofs.

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 9

Scans also satisfy two distributive laws: if ~ distributes over ⊕, then ~ also
distributes over scanr (⊕); furthermore, scanr (⊕) distributes over ⊕.

scanr (⊕) (c~ e) (c~ s) = c~ scanr (⊕) e s
⇐= c~ (a ⊕ b) = (c~ a) ⊕ (c~ b) (distributivity 1)

scanr (⊕) (a ⊕ b) (s ⊕ t) = scanr (⊕) a s ⊕ scanr (⊕) b t
⇐= ⊕ AC (distributivity 2)

Note that we use ⊕ and ~ both lifted and unlifted; likewise, c stands both for a
constant stream and the constant itself. Finally, AC is shorthand for associative
and commutative.

The first law is in fact a direct consequence of the fusion laws.

scanr (⊕) (c~ e) (c~ s)
= { functor fusion: h a = c ~ a }

scanr (λa b → (c~ a) ⊕ b) (c~ e) s
= { fusion: h a = c ~ a and c ~ (a ⊕ b) = c ~ a ⊕ c ~ b by assumption }

c~ scanr (⊕) e s

For the second law, we show that scanr (⊕) a s ⊕ scanr (⊕) b t satisfies x =
(a ⊕ b) ≺ (s ⊕ t)⊕ x , the recursion equation of scanr (⊕) (a ⊕ b) (s ⊕ t).

scanr (⊕) a s ⊕ scanr (⊕) b t
= { definition of scanr }

(a ≺ s ⊕ scanr (⊕) a s) ⊕ (b ≺ t ⊕ scanr (⊕) b t)
= { definition of zip (⊕) }

(a ⊕ b) ≺ (s ⊕ scanr (⊕) a s) ⊕ (t ⊕ scanr (⊕) b t)
= { assumption: ⊕ AC }

(a ⊕ b) ≺ (s ⊕ t) ⊕ (scanr (⊕) a s ⊕ scanr (⊕) b t)

4 Convolutions

Now, let’s make some new friends. Moessner’s theorem is about repeated summa-
tions. We noted in the introduction that repeated summation of repeat 1 yields
the columns of Pascal’s triangle: repeat 1 =

(
nat
0

)
and Σ

(
nat
k

)
=
(
nat
k+1

)
where

(
s
t

)
is the binomial coefficient lifted to streams. What happens if we repeatedly sum
an arbitrary stream? For instance, Σ′ ·Σ′ takes t1 ≺ t2 ≺ t3 ≺ · · · to

1 ∗ t1 ≺ 2 ∗ t1 + 1 ∗ t2 ≺ 3 ∗ t1 + 2 ∗ t2 + 1 ∗ t3 ≺ · · · .

Note that the factors are going down whereas the indices are going up: double
summation is an example of a so-called convolution. To understand the workings

10 Ralf Hinze

of a convolution, imagine two rows of people shaking hands while passing in
opposite directions.

. . . s4 s3 s2 s1 −→
←− t1 t2 t3 t4 . . .

. . . s4 s3 s2 s1 −→
←− t1 t2 t3 t4 . . .

. . . s4 s3 s2 s1 −→
←− t1 t2 t3 t4 . . .

Firstly, the two leaders shake hands; then the first shakes hand with the second
of the other row and vice versa; then the first shakes hand with the third of
the other row and so forth. Two operations are involved in a convolution: one
operation that corresponds to the handshake and a second operation, typically
associative, that combines the results of the handshake.

. . . s4 s3 s2 s1 −→
~

←− t1 t2 t3 t4 . . .

. . . s4 s3 s2 s1 −→
~ ⊕ ~

←− t1 t2 t3 t4 . . .

. . . s4 s3 s2 s1 −→
~ ⊕ ~ ⊕ ~

←− t1 t2 t3 t4 . . .

Unfortunately, when it comes to the implementation, the symmetry of the
description is lost. There are at least three ways to set up the corecursion (we
abbreviate head s by s0 and tail s by s ′).

s0

t0

s ′

t ′

n

s0
s1

t0 t1

s ′′

t ′′

./

s0

t0

s ′

t ′

o

Assume that ~ implements the handshake. The first element of the convolution
is s0 ~ t0. Then we can either combine s ′ ~ pure t0 with the convolution of s
and t ′ (diagram on the left) or we can combine the convolution of s ′ and t with
pure s0 ~ t ′ (diagram on the right).

convolutel :: (α→ β → γ)→ (γ → γ → γ)
→ (Stream α→ Stream β → Stream γ)

convolutel (~) (⊕) = (n) where
s n t = head s ~ head t ≺ zip (⊕) (map (~ head t) (tail s)) (s n tail t)

convoluter :: (α→ β → γ)→ (γ → γ → γ)
→ (Stream α→ Stream β → Stream γ)

convoluter (~) (⊕) = (o) where
s o t = head s ~ head t ≺ zip (⊕) (tail s o t) (map (head s ~) (tail t))

It is not too hard to show that the two variants are equal if ⊕ is associative,
see Appendix A. The proof makes essential use of the symmetric definition in
the middle. We shall now assume associativity and abbreviate convolutel and
convoluter , by convolute.

Two instances of this corecursion scheme are convolution product and con-
volution exponentiation.

infixl 7 ∗∗
s ∗∗ t = convolute (∗) (+) s t
infixr 8 ^̂
s ^̂ t = convolute (^) (∗) s t

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 11

If you are familiar with generating functions [3], you will recognise ∗∗ as the
product of generating functions. Exponentiation ^̂ is comparatively unknown;
we shall need it for formalising Moessner’s process, but more on that later.

Both operators satisfy a multitude of laws which merit careful study.

(c ∗ s) ∗∗ t = c ∗ (s ∗∗ t)
(s + t) ∗∗ u = s ∗∗ u + t ∗∗ u

Σ s ∗∗ t = Σ(s ∗∗ t)

s ∗∗ (t ∗ c) = (s ∗∗ t) ∗ c
s ∗∗ (t + u) = s ∗∗ t + s ∗∗ u

s ∗∗Σ t = Σ(s ∗∗ t)

(s ^ c) ^̂ t = (s ^̂ t) ^ c
(s ∗ t) ^̂ u = s ^̂ u ∗ t ^̂ u
Π s ^̂ t = Π(s ^̂ t)

s ^̂ (t ∗ c) = (s ^̂ t) ^ c
s ^̂ (t + u) = s ^̂ t ∗ s ^̂ u

s ^̂ Σ t = Π(s ^̂ t)

Note that we can shift Σ in and out of a convolution product. This allows us to
express repeated summations as convolutions:

Σ s
= { (1 ≺ repeat 0) ∗∗ t = t }
Σ((1 ≺ repeat 0) ∗∗ s)

= { Σ t ∗∗ u = Σ(t ∗∗ u) }
Σ(1 ≺ repeat 0) ∗∗ s

= { Σ(1 ≺ repeat 0) = 0 ≺ repeat 1 }
(0 ≺ repeat 1) ∗∗ s

= { (0 ≺ t) ∗∗ u = 0 ≺ t ∗∗ u }
0 ≺ repeat 1 ∗∗ s .

Hence, Σ′ s = repeat 1 ∗∗ s and (see motivating example),

Σ
′(Σ′ s)

= { see above }
Σ

′(repeat 1 ∗∗ s)
= { Σ′ t ∗∗ u = Σ′(t ∗∗ u) }
Σ

′(repeat 1) ∗∗ s
= { Σ′(repeat 1) = nat ′ }

nat ′ ∗∗ s .

Perhaps unsurprisingly, the laws above are instances of general properties of
convolutions. Like scans, convolutions satisfy two fusion properties and a flip
law.

map h (convolute (~) (⊕) s t) = convolute (�) (�) s t (fusion)
⇐= h (c1 ⊕ c2) = h c1 � h c2 ∧ h (a ~ b) = a � b

convolute (~) (⊕) (map h s) (map k t) = convolute (�) (⊕) s t
⇐= h a ~ k b = a � b (functor fusion)

flip (convolute (~) (⊕)) = convolute (flip (~)) (⊕) (flip)

12 Ralf Hinze

The laws for ∗∗ and ^̂ suggest that convolutions enjoy three different types of
distributive laws. Let s ./ t = convolute (~) (⊕) s t , then

(c � s) ./ t = c~ (s ./ t) (distributivity 1)
⇐= c~ (c1 ⊕ c2) = (c~ c1) ⊕ (c~ c2)
∧ c~ (a ~ b) = (c � a)~ b

(s � t) ./ u = (s ./ u) ⊕ (t ./ u) (distributivity 2)
⇐= ⊕ AC ∧ (a1 � a2)~ b = (a1~ b) ⊕ (a2~ b)

(scanr (�) n s) ./ t = scanr (⊕) e (s ./ t) (distributivity 3)
⇐= ⊕ AC ∧ (a1 � a2)~ b = (a1~ b) ⊕ (a2~ b)
∧ n ~ b = e ∧ a ⊕ e = a .

Again, the proofs of the laws can be found in Appendix A. Furthermore, there
are analogous laws for right distributivity.

5 Moessner’s process formalised

We are finally in a position to formalise Moessner’s process. Consider the exam-
ples in the introductory section and note that the process generates a sequence
of equilateral triangles. In the case of natural powers, the triangles were of the
same size

1 2 3
1 3
1

4 5 6
7 12
8

7 8 9
19 27
27

10 11 12
37 48
64 ;

for the factorials, we steadily increased their size

1 2 3
2

4 5 6
6 11
6

7 8 9 10
18 26 35
24 50
24

11 12 13 14 15
46 58 71 85
96 154 225
120 274
120 .

Our goal is to relate the elements in the upper right corners, the sequence of
deleted positions, to the elements in the lower left corners, the sequence generated
by Moessner’s process. It turns out that this is most easily accomplished through
a third sequence, the sequence of size differences. Assuming that we start off
with an invisible triangle of size 0, the size differences for the above examples
are 3 ≺ repeat 0 and repeat 1, respectively.

Paasche’s generalisation of Moessner’s theorem then reads: If d is a sequence
of size differences, then

nat ′ ∗∗ d

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 13

is the sequence of deleted positions and

nat ′ ^̂ d

is the sequence obtained by Moessner’s process.
The first part of this beautiful correspondence is easy to explain: if d is the

sequence of size differences, then Σ′ d is the sequence of sizes and Σ′(Σ′ d) =
nat ′ ∗∗ d is the sequence of deleted positions. Before we tackle the second part,
let’s have a look at some examples first.5

� nat ′ ∗∗ (2 ≺ repeat 0)
〈2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, . . .〉
� nat ′ ^̂ (2 ≺ repeat 0)
〈1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, . . .〉
� nat ′ ∗∗ (3 ≺ repeat 0)
〈3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, . . .〉
� nat ′ ^̂ (3 ≺ repeat 0)
〈1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, . . .〉
� nat ′ ∗∗ repeat 1
〈1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, . . .〉
� nat ′ ^̂ repeat 1
〈1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, . . .〉
� nat ′ ∗∗ (2 ≺ 7 ≺ 6 ≺ 5 ≺ repeat 0)
〈2, 11, 26, 46, 66, 86, 106, 126, 146, 166, 186, 206, 226, 246, 266, 286, . . .〉
� nat ′ ^̂ (2 ≺ 7 ≺ 6 ≺ 5 ≺ repeat 0)
〈1, 4, 1152, 2239488, 9555148800, 2799360000000, 219469824000000, . . .〉

It is not too hard to calculate the results: We have s∗∗(k ≺ repeat 0) = s∗repeat k
and s ^̂ (k ≺ repeat 0) = s ^ repeat k , which implies Moessner’s original theorem.
Furthermore, s ∗∗ 1 = Σ′ s and s ^̂ 1 = Π ′ s which explains why we obtain the
factorials when we increase the size of the triangles by 1.

Let’s get more adventurous. If we increase the size difference, we obtain
the so-called superfactorials (A000178), the products of the first n factorials:
nat ′ ^̂ nat = nat ′ ^̂ Σ 1 = Π(nat ′ ^̂ 1) = Π(Π ′ nat ′) = Π fac′. Taking this
one step further, recall that Σ

(
nat
k

)
=
(
nat
k+1

)
. Consequently, nat ′ ^̂

(
nat
2

)
yields

the superduperfactorials (A055462), the products of the first n superfactorials:
nat ′ ^̂

(
nat
2

)
= nat ′ ^̂ Σ(Σ 1) = Π(Π fac′).

In the introduction we asked for the sequences we obtain if we start off by
deleting the squares or the cubes. This is easily answered using the left-inverse of
Σ′, the difference operator ∇ s = head s ≺ ∆ s where ∆ s = tail s − s is the left-
inverse of Σ. We have ∇ (∇ (nat ′ ^ 2)) = 1 ≺ repeat 2 (A040000). Consequently,
Moessner’s process generates nat ′ ^̂ (1 ≺ repeat 2) = 1 ≺ (nat +2)∗ (nat ′ ^̂ 2) =
1 ≺ (nat +2)∗fac′^2 = fac∗fac′ (A010790). We leave the cubes as an instructive
exercise to the reader.
5 This is an interactive session. The part after the prompt “� ” is the user’s input.
The result of each submission is shown in the subsequent line. The actual output
of the Haskell interpreter is displayed; the session has been generated automatically
using lhs2TEX’s active features [13].

14 Ralf Hinze

6 Moessner’s process verified

〈. . .〉 obtaining a correct solution demands particular attention
to the avoidance of unnecessary detail.

The Capacity-C Torch Problem—Roland Backhouse

We have noted that Moessner’s process generates a sequence of triangles. Let’s
look at them more closely. Below is the process that generates the cubes, now
with an additional row of ones on top.

1
0
0
0

0 0 0 0
1 1 1 1
1 2 3
1 3
1

0 0 0 0
1 1 1 1
4 5 6
7 12
8

0 0 0 0
1 1 1 1
7 8 9
19 27
27

Every element within a triangle is the sum of the element to its left and the
element above. The values in the two margins are zero, except for the topmost
element in the left margin, which is 1 and acts as the initial seed.

The verbal description suggests that the sequences are formed from top to
bottom. An alternative view, which turns out to be more fruitful, is that they
are formed from left to right. We start with the vector (0 0 0 1) (left margin read
from bottom to top). The vector goes through a binomial process, which yields
the diagonal vector (1 3 3 1). This vector goes through the same process yielding
(8 12 6 1), and so forth. The first elements of these vectors are the cubes.

1
0
0
0

0 0 0 0
1 1 1 1
1 2 3
1 3
1

1
3
3
1

0 0 0 0
1 1 1 1
4 5 6
7 12
8

1
6

12
8

0 0 0 0
1 1 1 1
7 8 9
19 27
27

1
9

27
27

In general, the input and output vectors are related by

0 0 0 0
a3 a3 a3 a3 a3 b3
a2 a2 + a3 a2 + 2a3 a2 + 3a3 b2
a1 a1 + a2 + a3 a1 + 2a2 + 3a3 b1
a0 a0 + a1 + a2 + a3 b0 ,

or somewhat snappier,

bn =
∑

k

(
k

n

)
ak ,

where k and n range over natural numbers. (This is really a finite sum, since
only a finite number of coefficients are nonzero.) As to be expected, the formula
involves a binomial coefficient. At this point, we could rely on our mathematical

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 15

skills and try to prove Moessner’s theorem by manipulating binomial coefficients
and this is indeed what some authors have done [5, 14].

But there is a more attractive line of attack: Let us view the vectors as co-
efficients of a polynomial so that (a0 a1 a2 a3 . . .) represents f(x) =

∑
n anx

n.
A triangle transformation is then a higher-order function, a function that maps
polynomials to polynomials. We can calculate this higher-order mapping as fol-
lows. ∑

n

bnx
n

= { definition of bn }∑
n

(∑
k

(
k

n

)
ak

)
xn

= { distributive law }∑
n

∑
k

(
k

n

)
akx

n

= { interchanging the order of summation }∑
k

∑
n

(
k

n

)
akx

n

= { distributive law }∑
k

ak

(∑
n

(
k

n

)
xn

)
= { binomial theorem }∑

k

ak(x+ 1)k

Here is the punch line: Under the functional view, each triangle maps f to f « 1
where «, the shift operator, is given by

(«) :: (Z→ Z)→ Z→ (Z→ Z)
f «n = λx → f (x + n) .

This change of representation simplifies matters dramatically. By going higher-
order we avoid unnecessary detail in the sense of Roland Backhouse [15].

6.1 Moessner’s original theorem

Moessner’s original sequence, where the size of the triangles is constant, is then
given by the sequence of polynomials idiomatically applied to 0—the application
extracts the lowest coefficients.

moessner :: Z→ Stream Z
moessner k = iterate (« 1) idk � 0

16 Ralf Hinze

f k = λx → (f x)k

The seed polynomial is idk , which is then repeatedly shifted by 1. The auxiliary
definition lifts exponentiation to functions, so idk is λx → x k . (Below, we also
use sk to denote exponentiation lifted to streams.)

We are now in a position to prove Moessner’s theorem: moessner k = natk .
(Of course, this equation is a special case of the relation given in Section 5, but
we prove it nonetheless as it serves as a good warm-up exercise.) The central
observation is that two shifts can be contracted to one: (q « i) « j = q « (i + j).
This allows us to eliminate the iteration:

iterate (« 1) p = pure («) � pure p �nat . (1)

The proof of this equation relies on the fact that iterate f a is the unique solution
of x = a ≺ map f x , see Section 2.3.

pure («) � pure p �nat
= { definition of pure and nat }

p « 0 ≺ pure («) � pure p � (nat + 1)
= { q « 0 = q and (q « i) « j = q « (i + j) lifted to streams }

p ≺ pure («) � (pure («) � pure p �nat) � 1
= { idioms }

p ≺ map (« 1) � (pure («) � pure p �nat)

The proof of Moessner’s theorem then boils down to a three-liner.

iterate (« 1) idk � 0
= { equation (1) }

(pure («) � pure idk �nat) � 0
= { (idk « n) 0 = nk lifted to streams }

natk

6.2 Paasche’s generalisation of Moessner’s theorem

I know also that formal calculation is not a spectator sport: 〈. . .〉

Making Formality Work For Us—Roland Backhouse

Now, what changes when the size of the triangles increases by i>0? In this case,
the input vector must additionally be padded with i zeros to fit the size of the
next triangle, for instance, (1 3 3 1) becomes (0 · · · 0 1 3 3 1). In other words, the
polynomial must be multiplied by id i . Lifting multiplication to functions,

f ∗ g = λx → f x ∗ g x ,

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 17

a ‘generalised triangle transformation’ is captured by step i where i is the in-
crease in size.

step :: Z→ (Z→ Z)→ (Z→ Z)
step i f = (id i ∗ f) « 1

Finally, Paasche’s process is the partial ‘forward composition’ of the step i func-
tions idiomatically applied to the initial polynomial id0 idiomatically applied to
the constant 0.

paasche :: Stream Z→ Stream Z
paasche d = tail (scanr (·) id (map step d) � pure id0 � pure 0)

The tail discards the value of the initial polynomial, which is not part of the
resulting sequence. A truly functional approach: a stream of 2nd-order functions
is transformed into a stream of 1st-order functions, which in turn is transformed
to a stream of numbers.

It remains to show that paasche d = nat ′ ^̂ d . We start off with some routine
calculations manipulating the scan.

scanr (·) id (map step d) � pure id0

= { idiom interchange }
pure ($ id0) � scanr (·) id (map step d)

= { scan fusion: h g = g id0 }
scanr ($) id0 (map step d)

= { scan functor fusion: h = step and (f $) = f }
scanr step id0 d

= { definition of step }
scanr (λi g → (id i ∗ g) « 1) id0 d

= { (f ∗ g) « k = (f « k) ∗ (g « k) }
scanr (λi g → (id i « 1) ∗ (g « 1)) id0 d

= { id0 = id0 « 1 and scan functor fusion: h i = id i « 1 }
scanr (λf g → f ∗ (g « 1)) (id0 « 1) (map (λi → id i « 1) d)

= { definition of scanr1 }
scanr1 (λf g → f ∗ (g « 1)) (map (λi → id i « 1) (0 ≺ d))

How can we make further progress? Let’s introduce a new operator for
scanr1 ’s first argument,

f / g = f ∗ (g « 1) ,

and let’s investigate what happens when we nest invocations of / (recall that
scanr1 arranges the elements in reverse order).

f2 / (f1 / f0)

18 Ralf Hinze

= { definition of / }
f2 ∗ (f1 ∗ f0 « 1) « 1

= { (f ∗ g) « k = (f « k) ∗ (g « k) }
f2 ∗ f1 « 1 ∗ (f0 « 1) « 1

= { f = f « 0 and (f « i) « j = f « (i + j) }
f2 « 0 ∗ f1 « 1 ∗ f0 « 2

The scan corresponds to a convolution! Let s ./ t = convolute («) (∗) s t , then

scanr1 (/) s = s ./ t where t = 0 ≺ t + pure 1 . (2)

In our case, t equals nat . The relation, however, holds for arbitrary operators
that satisfy the three laws: (a1∗a2)«b = (a1«b)∗(a2«b), (a«b1)«b2 = a«(b1+b2)
and a « 0 = a (see also convolution distributivity 1). In general, if (A,+, 0) is a
monoid and 1 an element of A, then t is the so-called sequence of ‘powers’ of 1.

Turning to the proof of equation (2), we show that s./t satisfies x = head s ≺
tail s / x , the recursion equation of scanr1 (/) s.

s ./ t
= { definition of ./ and definition of t }

head s « 0 ≺ tail s « 0 ∗ s ./ (t + pure 1)
= { a « 0 = a }

head s ≺ tail s ∗ s ./ (t + pure 1)
= { convolution distributivity 1: s ./ (t + pure 1) = (s ./ t) « pure 1 }

head s ≺ tail s ∗ (s ./ t) « pure 1
= { definition of / }

head s ≺ tail s / (s ./ t)

By rewriting the scan as a convolution we can complete the proof of Moess-
ner’s theorem—the remaining steps are again mostly routine calculations. Let
e = 0 ≺ d , then

scanr1 (λf g → f ∗ (g « 1)) (map (λi → id i « 1) e) � pure 0
= { equation (2) }

convolute («) (∗) (map (λi → id i « 1) e) nat � pure 0
= { convolution functor fusion: h i = id i « 1 and k = id }

convolute (λi n → (id i « 1) «n) (∗) e nat � pure 0
= { (f « i) « j = f « (i + j) }

convolute (λi n → id i « (1 + n)) (∗) e nat � pure 0
= { convolution functor fusion: h = id and k n = 1 + n }

convolute (λi n → id i «n) (∗) e nat ′ � pure 0
= { idiom interchange }

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 19

pure ($ 0) � convolute (λi n → id i «n) (∗) e nat ′

= { convolution fusion: h g = g 0 and h (id i « n) = n ^ i }
convolute (λi n → n ^ i) (∗) e nat ′

= { convolution flip }
convolute (^) (∗) nat ′ e

= { definition of convolute and ^̂ }
1 ≺ nat ′ ^̂ d .

This completes the proof.

7 Related work

The tale of Moessner’s theorem In a one-page note, Moessner conjectured what
is now known as Moessner’s theorem [1]. The conjecture was proven in the sub-
sequent note by Perron [5]. The proof mainly manipulates binomial coefficients.
A year later, Paasche generalised Moessner’s process to non-decreasing intervals
[4, 16], while Salié considered an arbitrary start sequence [6]. Paasche’s proof of
the general theorem builds on the theory of generating functions and is quite
intricate—the generating functions are in fact the ‘reversals’ of the polynomials
considered in this paper. A snappier, but less revealing proof of the original the-
orem can be found in the textbook “Concrete mathematics” [3, Ex. 7.54]. Van
Yzeren observed that Moessner’s theorem can be looked upon as a consequence
of Horner’s algorithm for evaluating polynomials [17]. His idea of viewing the
diagonals as coefficients of polynomials is at the heart of the development in
Section 6. Inspired by Moessner’s process, Long generalised Pascal’s triangle,
which he then used to prove Salié’s theorem [14]. The same author also wrote
a more leisurely exposition of the subject [18]. The paper hints at the relation-
ship between the sequence of deleted positions and the sequence obtained by
Moessner’s generalised process formalised in Section 5.

Scans and convolutions To the best of the author’s knowledge the material on
scans and convolutions is original. Of course, there are several papers, most
notably [19–23], that deal with special instances of the combinators, with sums
and the convolution product, in particular.

8 Conclusion

Moessner’s theorem and its generalisation nicely illustrate scans and convolu-
tions. Though the theorems are number-theoretic, programming language the-
ory provides a fresh view leading to snappier statements and more structured
proofs. While scans are well-known, convolutions are under-appreciated; I think
they deserve to be better known. Liberating scans and convolutions from their
number-theoretic origins seems to be worthwhile: by turning them into poly-
morphic combinators, we literally obtain theorems for free [12]. Even though

20 Ralf Hinze

we don’t rely on parametricity for the proofs, we use parametricity as a guid-
ing principle for formulating fusion laws. Of equal importance are distributive
laws: convolution distributivity, for instance, allowed us to rewrite a scan as a
convolution, a central step in the proof of Moessner’s theorem.

All in all a nice little theory for an intriguing theorem. I hope to see further
applications of scans and convolutions in the future.

Acknowledgements

Special thanks are due to Roland Backhouse for posing the challenge to prove
Moessner’s theorem within stream calculus. Furthermore, a big thank you to
Daniel James for improving my English. Thanks are finally due to the anonymous
referees for pointing out several presentational problems.

References

1. Moessner, A.: Eine Bemerkung über die Potenzen der natürlichen Zahlen. Aus den
Sitzungsberichten der Bayerischen Akademie der Wissenschaften, Mathematisch-
naturwissenschaftliche Klasse 1951 Nr. 3 (March 1951) 29

2. Sloane, N.J.A.: The on-line encyclopedia of integer sequences http://www.
research.att.com/~njas/sequences/.

3. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. 2nd edn.
Addison-Wesley Publishing Company, Reading, Massachusetts (1994)

4. Paasche, I.: Ein neuer Beweis des Moessnerschen Satzes. Aus den Sit-
zungsberichten der Bayerischen Akademie der Wissenschaften, Mathematisch-
naturwissenschaftliche Klasse 1952 Nr. 1 (February 1952) 1–5

5. Perron, O.: Beweis des Moessnerschen Satzes. Aus den Sitzungsberichten der
Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche
Klasse 1951 Nr. 4 (May 1951) 31–34

6. Salié, H.: Bemerkung zu einem Satz von Moessner. Aus den Sitzungsberichten der
Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche
Klasse 1952 Nr. 2 (February 1952) 7–11

7. Hinze, R.: Functional pearl: Streams and unique fixed points. In Thiemann, P.,
ed.: Proceedings of the 2008 International Conference on Functional Programming,
ACM Press (September 2008) 189–200

8. Aczel, P., Mendler, N.: A final coalgebra theorem. In Pitt, D., Rydeheard, D.,
Dybjer, P., Poigné, A., eds.: Category Theory and Computer Science (Manchester).
Volume 389 of Lecture Notes in Computer Science., Berlin, Springer-Verlag (1989)
357–365

9. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press
(2003)

10. Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous algebras.
Technical Report CS-R9104, Centre of Mathematics and Computer Science, CWI,
Amsterdam (January 1991)

11. McBride, C., Paterson, R.: Functional pearl: Applicative programming with effects.
Journal of Functional Programming 18(1) (2008) 1–13

12. Wadler, P.: Theorems for free! In: The Fourth International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), London,
UK, Addison-Wesley Publishing Company (September 1989) 347–359

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 21

13. Hinze, R., Löh, A.: Guide2lhs2tex (for version 1.14) (October 2008) http:
//people.cs.uu.nl/andres/lhs2tex/.

14. Long, C.: On the Moessner theorem on integral powers. The American Mathe-
matical Monthly 73(8) (October 1966) 846–851

15. Backhouse, R.: The capacity-C torch problem. In Audebaud, P., Paulin-Mohring,
C., eds.: 9th International Conference on Mathematics of Program Construction
(MPC ’08). Volume 5133 of Lecture Notes in Computer Science., Springer-Verlag
(July 2008) 57–78

16. Paasche, I.: Eine Verallgemeinerung des Moessnerschen Satzes. Compositio Math-
ematica 12 (1954) 263–270

17. van Yzeren, J.: A note on an additive property of natural numbers. The American
Mathematical Monthly 66(1) (January 1959) 53–54

18. Long, C.T.: Strike it out: Add it up. The Mathematical Gazette 66(438) (December
1982) 273–277

19. Karczmarczuk, J.: Generating power of lazy semantics. Theoretical Computer
Science (187) (1997) 203–219

20. McIlroy, M.D.: Power series, power serious. J. Functional Programming 3(9) (May
1999) 325–337

21. McIlroy, M.D.: The music of streams. Information Processing Letters (77) (2001)
189–195

22. Rutten, J.: Fundamental study — Behavioural differential equations: a coinductive
calculus of streams, automata, and power series. Theoretical Computer Science
(308) (2003) 1–53

23. Rutten, J.: A coinductive calculus of streams. Math. Struct. in Comp. Science
(15) (2005) 93–147

A Proofs

Most of the proofs have been relegated to this appendix as not to disturb the
flow. For conciseness, we abbreviate head s by s0 and tail s by s ′. Furthermore,
s1 is shorthand for head (tail s) and s ′′ for tail (tail s) and so forth.

Several proofs establish the equality of two streams by showing that they
satisfy the same recursion equation. These proofs are laid out as follows.

s
= { why? }
ϕ s

⊂ { x = ϕ x has a unique solution }
ϕ t

= { why? }
t

The symbol ⊂ is meant to suggest a link connecting the upper and the lower
part; the recursion equation is given within the curly braces (below we omit the
“has a unique solution” blurb for reasons of space). When reading ⊂-proofs, it
is easiest to start at both ends working towards the link. Each part follows a
typical pattern: starting with e we unfold the definitions obtaining e1 ≺ e2; then
we try to express e2 in terms of e.

22 Ralf Hinze

Scan functor fusion We show that scanr (~) e (pure h �s) satisfies x = e ≺ s⊕x ,
the recursion equation of scanr (⊕) e s.

scanr (~) e (pure h � s)
= { definition of scanr }

e ≺ (pure h � s)~ scanr (~) e (pure h � s)
= { assumption: h a ~ b = a ⊕ b }

e ≺ s ⊕ scanr (~) e (pure h � s)

Scan flip The straightforward proof is left as an exercise to the reader.

Equality of left and right convolution We have noted in Section 4 that there
are at least three different ways to define a convolution (here we fix the two
operators · and +).

s n t = s0 · t0 ≺ map (· t0) s ′ + s n t ′

s ./ t = s0 · t0 ≺ s1 · t0 + s0 · t1 ≺ map (· t0) s ′′ + s ′ ./ t ′ + map (s0 ·) t ′′

s o t = s0 · t0 ≺ s ′ o t + map (s0 ·) t ′

In general they yield different results. However, if + is associative, then n =
./ = o. To establish this equality, we first show the shifting lemma:

map (· t0) s ′ + s ./ t ′ = s ′ ./ t + map (s0 ·) t ′ .

Let f s t = map (·t0) s ′ + s ./ t ′ and g s t = s ′ ./ t + map (s0·) t ′, then

f s t
= { definition of f }

map (· t0) s ′ + s ./ t ′

= { definition of ./ and + }
s1 · t0 + s0 · t1 ≺ s2 · t0 + (s1 · t1 + s0 · t2)
≺ map (· t0) s ′′′ + (map (· t1) s ′′ + s ′ ./ t ′′ + map (s0 ·) t ′′′)

= { + is associative and definition of f }
s1 · t0 + s0 · t1 ≺ s2 · t0 + s1 · t1 + s0 · t2
≺ map (· t0) s ′′′ + f s ′ t ′ + map (s0 ·) t ′′′

⊂ { x s t = · · · ≺ map (·t0) s ′′′ + x s ′ t ′ + map (s0·) t ′′′ }
s1 · t0 + s0 · t1 ≺ s2 · t0 + s1 · t1 + s0 · t2
≺ map (· t0) s ′′′ + g s ′ t ′ + map (s0 ·) t ′′′

= { + is associative and definition of g }
s1 · t0 + s0 · t1 ≺ (s2 · t0 + s1 · t1) + s0 · t2
≺ (map (· t0) s ′′′ + s ′′ ./ t ′ + map (s1 ·) t ′′) + map (s0 ·) t ′′′

= { definition of ./ and + }

Scans and Convolutions—A Calculational Proof of Moessner’s Theorem 23

s ′ ./ t + map (s0 ·) t ′

= { definition of g }
g s t .

Next we show that ./ satisfies the recursion equation of o.

s ./ t
= { definition of ./ }

s0 · t0 ≺ s1 · t0 + s0 · t1 ≺ map (· t0) s ′′ + s ′ ./ t ′ + map (s0 ·) t ′′

= { shifting lemma }
s0 · t0 ≺ s1 · t0 + s0 · t1 ≺ s ′′ ./ t + map (s1 ·) t ′ + map (s0 ·) t ′′

⊂ { x s t = · · · ≺ · · · ≺ x s ′′ t + map (s1·) t ′ + map (s0·) t ′′ }
s0 · t0 ≺ s1 · t0 + s0 · t1 ≺ s ′′ o t + map (s1 ·) t ′ + map (s0 ·) t ′′

= { definition of o and + }
s0 · t0 ≺ s ′ o t + map (s0 ·) t ′

= { definition of o }
s o t

An analogous argument shows that ./ satisfies the recursion equation of n, which
completes the proof.

Convolution fusion We show that s n t = pure h � convolute (~) (⊕) s t satisfies
x s t = s0�t0 ≺ (s ′�pure t0)�x s t ′, the defining equation of convolute (�) (�) s t .

pure h � (s n t)
= { definition of n and � }

h (s0~ t0) ≺ pure h � (s ′~ pure t0 ⊕ s n t ′)
= { assumption: h (c1 ⊕ c2) = h c1 � h c2 and h (a ~ b) = a � b }

(s0 � t0) ≺ s ′ � pure t0 � pure h � (s n t ′)

Convolution functor fusion We demonstrate that the left convolution s n t =
convolute (~) (⊕) (pure h � s) (pure k � t) satisfies x s t = s0 � t0 ≺ (s ′ �pure t0)⊕
x s t ′, the recursion equation of convolute (�) (⊕) s t .

(pure h � s) n (pure k � t)
= { definition of n and � }

(h s0~ k t0) ≺ (pure h � s ′~ pure (k t0)) ⊕ ((pure h � s) n (pure k � t ′))
= { idiom laws and assumption: h a ~ k b = a � b }

(s0 � t0) ≺ (s ′ � pure t0) ⊕ ((pure h � s) n (pure k � t ′))

Convolution flip Again, we leave the straightforward proof as an exercise.

24 Ralf Hinze

Convolution distributivity 1 This law is, in fact, a simple application of the two
fusion laws.

(c � s) ./ t
= { definition of ./ }

convolute (~) (⊕) (c � s) t
= { functor fusion: h a = c � a and k = id }

convolute (λa b → (c � a)~ b) (⊕) s t
= { fusion: h x = c ~ x , c ~ (c1 ⊕ c2) = (c ~ c1)⊕ (c ~ c2) and

c ~ (a ~ b) = (c � a)~ b by assumption }
c~ convolute (~) (⊕) s t

= { definition of ./ }
c~ (s ./ t)

Convolution distributivity 2 This law can be shown using the unique-fixed-point
principle.

(s � t) ./ u
= { definition of ./ and � }

(s0 � t0)~ u0 ≺ ((s ′ � t ′)~ pure u0) ⊕ (s � t) ./ u ′

= { assumption: (a1 � a2)~ b = (a1 ~ b)⊕ (a2 ~ b) }
(s0~ u0 ⊕ t0~ u0) ≺ (s ′~ pure u0 ⊕ t ′~ pure u0) ⊕ (s � t) ./ u ′

⊂ { x s t u = · · · ≺ (s ′ ~ pure u0 ⊕ t ′ ~ pure u0)⊕ x s t u ′ }
(s0~ u0 ⊕ t0~ u0) ≺ (s ′~ pure u0 ⊕ t ′~ pure u0) ⊕ (s ./ u ′) ⊕ (t ./ u ′)

= { assumption: ⊕ is associative and commutative }
(s0~ u0 ⊕ t0~ u0) ≺ (s ′~ pure u0 ⊕ s ./ u ′) ⊕ (t ′~ pure u0 ⊕ t ./ u ′)

= { definition of ⊕ }
(s0~ u0 ≺ s ′~ pure u0 ⊕ s ./ u ′) ⊕ (t0~ u0 ≺ t ′~ pure u0 ⊕ t ./ u ′)

= { definition of ./ }
(s ./ u) ⊕ (t ./ u)

Convolution distributivity 3 Let t = scanr (�) n s, we show that t ./ u satisfies
x = e ≺ (s ./ u)⊕ x , the recursion equation of scanr (⊕) e (s ./ u).

t ./ u
= { definition of scanr and ./ }

n ~ u0 ≺ (s � t) ./ u ⊕ pure n ~ u ′

= { assumption: n ~ b = e and a ⊕ e = a }
e ≺ (s � t) ./ u

= { convolution distributivity 2 }
e ≺ (s ./ u) ⊕ (t ./ u)

