Theory and Practice of Fusion

Ralf Hinze, Thomas Harper, and Daniel W. H. James

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze,tom.harper,daniel. james@comlab.ox.ac.uk

Abstract. There are a number of approaches for eliminating intermedi-
ate data structures in functional programs—this elimination is commonly
known as fusion. Existing fusion strategies are built upon various, but
related, recursion schemes, such as folds and unfolds. We use the concept
of recursive coalgebras as a unifying theoretical and notational framework
to explore the foundations of these fusion techniques. We first introduce
the calculational properties of recursive coalgebras and demonstrate their
use with proofs and derivations in a calculational style, then provide an
overview of fusion techniques by bringing them together in this setting.
We also showcase these developments with examples in Haskell.

1 Introduction

Functional programmers love modular programs. It is easy for them to create
clear, concise, and reusable code by composing functions. Consider the following
Haskell program as an example:

I+ (Integer, Integer) — Integer
f = sum - map sq - filter odd - between .

The program takes a pair of integers representing an interval and returns the
sum of the squared odd integers in this interval. We have expressed this a compo-
sition of four functions: between generates an enumeration between two natural
numbers as a list, filter odd removes any even numbers, map sq squares the re-
maining (odd) numbers, and sum adds them together. Unfortunately, the clarity
of this program comes at a cost. The constituent functions of this program com-
municate with each other using intermediate data structures, the production and
immediate consumption of which carries an obvious performance penalty. Yet,
because these definitions are recursive, eliminating the need for these transient
structures is beyond the reach of a typical compiler.

Nonetheless, such a transformation is possible. We can manually construct a
program that is equivalent to f, but without the intermediate data structures

f'(m,n)=gom
wheregom |m>n =0
| otherwise = go (m + 1) + if odd m then sq melse0 .

2 Ralf Hinze, Thomas Harper, and Daniel W. H. James

This new program has lost the desirable qualities of the original—our concise,
modular and declarative code has been hammered into a long, opaque and spe-
cialised function. In doing so, however, we have accomplished our goal of remov-
ing the intermediate data structures by transforming the numerous recursive
traversals into a single one. This process is called fusion.

Fusing programs by hand quickly becomes infeasible for those of non-trivial
length. Furthermore, it can be difficult to manually pinpoint all the opportunities
for fusion. Instead, such a transformation should be performed automatically.
Difficulties arise, however, in automatically fusing functions defined using general
recursion. Specifically, such transformations often have proof obligations that
cannot be discharged by the compiler.

One remedy is to standardise the way data structures are produced or con-
sumed by encapsulating the recursion scheme in a higher-order function. The ar-
guments to these functions are the non-recursive ‘steps’. Simple syntactic trans-
formations can then fuse many recursive traversals into a single one, and then
non-recursive steps can be optimised using conventional methods. This approach
is known as shortcut fusion. Different incarnations of this technique utilise dif-
ferent recursion schemes, e.g. folds for consumers or unfolds for producers. The
steps of such a scheme are known as algebras or coalgebras, respectively.

The implementation of these fusion techniques is usually described syntacti-
cally, by giving a definition of the production and consumption combinators and
accompanying rewrite rules. This alone does not really explain the underlying
fusion mechanism. Furthermore, it is difficult to construct correctness proofs,
or relate various fusion approaches to one another, despite the fact that such
close relations exist. In this paper, we move fusion to a clearer setting, where
the syntactic details of fusion fall away.

Category theory provides the tools we need to tackle the semantics of the
recursion schemes. While some fusion techniques have been individually given
this treatment before, our focus is to bring them all under one roof. In this paper,
we propose using recursive coalgebras as that roof. We will show how recursive
coalgebras enable us to explain the fusion rules underlying the various fusion
techniques and give short, simple proofs of correctness.

Some proofs and source code examples have been elided from this paper.
Any reader who desires further material should consult the associated technical
report [10].

2 Background: Algebras and Coalgebras

The category theory concept of an initial algebra is key in the theory of func-
tional programming languages, specifically for giving a semantics to recursive
datatypes [15]. The remainder of this section will refresh the salient details. For
the more functional-programming-minded reader, we will parallel these develop-
ments with examples in Haskell, where possible.

Let F : C — C be a functor. An F-algebra is a pair (a, A) consisting of an ob-
ject A:C and an arrow a : FA — A : C. An F-algebra homomorphism between

Theory and Practice of Fusion 3

algebras (a, A) and (b, B) is an arrow h : A — B : C such that h-a = b-Fh.
The fact that functors preserve identity and composition entails that identity is
a homomorphism and that homomorphisms compose. Consequently, F-algebras
and their homomorphisms form a category, called Alg(F). We abbreviate a ho-
momorphism, & : (a, 4) — (b, B) : Alg(F), by h: a — b : Alg(F) if the objects
are obvious from the context, or simply by h : a — b if the functor F is also
obvious.

In Haskell, we model a functor as a datatype whose constructors describe its
action on data (i.e. objects). Its action on arrows is defined by making that data
type an instance of the Functor typeclass

class Functor f where
fmap : (a—b) — (fa—fb) .

We can then simply treat the concept of an F-algebra as a function, where F is a
datatype that is an instance of the Functor class. The F-algebra (a, A) is simply a
function @ : FA — A. An F-algebra homomorphism between ¢ and b : FB — B
is a function h : A — B that satisfies the side condition h - ¢ = b - fmap h. This
property cannot, however, be deduced from the type and must be checked by
the programmer.

If the category Alg(F) has an initial object, then we call it (in, uF). Initiality
means that there is a unique arrow from (in, uF) to any other F-algebra (a, A).
This arrow, called fold, is written (a) : in — a. We construct elements of
uF using in and deconstruct them using (al). We can think of (a) : in — a
as replacing constructors by functions, represented by the algebras in and a,
respectively. Initiality is captured by the uniqueness property of folds:!

h=(a) <= h:in—a <<= h-in=a-Fh. (1)

It is important to note that we have omitted the quantification of the names that
appear in property (1); we have done so for presentational succinctness and we
will continue in this manner. In this case we will spell out implicit quantification:
the uniqueness property holds for all functors F, where the category Alg(F) has
an initial object named (in,uF), and for all F-algebras (a, A), and for all F-
algebra homomorphisms A : in — a.

This property provides us with a general definition of (—) in Haskell. First,
we define the p datatype, which takes a functor to its least fixed point:

datapf = in {out : f (uf)}

The constructor in allows us to construct a structure of type uf out of something
of type f (uf) and out deconstructs it. The relationship between in and out in
our setting is discussed further in Sections 3 and 4.

! The formula P <= Q <= R has to be read conjunctively as P < Q A Q < R.
Likewise, P <= @ <= R is shorthand for P <— Q A Q < R.

4 Ralf Hinze, Thomas Harper, and Daniel W. H. James

We can define (—|) as a higher-order function that takes an algebra f a — a
and returns a function puf — a , according to the uniqueness property:

(=D : (Functor) = (f & — a) — (uf — a)
(a) = a - fmap (a) - out

By allowing us to substitute (a]) for h, we see that the uniqueness property
provides us with a definition of (—|) that recursively replaces occurrences of in
by some algebra a. The placement of the recursive call for a given structure uf
is determined by the definition fmap.

We will not employ the uniqueness property in an example proof just yet. In
fact the uniqueness property is rarely used in its raw form; instead, there are a
number of specific forms that we will introduce now.

If we set h to the identity id and a to the initial algebra in, then we obtain
the reflection law: (in]) = id. If we substitute the left-hand side into the right-
hand side, then we obtain the computation law: (a) : in — a, or expressed in
terms of the base category, (a) - in = a - F (a).

The most important consequence of the uniqueness property is the fusion
law for fusing an arrow with a fold to form a new fold.

h-(a)=(b) <= h:a—b < h-a=b-Fh (2)

As its name would suggest, the fusion law is closely related to the program trans-
formation techniques described in the introduction. It allows a fold to absorb a
function on its left, thereby producing a single fold. The law also shows the dif-
ficulty of mechanising this process; in order to produce the fused program, we
must invent a new algebra b that satisfies the precondition.

Folds enjoy an additional fusion law. Whereas fusion allows us to absorb an
additional function on the left, the functor fusion law allows us to absorb a
function on the right. In order to formulate it, we have to turn u into a higher-
order functor of type C® — C. The object part of this functor maps a functor
to its initial algebra. (This is only well-defined for functors that have an initial
algebra.) The arrow part maps a natural transformation « : F = G to an arrow
pe s pF — pG o C. Tt is defined as pa = (in - a (uF)). To reduce clutter, we
will henceforth omit the argument of the natural transformation «. From these
definitions we obtain the functor fusion law (we have annotated (—| with the
underlying functors):

(b) - o = (b-ae . 3)

It states that a fold after a map can be fused into a single fold — the map pa
can be seen as a “base changer”.

We can also provide a Haskell definition of i as a functor. The action on data
is given by its datatype declaration. The action on functions is given by:

u—: (Functor) = (a . f a — g a) — (uf — ug)
pa = (in - a)

Note that we use a rank-2 polymorphic type to express the idea that p maps
natural transformation from f to g to a function between their fixpoints.

Theory and Practice of Fusion 5

Finally, the initial algebra pF is the least fixed point of F — this is known
as Lambek’s Lemma [13]. One direction of the isomorphism F (uF) = uF is
given by in, its inverse is in® = (Fin|). Lambek’s Lemma is the key to giving
a semantics to recursively defined datatypes. To illustrate this, the recursive
definition of lists of natural numbers

dataList = Nil | Cons (N, List)

implicitly defines an underlying functor LX = 1 + N x X, the so-called base
functor of List. (This notation is a categorical rendering of sum-of-products al-
gebraic datatypes, and defines a functor L with an argument X, where 1 denotes
the terminal object of the underlying category.) Since the initial object uL sat-
isfies the equation X = L X, we can use it to assign meaning to the recursive
datatype definition. (As an aside, the fold of the List datatype is a specialisation
of Haskell’s library function foldr.)

The initial F-algebra is the least solution of the equation X = F X. If we
dualise the development above, we obtain another canonical solution, namely
the greatest one. In category theory, dualisation is denoted by the prefix “co-"

An F-coalgebra is a pair (C, ¢) consisting of an object C': C and an arrow
¢: C —FC:C. An F-coalgebra homomorphism between coalgebras (C, ¢) and
(D,d) is an arrow h : ¢ — D : C such that Fh - ¢ = d - h. Coalgebras and
coalgebra homomorphisms also form a category, called Coalg(F). The dual of
the initial algebra is the final coalgebra, whose carrier vF is the greatest fixed
point of F. Finality means that, for any other coalgebra, there is a unique arrow
from it to the final coalgebra. Whereas a fold consumes a data structure, an
unfold produces some data structure from a given seed.

Unfortunately, least and greatest fixed points are different beasts in general.
In the category Set of sets and total functions, uL is the set of finite lists,
whereas vL also contains infinite lists. This means that folds and unfolds are
incompatible, in general. In the following section, we will focus on a restricted
species of coalgebras, enabling us to work with folds and unfolds under the same
roof.

3 Recursive Coalgebras

In this section we will introduce recursive coalgebras. We follow the work of
Capretta et al. [2], who motivate the use of hylomorphisms based on recursive
coalgebras as a structured recursion scheme. We shall continue to parallel our
developments with examples in Haskell.

A coalgebra (C, ¢) is called recursive if for every algebra (a, A) the equation
in the unknown h: A «— C,

h = a-Fh-c, (4)

has a unique solution. The equation captures divide-and-conquer: a problem is
divided into sub-problems (¢), the sub-problems are solved recursively (F k), and
finally the sub-solutions are combined into a single solution (). The uniquely

6 Ralf Hinze, Thomas Harper, and Daniel W. H. James

defined function h is called a hylomorphism or hylo for short and is written
(a < ¢)g : A« C. The notation is meant to suggest that h takes a coalgebra
to an algebra. We omit the subscripted functor name if it is obvious from the
context. Uniqueness of h is captured by the following property.

h=(a—¢) <= h=a-Fh-c (5)

In Haskell, (— <+ —) becomes a function that takes an algebra and a recursive
coalgebra (which, dual to algebras, is a function of type ¢ — f ¢) as arguments
and returns resulting hylo according to the definition in the universal property:

(—— =) : (Functorf) = (fa—a) = (c = fc)— (c—a)
la —c)=a-fmap(a<—c) - c .

This function takes an algebra and a recursive coalgebra, yielding a hylo. Note
that the type of this function does not guarantee that c is a recursive coalgebra
and therefore does not guarantee that the resulting hylo has a unique solution;
the programmer needs to discharge this obligation by some other means.

The category of recursive coalgebras and coalgebra homomorphisms forms a
full subcategory of Coalg(F), called Rec(F). If the latter category has a final
object (F, out), then there is a unique arrow from any other recursive coalgebra
(C, c¢) to (F, out). This arrow, called unfold, is written [[c) : ¢ — out. Finality is
captured by the following uniqueness property.

h=[c] <= h:c—out <= Fh-c=out-h (6)

This is the usual property of unfolds, except that we are working in the category
Rec(F), not Coalg(F). As with folds, we can draw out a Haskell definition of
unfolds from the uniqueness property:

[-1: (Functor f) = (c — [&) = (c = uf)
[c)] =in - fmap[c) - c .

In contrast to folds, we are creating a structure of type uf from a seed value.
The recursion, similarly, is determined by the form of the underlying functor f
through the use of fmap. The uniqueness property for unfolds, like the one for
folds, implies the reflection law, [out) = id, the computation law, F[(c) - ¢ =
out -[¢), and the fusion law:

(cJ=[d)-h < h:c—d < Fh-c=d-h. (7)

The definition of a hylomorphism does not assume that the initial F-algebra
exists. The powerset functor, for instance, admits no fixed points. However, if
the initial algebra exists, then it coincides with the final recursive coalgebra and,
furthermore, folds and unfolds emerge as special cases of hylos. We can state this
more formally:

Theorem 1. Initial F-algebras and final recursive F-coalgebras coincide: (1) If
(C, out) is the final recursive F-coalgebra, then (out®, C) is the initial F-algebra.
Furthermore, (a) = (a «— out). (2) If {(in, A) is the initial F-algebra, then
(A, in°) is the final recursive F-coalgebra. Furthermore, [¢] = (in < c).

Theory and Practice of Fusion 7

Theorem 1 allows us to treat folds and unfolds in the same setting—mnote that
an unfold produces an element of an initial algebra! An alternative is to work in
a setting where puF and vF coincide; an algebraically compact category is such
a setting [8]. Haskell’s ambient category Cpo | serves as the standard example.
This is the usual approach [7], however, the downside is that the hylo equation (4)
only has a canonical, least solution, not a unique solution, so (5) does not hold.

4 Calculational Properties

In this section we will cover the calculational properties of our hylomorphisms.
In a similar fashion to folds and unfolds, hylomorphisms have an identity law and
a computation law, and they follow similarly from the uniqueness property (5).

Identity law Setting h := id, we obtain the identity law
la—c)=id <= a-c=id . (8)

Computation law Substituting the left-hand side into the right-hand side gives
the computation law:

la—¢c) = a-Fla—c¢)-c. (9)
For hylomorphisms, we have three fusion laws: algebra fusion, coalgebra fusion,
and composition.

Algebra fusion An algebra homomorphism after a hylo can be fused to form
a single hylo.?
h-(a—c¢)=(b—¢c) <= h:a—b <<= h-a=0b-Fh (10)

For the proof we appeal to the uniqueness property and show that h - (a <« ¢|
satisfies the recursion equation of (b « c¢|). The obligation is discharged as
follows:

h-(a<c)

= { hylo computation (9) }
h-a-F(la—c¢)-c

= { assumption: h:a — b }
b-Fh-Fla<—¢)-c

= { F functor }
b-F(h-(a—c¢))-c .

Coalgebra fusion Dually, we can fuse a coalgebra homomorphism before a hylo
to form a single hylo.

la—c)=(a—d)-h <= h:c—d <= Fh-c=d-h (11)

2 Note that h appears as both an algebra homomorphism in Alg(F) and as the un-
derlying arrow in the underlying category.

8 Ralf Hinze, Thomas Harper, and Daniel W. H. James

Like the law, the proof is the dual of that for algebra fusion.

Composition law A composition of hylos can be merged into a single one if

the coalgebra of the hylo on the left inverts the algebra of the right hylo.
la—c)-(b—d)=(a—d) <<= <c¢-b=id (12)

Composition is, in fact, a simple consequence of algebra fusion as the hylomor-
phism (a < ¢) : b — a is simultaneously an F-algebra homomorphism.
(a—c)-b
= { hylo computation (9) }
a-Fla—c)-c-b
= { assumption: ¢- b =1id }
a-F(a+« ¢)
Alternatively, we can derive the composition law from coalgebra fusion by show-

ing that (b < d)) : d — ¢ is an F-coalgebra homomorphism. The composition
law, together with the next law, generalises the functor fusion law of folds.

Hylo shift law or base change law If we have a natural transformation
o : G- F, then
(a-aA—c)g = (a—aC- c)p . (13)

In fact, the statement can be strengthened: if ¢ is recursive, then a C - ¢ is
recursive, as well.
h=a-Fh-aC-c
<= { o natural }
h=a-aA-Gh-c
<= { uniqueness property of hylos (5) }
h={(a-aA—c)g

It is worth pointing out that the laws stated thus far are independent of the
existence of initial algebras. Only the following law makes this assumption.

Fold/unfold law A fold after an unfold is a hylo.
(a) -Le] = (a=c) (14)

From left to right we are performing fusion and thus deforesting an intermediate
data structure. From right to left we are turning a control structure into a data
structure. The fold/unfold law is a direct consequence of Theorem 1 and any of
the fusion laws.

5 Fusion

In the previous sections we have introduced the fusion laws that we will now
use to help us explain a collection of specific fusion techniques. We collectively

Theory and Practice of Fusion 9

brand these techniques shortcut fusion, as they share the common characteristic
of standardising the way data structures are recursively consumed and produced.
Where shortcut fusion techniques differ is in their choice of recursion scheme. By
using recursive coalgebras, we can clearly lay out and compare these approaches
within the same framework.? This allows us to examine the relationships among
these fusion approaches which are not readily apparent when examining their
individual implementations.

5.1 Warm-up: Type Functors

We have seen in §2 that p is a functor, whose action on arrows is defined po =
(in - a). Using Theorem 1 and the hylo shift law (13) we can actually express
pa as a fold, an unfold or a hylo.

pa = (in-a) = (in-a—out) = (in—a-out) = [a-out) .

In §5.5 we shall see a key use of p for stream fusion. For now, let us show a use
of v with the base functor of parametrized List

datalLab = Nil | Cons (a,b) .

This is a higher-order functor of type L : C — CC that takes objects to functors
and arrows to natural transformations. In Haskell, we can make this datatype
an instance of the Functor class:

instance Functor (L a) where
fmap f Nil = Nil
fmap f (Cons (a, b)) = Cons (a,f b) .

We define this instance for the functor obtained by applying L to some type
a. Haskell allows us to define this polymorphically for all a. The list datatype
defined in terms of its base functor is List A = u(L A). The parametric type List
is itself a functor, a so-called type functor, whose action on arrows is Haskell’s
map function, defined in this setting by List f = u(Lf). Note that p expects a
natural transformation and that L delivers one.

5.2 Generalised foldr/build Fusion

We now move on to the main target of our new setting: shortcut fusion. The
original shortcut fusion technique is a fold-centric approach called foldr/build
fusion [9]. As its name would suggest, its original intention was to provide fusion
for list functions written in terms of foldr and an additional combinator build.
In this section, we will explore the foundations of this technique.

The mother of all fusion rules is algebra fusion (10). It allows us to fuse a
hylo followed by an algebra homomorphism into a single hylo. It is similar to

3 Previously these recursion schemes were only compatible for analysis by restricting
the working category to one that is algebraically compact, such as Cpo| .

10 Ralf Hinze, Thomas Harper, and Daniel W. H. James

fold fusion in the sense that to use this law, we must construct a new algebra
that satisfies a pre-condition. To illustrate this, the pipeline sum - filter odd can
be expressed as a composition of two folds: (s) - (f). The algebras s and f are
given by

f: LN(u(LN)) = p(LN)

f Nil = in Nil s:LNN—N

f(Cons (z,y)) = if odd x s Nil =0
then in (Cons (z,y)) s(Cons(z,y))=z+y .
elsey

To be able to apply algebra fusion (10), we have to show that (s]) is an algebra
homomorphism from f to some unknown algebra sf. By hand, it is not hard to
derive sf so that (s) - f = sf - F (s).

sf: LNN - N
sf Nil =5 Nil
sf (Cons (z,y)) = if odd z thens (Cons (z,y)) else y

Since (s]) replaces in by s, we simply have to replace the occurrences of in in f
by s. While this is an easy task to perform by hand, it is potentially difficult to
mechanise as it requires analysis of the body of f; within it, the constructor in
could easily have any name and conversely any function could be named in. Also,
f could contain unrelated occurrences of in. This transformation is therefore not
purely syntactic, but also involves some further analysis of the source program;
this is not an approach we wish to pursue.

The central idea of foldr/build fusion is to expose in so that replacing it by
the algebra a is simple to implement. Consider fold fusion (2) again.

h-(a) =(0) <= h:a—b

A fold (—) is a transformation that takes an algebra to a homomorphism. Assume
that we have another such transformation, say, 8 that satisfies

h-Ba=0pb <= h:a—0b. (15)

The generalisation of foldr/build from lists to arbitrary datatypes, the so-called
acid rain rule [19], is then

(a) -Bin = Ba . (16)

Using 3 we expose in so that replacing in by a is achieved through a simple
function application. Instead of building a structure and then folding over it, we
eliminate the in and pass a directly to G. The proof of correctness is painless.

la) Bin=Fa
<= { assumption (15) }
(a) :in — a

But, have we made any progress? After all, before we can apply (16), we
have to prove (15). Fold satisfies this property, but this instance of (16) is trivial:

Theory and Practice of Fusion 11

(a)-(in) = (a]). Now, it turns out that in a relationally parametric programming
language [16], the proof obligation (15) amounts to the free theorem [21] of the
polymorphic type

B:VA.(FA— A)— (B— A) , (17)

where B is some fixed type. In other words, in such a language the proof obli-
gation can be discharged by the type checker.
Returning to our example, we redefine filter odd as (A a . (¢ a)) in where

¢:(LNb—b)— (LNb—b)
¢ a Nil = a Nil
¢ a(Cons (z,y)) = if odd x then a (Cons (z, y)) else y .

We derived ¢ from the algebra § by abstracting away from in. The reader should
convince herself that A a . (¢ a)) has indeed the desired polymorphic type (17).
We can then invoke the acid rain rule (16) to obtain

(s)-(Aa.(¢a))in=(Na.(pa))s=(¢s]) .

The example also shows that the actd rain rule is somewhat unstructured
in that a hylo is hidden inside the abstraction A a. Without performing an ad-
ditional beta-reduction, we can apply the rule only once. We obtain a more
structured rule if we shift the abstraction to the algebra and achieve cata-hylo
fusion: If T is a transformation that takes F-algebras to G-algebras satisfying

h:ta—71b:Alg(G) <= h:a—b:AlgF), (18)
then
(a)g-(Tin —c)g = (Ta—c)g - (19)

If 7is Aa . a, then this is just the fold/unfold law (14). For 7a = a - , this is
essentially functor fusion (3). The proof of correctness is straightforward.

(a)e - (min — c)g = (Ta —c)g
= { algebra fusion (10) }
(a)g:T7in — 7 a: Alg(G)
= { assumption (18) }
(a)g : in — a: Alg(F)
The proof obligation (18) once again amounts to a theorem for free, this time of
the polymorphic type
T:VA.(FA—A)— (GA— A) .

Using cata-hylo fusion, the running example simplifies to

(s) - (@ in) = (s)

We can now also fuse a composition of folds:

(a) - (rin) ... - (mnin) ()= ((n ... -T1)a —¢) .

12 Ralf Hinze, Thomas Harper, and Daniel W. H. James

This demonstrates how the rewrite rule is able to achieve fusion over an entire
pipeline of functions.

5.3 Generalised destroy/unfoldr Fusion

The foldr/build brand of shortcut fusion, and its generalisation to algebraic
datatypes, is fold-centric. This limits the kind of functions that we can fuse,
simply because some functions such as zip or take are not folds, or are not
naturally written as folds. We can dualise foldr/build fusion to achieve an unfold-
centric approach, called destroy/unfoldr [18]. To illustrate, consider the simple
pipeline take 5 - between, where take n takes n elements (if available) from a list.
It can be written as an unfold after an initialisation step: take n = [[t]) - start n,
where start n = (A1l . (n,1)), and where the coalgebra t is given by

typeStatea = (N, a)

t: State (u(L a)) — L a (State (u(L a)))

t(0,) = Nil

t(n+1,z) = case out z of Nil — Nil; Cons (a,y) — Cons (a,(n,y)) .

Here we make explicit the notion that an unfold models the steps of a stateful
computation. The coalgebra takes a state as an argument and uses it to produce
a value and a new state. In this example, the state type pairs the input list with
a natural number, enabling us to track the overall number of values produced.
The number of elements to take, paired with the list where the values are to be
taken from, forms the initial state.

We can dualise the acid rain rule to fuse the pipeline. If § is a transformation
that satisfies

Bc=Bd-h < h:c—d, (20)
then
Be = Pout-[c] . (21)

Previously we exposed in, now we expose out. To apply the dual of acid rain we
redefine take n as (A c . [y ¢)]- start n) out, where

v:(c—Lac)— (Statec — L a (Statec))
v (0,z) = Nil
v ¢ (n,z) = case ¢z of Nil — Nil; Cons (a,y) — Cons (a,(n —1,y)) .

The transformation «y is derived from t by abstracting away from out. We can
now tackle our example:

(Ae . [y c)- start5) out - [b) = (Ac . [y c)]- start5) b =[yb) - start5 .
The proof obligation (20) corresponds to the free theorem of
g:vC.(C—-FC)—(C— D), (22)

Theory and Practice of Fusion 13

where D is fixed. And, indeed, X ¢ . [y ¢) - start 5 has the required type.

Similarly, we can dualise our more structured cata-hylo fusion to achieve
hylo-ana fusion: If 7 is a transformation that takes recursive F-coalgebras to
recursive G-coalgebras satisfying

h:tc—71d:Rec(G) <= h:c— d:Rec(F), (23)
then
(a —7c)eg = (a—Tout)g [c) - (24)

This time the proof obligation (23) cannot be discharged by the type checker
alone as 7 has to transform a recursive coalgebra into a recursive coalgebral As
an aside, the new rule cannot handle our running example as the two unfolds
are separated by the initialisation function start.

Our example has focused on fusing the list parameter of take, yet if we
admit to the fact that natural numbers are an inductive datatype, then take
is really a function that consumes two data structures. The aforementioned zip
is another function that consumes two data structures, and therefore has the
potential to be fused with both of these inputs. Let us employ the expression
zip - (between x between) as another example that can be written in terms of
unfolds: (3] - (6] x [(b)). The algebra 3 is given by

3¢ (/L(L al)vﬂ('— a2)) —L (ala a2) (:U‘(L al)a:U'(L a2))
3 (21, 22) = case (out x1, out 25) of

(Cons (ay, by), Cons (ag, b)) — Cons ((ay, ag), (b1, b))
otherwise — Nil .

Our rules (21) and (24) are not applicable as we have two producers to the right
of zip. Now, to fuse such a function, we need to employ parallel hylo-ana fusion:
If 7 satisfies,

hl X hQ : T(Cl, CQ) — 7'(d17 dg) : Rec(G)
<~ hi:c — d:Rec(F1) A he:co— da:Rec(F2) , (25)
then

(a —7(c1,2))e = (a7 (out,out))g - (KclﬂFl X KCQZIFZ) . (26)

Using this rule, we are now able to fuse the zip example:

(¢ (out, out)} - ([(6] x [(b]) =[< (b,0)]

where the transformation (is defined

C: (b — Lagbi, by — Lagba) — (by, b2) — L (a1, a2) (b, ba)

¢ (c1, c) (21, 22) = case (¢1 71, ¢ 22) of
(Cons (a1, by), Cons (ag, by)) — Cons ((a1, az), (b1, b2))
otherwise — Nil .

The proofs of correctness for (parallel) hylo-ana fusion are contained in extended
version of this paper.

14 Ralf Hinze, Thomas Harper, and Daniel W. H. James

5.4 Church and Co-Church Encodings

In the two previous sections we have studied generalisations of foldr/build and
destroy /unfoldr fusion. We have noted that (—) generalises the list function
foldr, and, likewise, [—) generalises unfoldr. We have been silent, however, about
their counterparts build and destroy. It is time to break that silence, and in the
process, provide a fresh perspective on recursive datatypes. For simplicity, we
assume that we are working in Set.?

Consider again the polymorphic type of 5 (17) repeated below.

VA.(FA—A) = (B—A4) = B (WA.(FA— A) — 4)

We have slightly massaged the type to bring B to the front. The universally
quantified type on the right is known as the Church encoding of uF [4]. The type
is quite remarkable as it encodes a recursive type without using recursion. One
part of the isomorphism uF VA . (FA — A) — A is given by the acid rain
rule (16). The following derivation, which infers the isomorphisms, makes this
explicit—the initial equation is (16) with the arguments of 5 swapped.

Va.(a) (Bbin)=Lba

<= { change of variables b =+~ }
Va.(a) (vin)=~va

<= { extensionality }
Aa.(a) (vin) =~

<= { define toChurchz = Xa . (a) z }
toChurch (vyin) =~y

<= { define fromChurch~y =~y in }
toChurch (fromChurch) =~

The isomorphism toChurch, creates a function whose argument is an algebra and
which folds that algebra over the given data structure. Its converse fromChurch,
commonly called build, applies this function to the in algebra. Going back and
forth, we get back the original structure: fromChurch (toChurch s) = s. This is
the other part of the isomorphism, which follows directly from fold reflection.

As to be expected, everything nicely dualises. The polymorphic type (22)
gives rise to the co-Church encoding.

VO .(C—>FC)—(C—D) = (3C.(C—>FC)xC)—D

Think of the co-Church encoding 3C . (C — F () x C as the type of state

machines encapsulating a transition function C' — F C' and the current state C.

The conversion to (co-)Church-encoding types are central to the concept of

shortcut fusion. By changing representations to one with the recursion “built-
)

in”, we can write our transformations as non-recursively-defined (co-)algebras.
Unlike recursive programs, compositions of these (co-)algebras can be optimised

* The development can be generalised using ends and coends [14].

Theory and Practice of Fusion 15

by the compiler to remove any intermediate allocations. All that remains is for
the programmer to instruct the compiler to remove any unnecessary conversions,
i.e. cases of toChurch - fromChurch. Removing these transformations preserves
the semantics of the program because we can prove the isomorphism between
these representations. More importantly, however, prevents us from producing
a data structure only to immediately consume it. The co-Church encoding also
underlies the original formulation of stream fusion, which we consider next.

5.5 Stream Fusion

The foldr/build flavour of fusion is fold-centric, in that it requires all functions
that are intended to be fusible to be written as folds; similarly, destroy/unfoldr
is unfold-centric. The boundaries of these world views are fuzzy. A zip can be
written as a fold, the snag is that only one of the two inputs can be fused |9,
§9]. Along a similar vein, a filter for the odd natural numbers, which we wrote
before as a fold, can also be written as an unfold: [f) where

f: u(LN) = LN (u(LN))
fx = case out © of Nil — Nil; Cons (z,y) — if odd z then Cons (z, y) elsefy .

The coalgebra f is recursive and thus theoretically fine, but it is also recursive in
its definition and this is a practical problem. A coalgebra must be non-recursively
defined for it to be fused with others. We have two definitions and are caught
between two worlds; is it possible to free ourselves?

Perhaps surprisingly, the answer is yes. Let us first try to eliminate the re-
cursion from the definition above—the rest will then fall out. The idea is to
use a different base functor, one that allows us to skip list elements. We draw
inspiration from stream fusion [5] here:

dataSab = Done | Yield (a,b) | Skip b .

instance Functor (S a) where
fmap f Done = Done
Jmap f (Skip b) = Skip (f b)
fmap f (Yield (a, b)) = Yield (a, f b)

The filter coalgebra can now be written as a composition of out with

f:SNb—SNb
f Done = Done
f (Skip y) = Skip y

f (Yield (z,y)) = if odd x then Yield (z, y) else Skip y .

So, filter = [(f - out). Something interesting has happened: since f is a natural
transformation, we also have filter = (in -f). We are unstuck; filter is both a fold
and an unfold. Moreover, it is an application of a mapping function: filter = uf.

In general, consumers are folds, transformers are maps, and producers are
unfolds. An entire pipeline of these an be fused into a single hylo:

(a) - poy - ppoeg -[e] = (a-oq - an —c) .

16 Ralf Hinze, Thomas Harper, and Daniel W. H. James

Inspecting the types, the rule is clear:

@

(a) poey

A JFo pevn,

/J’Fl T ,U/anl MFn C .

In a sense, the introduction of Skip keeps the recursion in sync. Each transfor-
mation consumes a token and produces a token. Before, filter possibly consumed
several tokens before producing one. We are finally in a position to deal with the
example from the introduction, written in terms of the combinators we have

(s) - p(msq) - u(f odd) - [(b] = (s - msq - fodd — b) .

Utilising streams in this fashion is an instance of data abstraction; although
we wish to present the List type using u(L a), we intend to do all the work
using (S a). We have functions —S and S to convert to and from streams,
respectively. They are defined as an algebra and a coalgebra that allow us to
consume streams using a fold and produce them using an unfold:

—S:Sa(u(La) — (u(La))
S Done = in Nil

S (Skip zs) = s

S (Yield (z,zs)) = in (Cons (x, xs))
S (L a) = Sa(u(La))

—S (in Nil) = Done

—S (in (Cons (z,xs))) = Yield (z, xs) .

We must prove that our stream implementations, together with the con-
version functions, fulfil the same specification as the analogous functions over
p(L a) (¢f. Lemma 1 and Theorem 3 in [23]). This is called the data abstraction
property. In our framework, this obligation is expressed as a simple equality be-
tween a conventional list function definition and its associated stream version
composed with our conversion functions. For example, for filter we must prove

filter = (<) - uf -[=S] ,

Because we can phrase these functions as folds, unfolds, and natural transfor-
mations, the proof is straightforward, using the laws we have set out in previous
sections. We leave it as an exercise to the reader.

Just as for lists, every datatype can be extended with a Skip. Although
stream fusion is the first to make use of this augmentation, we note its relation to
Capretta’s representation of general recursion in type theory [1], which proposes
adding a “computation step” constructor to coinductive types.

6 Related Work

Wadler first introduced the idea of simplifying the fusion problem with his defor-
estation algorithm [22]. This was limited to so-called treeless programs, a subset
of first-order programs. The fusion transformation proposed by Chin [3] gener-
alises Wadler’s deforestation. It uses a program annotation scheme to recognise

Theory and Practice of Fusion 17

the terms that can be fused and skip the terms that cannot. Sheard and Fegaras
focus on the use of folds over algebraic types as a recursion scheme [17]. Their
algorithm for normalising the nested application of folds is based on the fold fu-
sion law. Their recursion schemes are suitably general to handle functions such
as zip that recurse over multiple data structures simultaneously [6].

Gill et al. first introduced the notion of shortcut fusion with foldr/build
fusion [9] for Haskell. This allowed programs written as folds to be fused. It
was subsequently introduced into the List library for Haskell in GHC. Takano
and Meijer [19] provided a calculational view of fusion and generalised it to
arbitrary data structures. It generalised the fusion law by using hylomorphisms
and also noted the possibility of dualising foldr/build fusion. They worked in the
setting of Cpo, however, where hylomorphisms do not have unique solutions,
only canonical ones. Takano and Meijer claimed that, even when restricted to
lists, their method is more powerful than that of Gill et al. as theirs could fuse
both parameters of zip. This was incorrect, and the need for an additional parallel
rule for zip was pointed out later by Hu et al. [11]. Their extension is what we
present as the parallel hylo-ana rule.

Svenningson provided an actual implementation of destroy /unfoldr fusion [18]
where he showed how filter-like functions could be expressed as unfolds. Sven-
ningson did not, however, solve the issue of recursion in the coalgebras of such
functions, which could therefore not be fused even though they could be written
as unfolds. This was addressed by Coutts et al., who presented stream fusion [5],
which introduced the Skip constructor as a way to encode non-productive com-
putation steps, similar to Capretta’s work on encoding general recursion in type
theory [1].

The correctness and generalisation of fusion has been explored in many dif-
ferent settings. In addition to the work of Takano and Meier, Ghani et al. gen-
eralised foldr/build to work with datatypes “induced by inductive monads”.
Johann and Ghani further showed how to apply initial algebra semantics, and
thus foldr/build fusion, to nested datatypes [12]. Voigtlander has also used free
theorems to show correctness, specifically of the destroy/build rule [20].

7 Conclusions

We have presented a framework that has allowed us to bring three fusion tech-
niques into the same setting. We have exploited recursive coalgebras and hylo-
morphisms as ‘the rug that ties the room together’. This enabled us to formally
describe and reason about these fusion techniques. In doing so, we have exposed
their underlying foundations, including the importance of Church and co-Church
encodings. The fact that our hylomorphisms have unique solutions plays a cen-
tral role. The knock-on effect is that we gain clear, short proofs thanks to the
calculational properties available to us.

18 Ralf Hinze, Thomas Harper, and Daniel W. H. James
References
1. Capretta, V.: General recursion via coinductive types. Logical Methods in Com-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

puter Science 1(2), 1-28 (2005)

. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Infor-

mation and Computation 204(4), 437-468 (2006)

Chin, W.N.: Safe Fusion of Functional Expressions. In: LISP and functional pro-
gramming. pp. 11-20 (1992)

Church, A.: The calculi of lambda-conversion. Annals of Mathematics Studies No.
6, Princeton University Press (1941)

Coutts, D., Leshchinskiy, R., Stewart, D.: Stream Fusion: From Lists to Streams
to Nothing At All. In: ICFP ’07. pp. 315-326 (2007)

Fegaras, L., Sheard, T., Zhou, T.: Improving Programs which Recurse over Multiple
Inductive Structures. In: PEPM’94 (June 1994)

Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous algebras.
Technical Report CS-R9104, CWI, Amsterdam (Jan 1991)

Freyd, P.J.: Remarks on algebraically compact categories. In: Fourman, M.P., John-
stone, P.T., Pitts, A.M. (eds.) Applications of Categories in Computer Science,
LMS Lecture Note Series, vol. 177, pp. 95-106. Cambridge University Press (1992)
Gill, A., Launchbury, J., Peyton Jones, S.L.: A Short Cut to Deforestation. In:
Functional programming languages and computer architecture. pp. 223232 (1993)
Hinze, R., Harper, T., James, D.W.H.: Theory and Practice of Fusion. Tech. Rep.
CS-RR-11-01, Oxford University Computing Laboratory (2011)

Hu, Z., Iwasaki, H., Takeichi, M.: An Extension of The Acid Rain Theorem. In:
Functional and Logic Programming. pp. 91-105 (1996)

Johann, P.,; Ghani, N.: Initial algebra semantics is enough! In: Typed Lambda
Calculi and Applications. LNCS, vol. 4583, pp. 207-222 (2007)

Lambek, J.: A fixpoint theorem for complete categories. Math. Zeitschr. 103, 151—
161 (1968)

Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, Springer-Verlag, Berlin, 2nd edn. (1998)

Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: FPCA. LNCS, vol. 523, pp. 124-144 (1991)
Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason,
R.E.A. (ed.) Information Processing 83, pp. 513-523. North-Holland, Amsterdam
(1983)

Sheard, T., Fegaras, L.: A Fold for All Seasons. In: Functional programming lan-
guages and computer architecture. pp. 233-242 (1993)

Svenningsson, J.: Shortcut fusion for Accumulating Parameters & Zip-like Func-
tions. In: ICFP ’02. pp. 124-132 (2002)

Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Functional
programming languages and computer architecture. pp. 306-313 (1995)
Voigtlédnder, J.: Proving correctness via free theorems: the case of the destroy/-
build-rule. In: Partial Eval. and Semantics-Based Prog. Manip. pp. 13-20 (2008)
Wadler, P.: Theorems for free! In: FPCA. pp. 347-359 (1989)

Wadler, P.: Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science 73(2), 231 — 248 (1990)

Wang, M., Gibbons, J., Matsuda, K., Hu, Z.: Gradual refinement: Blending pattern
matching with data abstraction. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.)
Mathematics of Program Construction. LNCS, vol. 6120, pp. 397-426 (2010)

