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Abstract. List or set comprehensions are a wonderful means to define
nondeterministic or relational programs. Despite their beauty, compre-
hensions are somewhat underused in program calculation. The purpose
of this paper is to remind the program-calculation community that com-
prehensions provide a convenient language for specifying and deriving
nondeterministic programs in a pointwise manner. We illustrate the style
of reasoning by re-solving the well-known problem of constructing tour-
nament representations: Given a sequence x of integers, construct a heap
whose inorder traversal is x itself.

1 Introduction

One attractive feature of pure functional languages such as Haskell [19] is that
they are close to the language of reasoning. The programmer can use the pro-
gramming language she is familiar with also for proving properties of programs
or for calculating programs. When deriving a program from a specification she
can check some or all of the intermediate steps simply by executing them (at
least in principle).

In program calculation, however, there is often a need to go beyond the world
of functions: nondeterministic problems, for instance, are most easily specified
in terms of relations. Even deterministic problems that enjoy deterministic solu-
tions sometimes benefit from a relational setting. The problem of constructing
tournament representations, which we consider in this paper, falls into this cat-
egory.

At first sight, the generalization from functions to relations does away with
the aforementioned benefits of pure functional languages, but not quite. Using
monads [16, 17] (in particular, the set monad) and monad comprehensions [27]
(in particular, set comprehensions) one can easily embed relations into a pure
functional language. As a simple example, consider the converse of list catenation
(‘[ ]’ and ‘:’ are Haskell’s list constructors).

split :: ∀a . [a ] → Set ([a ], [a ])
split z = {([ ], z )}

∪ {(a : x , y) | a : z ′ � {z }, (x , y) � split z ′}
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The call split z yields all pairs of lists whose catenation is the list z itself. Here,
a relation is defined as a set-valued function. In what follows we will use the
term relation as a synonym for set-valued function. The set comprehension in
the second line nicely describes the behaviour of split when the first result list is
non-empty. In general, a set comprehension consists of a head and a body, which
in turn is a sequence of generators of the form p � e. The left arrow can be read
as set membership (pronounced: is drawn from) and the comma separating the
generators can be seen as a conjunction (commas are also used for pairs). It is
important to note, however, that a generator binds the variables that appear to
the left of the arrow, see Sec. 2.

Now, the point of this paper is that set comprehension syntax not only pro-
vides a succinct notation for defining nondeterministic functions but that it is
also suitable for specifying and deriving relational programs. We will support
this claim by re-solving the well-known problem of constructing tournament
representations [26], which has been repeatedly considered in the literature [9,
5, 15, 1, 20, 7]. The derivation, which constitutes the major part of the paper, is
structured into four successive steps, each of which yields an executable Haskell
program with a decreasing amount of nondeterminism. Though we use Haskell
as a target language, we will work in the world of sets and total functions. In
particular, lists and trees are always finite and fully defined. All the derivations
with the notable exception of the second step are conducted in a pointwise style.
The calculations are quite detailed as no intermediate steps are omitted.

2 Notation

Let us introduce the notation by means of a simple derivation: we calculate the
inverse of list catenation. Formally, we are seeking a set-valued function split
that satisfies

(x , y) � split z ≡ x ++ y = z .

The derivation, which is based on fold-unfold transformations [6], proceeds as
follows.

(x , y) � split z
≡ { specification of split }

x ++ y = z
≡ { x has type [a ] }

([ ] ++ y = z , x = [ ]) ∨ ((a : x ′) ++ y = z , x = a : x ′)
≡ { definition of ‘++’ }

(y = z , x = [ ]) ∨ (a : (x ′ ++ y) = z , x = a : x ′)
≡ { introduce z ′ }

(y = z , x = [ ]) ∨ (a : z ′ = z , x ′ ++ y = z ′, x = a : x ′)
≡ { specification of split }

(y = z , x = [ ]) ∨ (a : z ′ = z , (x ′, y) � split z ′, x = a : x ′)
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We can turn this equivalence into an equation by applying the following com-
prehension principle.

e1 � e2 ≡ q ≡ e2 = {e1 | q } (1)

The derived programs (if they are set-valued) will usually take the form on the
right side. The left side is, however, more convenient for conducting calculations.

Applying the comprehension principle we obtain the following equation.

split z = {(x , y) | (y = z , x = [ ]) ∨ (a : z ′ = z , (x ′, y) � split z ′, x = a : x ′)}
The set comprehension on the right is slightly more general than what is cur-
rently available in Haskell as it involves a disjunction and equations. However,
we can easily eliminate the disjunction using the following law.

{e | q ∨ r } = {e | q } ∪ {e | r } (2)

Furthermore, an equation of the form p = e where p is a pattern can be replaced
by a generator:

p = e ≡ p � {e }. (3)

If we additionally inline simple generators of the form x � {e } where x is a
variable, we obtain the program listed in Sec. 1.

Before we proceed, let us briefly explain why we can use the derived equa-
tion as a definition. In principle, we have to show that the equation has a least
(or maybe a unique) solution and that this solution satisfies the original spec-
ification. The first part is easy to establish by appealing to the Knaster-Tarski
theorem [14, 24] (using the pointwise ordering on functions and the inclusion
ordering on sets). In the sequel, we will take the existence of least fixed points
for granted. For the second part, we can reorder the derivation above so that it
constitutes an inductive proof (inductive on the result list x ) showing that an
arbitrary solution of the equation is equal to split . Note that this implies that
the equation has, in fact, a unique solution.

Set comprehensions need not be a primitive concept. They can be given a
precise semantics via the following identities:

{e | ε} = return e
{e | b, q } = if b then {e | q } else ∅
{e | p � s, q } = s . λx → case x of p → {e | q }; → ∅,

where return and ‘.’ are unit and bind of the set monad:

return a = {a }
s . f =

⋃{f a | a � s }.
Like λ- and case-expressions, generators are binding constructs: the generator
p � e binds the variables that appear in p.1 Consequently, equations that appear
1 By contrast, in Zermelo type theory [25] the set comprehension itself constitutes the

binding construct.
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in comprehensions must also be binding constructs. In line with rule 3 we agree
upon that an equation binds the variables of the left (the variables on the right
must be bound at an outer level).

It remains to give a semantics to general equations of the form e1 = e2,
which appear, for instance, in the specification of split and along the derivation.
The idea is simply that the variables on the left are bound to all combinations of
values which satisfy the equation. Formally, let {x1, . . . , xn} be the free variables
of e1, then e1 = e2 serves as an abbreviation for

x1 � T1, . . . , xn � Tn, e1 e2 ,

where Ti is the type of xi and ‘ ’ is the test for equality. Since we are working in
the world of sets, we view a type simply as a set, possibly given by an inductive
definition. Of course, the goal of our program calculations is to eliminate general
equations in favour of generators, so the above is ‘merely’ a precise semantics
for the initial specification and the intermediate steps.

3 Tournament representations

Here is the problem: Given a sequence x of integers, construct a heap whose
inorder traversal is x itself. This heap is a so-called tournament representation
of x [26]. Note that the tournament representation is unique if the given integers
are distinct. If the sequence contains duplicates, then there are several heaps
that satisfy the condition above. We do not, however, make any additional as-
sumptions and allow ties to be broken in arbitrary ways.

In order to specify the problem formally we require the notions of binary
tree, heap and inorder traversal.

We represent binary trees (trees for short) by the following data type.

data Tree a = E | N (Tree a) a (Tree a)

Note that the type of trees is parametric in the type of labels.
A tree is said to be a heap if the label of each node is at most the labels of

its descendants. To check the heap property it suffices to compare each label to
its immediate descendants.

heap :: Tree Int → Bool
heap E = True
heap (N l a r) = heap l ∧ top l > a 6 top r ∧ heap r

The helper function top returns the topmost element of a tree.

top :: Tree Int → Int
top E = ∞
top (N l a r) = a

Here and in what follows it is convenient to assume the existence of extremal
elements (−∞ and ∞), which must not appear in the given integer sequence.
The final Haskell program will do without, however.
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The function list yields the inorder traversal of a given tree.

list :: ∀a .Tree a → [a ]
list E = [ ]
list (N l a r) = list l ++ [a ] ++ list r

Returning to our problem, we are seeking a function that is the right-inverse
of list and whose results satisfy the heap property. As we have mentioned before,
even though the final program will be deterministic the derivation requires or
at least benefits from a relational setting. Consequently, we specify the desired
program as a set-valued function tournament :: [Int ] → Set (Tree Int) that
satisfies

t � tournament x ≡ list t = x , heap t .

Before we proceed, let us slightly generalize the problem. The task of con-
structing tournament representations is closely related to precedence parsing.
Both problems differ only in the relations ‘>’ and ‘6’, on which the heap pred-
icate is based. Thus, in order to keep the derivation sufficiently general, we
abstract away from the type of integers and from the integer orderings.

heap :: Tree Elem → Bool
heap E = True
heap (N l a r) = heap l ∧ top l m a l top r ∧ heap r

Here, Elem is some type of elements and ‘m’ and ‘l’ are some predicates on
integers. The predicates must satisfy certain properties, which we will infer in the
course of the derivation. The properties are signalled by the hint ‘assumption’.

4 Step 1: tupling

Most likely, tournament (or rather, one of its helper functions) will be defined
recursively. Furthermore, the recursive invocations will work on (contiguous)
subparts of the original sequence. So, as a first step, we generalize tournament
to a function build :: [Elem ] → Set (Tree Elem, [Elem ]) that satisfies

(t , y) � build x ≡ list t ++ y = x , heap t .

This generalisation is an instance of a well-known technique of program optimiza-
tion called tupling [3] and constitutes the main inventive step of the derivation.

Before tackling build let us first express tournament in terms of build .

t � tournament x
≡ { specification of tournament }

list t = x , heap t
≡ { ‘[ ]’ is the unit of ‘++’ }

list t ++ [ ] = x , heap t
≡ { specification of build }

(t , [ ]) � build x
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Thus, tournament can be defined as follows.

tournament x = {t | (t , [ ]) � build x }
The derivation of build proceeds almost mechanically.

(t , y) � build x
≡ { specification of build }

list t ++ y = x , heap t
≡ { t has type Tree Elem }

(list E ++ y = x , heap E , t = E )
∨ (list (N l a r) ++ y = x , heap (N l a r), t = N l a r)

To avoid writing a long disjunction we conduct two subproofs. Case t = E :

list E ++ y = x , heap E
≡ { definition of list and heap }

[ ] ++ y = x
≡ { definition of ‘++’ }

y = x .

Case t = N l a r :

list (N l a r) ++ y = x , heap (N l a r)
≡ { definition of list and heap }

list l ++ [a ] ++ list r ++ y = x , heap l , top l m a l top r , heap r
≡ { introduce x1 and rearrange }

list l ++ x1 = x , heap l , [a ] ++ list r ++ y = x1, top l m a l top r , heap r
≡ { specification of build }

(l , x1) � build x , [a ] ++ list r ++ y = x1, top l m a l top r , heap r
≡ { introduce x2 and rearrange }

(l , x1) � build x , [a ] ++ x2 = x1, list r ++ y = x2, heap r , top l m a l top r
≡ { specification of build }

(l , x1) � build x , [a ] ++ x2 = x1, (r , y) � build x2, top l m a l top r
≡ { definition of ‘++’ }

(l , x1) � build x , a : x2 = x1, (r , y) � build x2, top l m a l top r .

To summarize, we have shown that the specification satisfies the following equa-
tion.

build :: [Elem ] → Set (Tree Elem, [Elem ])
build x = {(E , x )}

∪ {(N l a r , y) | (l , x1) � build x ,
a : x2 = x1,
(r , y) � build x2,
top l m a l top r }
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In fact, the equation even has a unique solution. Again, this can be demonstrated
by reordering the steps, so that the derivation above becomes an inductive proof
(inductive on the constructed tree t) showing that an arbitrary solution of the
equation satisfies the specification (which, by its form, has a unique solution).

Furthermore, if we replace sets by lists and set comprehensions by list com-
prehensions, then this equation constitutes an executable Haskell program. (Ad-
ditionally, we must replace the equation a :x2 = x1 by the generator a :x2 � [x1 ].)
Of course, there is little point in doing so as the program is hopelessly inefficient.
Note in this respect that the construction of the left subtree is ‘pure guesswork’
as build passes its argument list x unchanged to the first recursive call. Clearly,
further massage is necessary.

5 Step 2: turning top-down into bottom-up

An obvious idea for improving build is to promote the tests, that is, top l m a l
top r , into the generation of the trees. This step can be simplified considerably if
we first eliminate the left-recursive call to build , which is what we will do next.

At this point, it is preferable to switch temporarily to a point-free style—left-
recursion elimination is purely structural and the program structure is obscured
by data variables. Now, using the identities of Sec. 2 build can be put into the
form

build x = a x ∪ build x . b

for suitable functions a and b. To obtain a point-free definition we eliminate the
data variable x by lifting ‘∪ ’ to the function level—(f ∪ g) n = f n ∪ g n—and
by replacing monadic application by monadic composition—(f ¦ g) n = f n . g .
We obtain the recursion equation:

build = a ∪ build ¦ b,

which has the unique2 solution a¦b∗, where (−)∗ denotes the reflexive, transitive
closure of a relation. Now, the closure operator (−)∗ can be defined either as the
least fixed point of a left-recursive or of a right-recursive equation:

e∗ = return ∪ e∗ ¦ e
e∗ = return ∪ e ¦ e∗.

Consequently, an equivalent definition of build is

build = a ¦ loop
loop = return ∪ b ¦ loop

2 We can show uniqueness in this more general setting using the unique extension
property [2]: f = a ∪ f ¦ b has a unique solution if the relation b is well-founded.
In our case, this condition is satisfied as the length of the element list is strictly
decreasing.
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or reverting back to pointwise style:

build x = loop (E , x )
loop (l , x1) = {(l , x1)}

∪ {(t , z ) | a : x2 = x1,
(r , y) � loop (E , x2),
top l m a l top r ,
(t , z ) � loop (N l a r , y)}.

Additionally, we have replaced build x2 by loop (E , x2).
The above transformation has, in effect, turned a top-down program into a

bottom-up one. The original definition of build constructed a tournament repre-
sentation from the root to the leaves whereas the helper function loop starts at
the leftmost leaf and works its way up to the root.

6 Step 3: promoting the tests

We are now in a position that we can easily promote the tests top l m a l top r
into the generation of the trees. In fact, the first half of the condition, that
is, top l m a can be readily applied since loop receives the left subtree l as an
argument and a is the first element of its list argument. It remains to propagate
a l top r motivating the following specification.

p l top l , (t , y) � loop-to p (l , x ) ≡ (t , y) � loop (l , x ), p l top t

Note that the specified function loop-to maintains an invariant: if the topmost
label of its tree argument is at least a given bound, then this property also holds
for the tree returned by loop-to. Thus, using guards we can nicely express pre-
and postconditions and invariants. Furthermore, it is important to note that the
specification cannot be satisfied for arbitrary relations ‘m’ and ‘l’. Consider the
case where pltop l is false but the expression on the right has a solution. Rather
pleasantly, the derivation below will produce suitable conditions on ‘m’ and ‘l’.

The derivation of a program for loop-to proceeds as follows.

p l top l , (t , z ) � loop-to p (l , x1)
≡ { specification of loop-to }

(t , z ) � loop (l , x1), p l top t
≡ { definition of loop }

((t , z ) � {(l , x1)}, p l top t)
∨ (a : x2 = x1, (r , y) � loop (E , x2), top l m a l top r ,

(t , z ) � loop (N l a r , y), p l top t)

Again, we split the proof into two two subproofs. First disjunction:

(t , z ) � {(l , x1)}, p l top t
≡ { sets }

p l top l , (t , z ) = (l , x1).
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Second disjunction:

a : x2 = x1, (r , y) � loop (E , x2), top l m a l top r ,

(t , z ) � loop (N l a r , y), p l top t
≡ { specification of loop-to }

a : x2 = x1, (r , y) � loop (E , x2), top l m a l top r ,

p l top (N l a r), (t , z ) � loop-to p (N l a r , y)
≡ { definition of top and rearranging }

a : x2 = x1, top l m a, p l a, (r , y) � loop (E , x2), a l top r ,

(t , z ) � loop-to p (N l a r , y)
≡ { specification of loop-to }

a : x2 = x1, top l m a, p l a, a l top E , (r , y) � loop-to a (E , x2),
(t , z ) � loop-to p (N l a r , y)

≡ { definition of top and assumption e l∞ }
a : x2 = x1, top l m a, p l a, (r , y) � loop-to a (E , x2),

(t , z ) � loop-to p (N l a r , y)
≡ { assumption i l j ∧ k m j =⇒ i l k }

p l top l , a : x2 = x1, top l m a, p l a, (r , y) � loop-to a (E , x2),
(t , z ) � loop-to p (N l a r , y).

The last step requires that the relations ‘m’ and ‘l’ are related by a zig-zag
transitivity law. Loosely speaking, the law expresses that the left subtree of the
right subtree is also a legal immediate right subtree.

It remains to express build in terms of loop-to.

(t , y) � build x
≡ { definition of build }

(t , y) � loop (E , x )
≡ { assumption −∞l e }

(t , y) � loop (E , x ), −∞l top t
≡ { specification of loop-to }

−∞l top E , (t , y) � loop-to (−∞) (E , x )
≡ { assumption −∞l e }

(t , y) � loop-to (−∞) (E , x )
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To summarize, we have calculated the following recursion equation.

build x = loop-to (−∞) (E , x )
loop-to p (l , x1) = {(l , x1)}

∪ {(t , z ) | a : x2 = x1,
top l m a, p l a,
(r , y) � loop-to a (E , x2),
(t , z ) � loop-to p (N l a r , y)}

As usual, we can reorder the derivation to obtain an inductive proof showing
that each solution of the equation satisfies the specification. This time we induct
on the length of the list argument (note that this requires showing that the
output list is always a suffix of the input list). The recursion equation can be
easily turned into a respectable Haskell program. However, there is still ample
room for improvement.

7 Step 4: strengthening

Recall that build considers all prefixes of its argument list. Thus, it produces
many (intermediate) results which are eventually discarded by tournament . The
purpose of this section is to calculate a variant of loop-to which consumes as many
elements as possible building maximal subtrees. It is convenient to introduce a
function

hd :: [Elem ] → Elem
hd [ ] = −∞
hd (a : x ) = a,

which returns the first element of a list. Assuming that p l top l the desired
function (called loop-to′) can be specified as follows.

top l m hd x , (t , y) � loop-to′ p (l , x ) ≡ (t , y) � loop-to p (l , x ), p m hd y

The precondition guarantees that the first element of the argument list is a legal
predecessor of l . Likewise, the postcondition ensures that the first element of the
remaining list is a legal predecessor of the tree labelled with p. If the relation
‘m’ is the converse of ‘l’, then these conditions imply that the constructed trees
are maximal. However, even if the relations are not converses of each other, we
know at least that the initial call to loop-to′ with p = −∞ (see below) consumes
the complete input sequence as −∞ m hd y implies y = [ ] (assuming that −∞
is the least element).

The calculation proceeds as follows.

top l m hd x , (t , z ) � loop-to′ p (l , x )
≡ { specification of loop-to′ }

(t , z ) � loop-to p (l , x ), p m hd z
≡ { x has type [Elem ] }

([ ] = x , (t , z ) � loop-to p (l , [ ]), p m hd z )
∨ (a : x2 = x , (t , z ) � loop-to p (l , a : x2), p m hd z )
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As we are working towards a program we conduct a case analysis on the input
list. Case x = [ ]:

(t , z ) � loop-to p (l , [ ]), p m hd z
≡ { definition of loop-to }

(t , z ) � {(l , [ ])}, p m hd z
≡ { definition of hd and assumption e m−∞ }

top l m hd x , (t , z ) = (l , [ ])

Case x = a : x2:

(t , z ) � loop-to p (l , a : x2), p m hd z
≡ { definition of loop-to }

((t , z ) � {(l , a : x2)}, p m hd z )
∨ (top l m a, p l a, (r , y) � loop-to a (E , x2),

(t , z ) � loop-to p (N l a r , y), p m hd z )

As usual, we split the proof into two subproofs. First disjunction:

(t , z ) � {(l , a : x2)}, p m hd z
≡ { definition of hd }

(t , z ) = (l , a : x2), p m a
≡ { p l top l and assumption i l j ∧ i m k =⇒ j m k }

top l m a, (t , z ) = (l , a : x2), p m a
≡ { definition of hd }

top l m hd x , (t , z ) = (l , a : x2), p m a

The zig-zag transitivity law that is required in the second but last step is dual
to the one of the previous section: it expresses that the right subtree of the left
subtree is also a legal immediate left subtree.

Second disjunction:

top l m a, p l a, (r , y) � loop-to a (E , x2),
(t , z ) � loop-to p (N l a r , y), p m hd z

≡ { specification of loop-to′ }
top l m a, p l a, (r , y) � loop-to a (E , x2),

top (N l a r)m hd y , (t , z ) � loop-to′ p (N l a r , y)
≡ { definition of top }

top l m a, p l a, (r , y) � loop-to a (E , x2),
a m hd y , (t , z ) � loop-to′ p (N l a r , y)

≡ { specification of loop-to′ }
top l m a, p l a, top E m hd x2, (r , y) � loop-to′ a (E , x2),
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(t , z ) � loop-to′ p (N l a r , y)
≡ { definition of top and assumption ∞m e }

top l m a, p l a, (r , y) � loop-to′ a (E , x2),
(t , z ) � loop-to′ p (N l a r , y)

≡ { definition of hd }
top l m hd x , p l a, (r , y) � loop-to′ a (E , x2),

(t , z ) � loop-to′ p (N l a r , y)

We can now define tournament directly in terms of loop-to′.

t � tournament x
≡ { definition of tournament }

(t , [ ]) � build x
≡ { definition of build }

(t , [ ]) � loop-to (−∞) (E , x )
≡ { definition of hd and assumption −∞m e ≡ e = −∞ }

(t , y) � loop-to (−∞) (E , x ), −∞m hd y
≡ { specification of loop-to′ }

top E m hd x , (t , y) � loop-to′ (−∞) (E , x )
≡ { definition of top and assumption ∞m e }

(t , y) � loop-to′ (−∞) (E , x )

As an aside, note that hd y = −∞ ≡ y = [ ], which is implicitly used in the
third step, holds because the input does not contain −∞ as an element.

To summarize, we have calculated the following program for constructing
tournament representations (the proof that loop-to′ satisfies the specification
uses the same induction scheme as in the previous section).

tournament x = {t | (t , y) � loop-to′ (−∞) (E , x )}
loop-to′ p (l , [ ]) = {(l , [ ])}
loop-to′ p (l , a : x2) = {(l , a : x2) | p m a }

∪ {(t , z ) | p l a,
(r , y) � loop-to′ a (E , x2),
(t , z ) � loop-to′ p (N l a r , y)}

This program satisfies the original specification under the proviso that −∞ is
the least element (∞ is no longer needed),

−∞l e m−∞,

−∞m e ≡ e = −∞,

and that the orderings satisfy the zig-zag transitivity laws,

i l j ∧ k m j =⇒ i l k ,

i l j ∧ i m k =⇒ j m k .
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8 A Haskell program

The derived program is still nondeterministic but the final step to a determin-
istic Haskell program is a small one. To start with, we instantiate the abstract
relations ‘m’ and ‘l’ setting (m) = (>) and (l) = (<):

loop-to′ p (l , [ ]) = {(l , [ ])}
loop-to′ p (l , a : x2) = {(l , a : x2) | p > a }

∪ {(t , z ) | p < a,
(r , y) � loop-to′ a (E , x2),
(t , z ) � loop-to′ p (N l a r , y)}.

Since the relations are exclusive, we can now replace the disjoint union in the
second equation by a conditional as justified by the following calculation.

{e1 | p, q1} ∪ {e2 | ¬ p, q2}
≡ { set comprehensions }

(if p then {e1 | q1} else ∅) ∪ (if ¬ p then {e2 | q2} else ∅)
≡ { if ¬ c then a else b = if c then b else a }

(if p then {e1 | q1} else ∅) ∪ (if p then ∅ else {e2 | q2})
≡ { union distributes over conditionals }

if p then {e1 | q1} ∪ ∅ else ∅ ∪ {e2 | q2}
≡ { s ∪ ∅ = s = ∅ ∪ s }

if p then {e1 | q1} else {e2 | q2}

Applying this transformation we get

loop-to′ p (l , [ ]) = {(l , [ ])}
loop-to′ p (l , a : x2)

| p > a = {(l , a : x2)}
| otherwise = {(t , z ) | (r , y) � loop-to′ a (E , x2),

(t , z ) � loop-to′ p (N l a r , y)}.

Note that we have saved half of the comparisons as compared to the program of
Sec. 6. Furthermore, note that loop-to′ has exactly one solution for each combi-
nation of arguments. Thus, to obtain a deterministic program we simply switch
from the set monad to the identity monad effectively replacing set comprehen-
sions by let-bindings.

tournament x = let (t , y) = loop-to′ (−∞) E x in t
loop-to′ p (l , [ ]) = (l , [ ])
loop-to′ p (l , a : x )

| p > a = (l , a : x )
| otherwise = let (r , y) = loop-to′ a (E , x ) in loop-to′ p (N l a r , y).
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tournament :: ∀a . (Ord a) ⇒ [a ] → Tree a
tournament x = loop E x

loop :: ∀a . (Ord a) ⇒ Tree a → [a ] → Tree a
loop l [ ] = l
loop l (a : x ) = let (r , y) = loop-to a E x in loop (N l a r) y

loop-to :: ∀a . (Ord a) ⇒ a → Tree a → [a ] → (Tree a, [a ])
loop-to p l [ ] = (l , [ ])
loop-to p l as@(a : x )

| p > a = (l , as)
| otherwise = let (r , y) = loop-to a E x in loop-to p (N l a r) y

Fig. 1. A Haskell program for constructing tournament representations.

It is not hard to see that the derived Haskell program takes linear time and
space, which is optimal for the given problem.

We have assumed throughout that we are working with an abstract type Elem
of elements. Using Haskell’s type classes [10] we can nicely capture this abstrac-
tion generalizing the type of integers to an arbitrary instance of the classes Ord
and Bounded : the first class provides the ordering relation; the second provides
the extremal element −∞. Actually, if we are willing to accept some duplication
of code, we can even remove the dependence on Bound by specializing loop-to′ p
for p = −∞:

loop′ (l , x ) = fst (loop-to′ (−∞) (l , x )).

The final program that incorporates this generalization is displayed in Fig. 1.
(Additionally, we have renamed and curried loop′ and loop-to′.)

Before we review related work, let us consider two variations of the problem.

Strict heaps A minor twist is to require the heap to be strict : the label of each
node must be strictly smaller than the labels of its descendants. For this variant
we simply instantiate the abstract relations to strict orderings: (m) = (>) and
(l) = (<). In this case, tournament has at most one solution. Therefore, we
cannot refine Set to the identity monad but must use the Maybe monad instead.
The details of rewriting the program of Sec. 7 are left to the reader.

Precedence parsing The problem of constructing tournament representations
closely corresponds to the problem of precedence parsing. In fact, a solution
to both problems was first given in the context of parsing by Floyd [8].

In Haskell, an operator can be assigned a precedence and an associativity.
The higher the precedence the more tightly binds the operator. Conflicts between
operators of equal precedence are resolved using associativity: left associativity
causes grouping to the left, right associativity accordingly to the right. Sequences
of non-associative operators of equal precedence are not allowed.
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If we represent operators by the data types

data Assoc = L | N | R
data Op = Op Assoc Int ,

we can define the relations ‘m’ and ‘l’ as follows:

Op a p mOp L p′ = p > p′

Op a p mOp N p′ = p > p′

Op a p mOp R p′ = p > p′

Op L p lOp a ′ p′ = p < p′

Op N p lOp a ′ p′ = p < p′

Op R p lOp a ′ p′ = p 6 p′.

The minimal element is given by Op L (−∞).
Since there may be still several expression trees for a given sequence of op-

erators, we must refine Set to the List monad. The details are again left to the
reader.

The program of Sec. 7 does not consider the operands of operators. However,
since expression trees are full binary trees—each node has either no or two
subtrees—operands can be easily added at a later stage. Alternatively, operands
can be defined as elements of highest precedence.

9 Related work

Tournament representations were introduced by Vuillemin [26] as a special case
of cartesian trees. (A cartesian tree consists of points in the plane such that the
x-part is a binary search tree and the y-part is a binary heap. This data structure
is also known as a treap.) Both data structures have a number of applications
in computational geometry and adaptive sorting [9, 15].

The first derivation of a heap construction function is due to Bird [5]; several
authors have subsequently presented alternative approaches [1, 20, 7]. The main
idea of most solutions is to represent the tournament tree by its left spine, the
sequence of pennants (topped binary trees) on the path from the leftmost leaf
to the root. This representation change turns a top-down data structure into
a bottom-up one and nicely corresponds to the second step of our derivation,
where we converted a top-down algorithm into a bottom-up one.

The derivation that is closest in spirit to ours is the one by Augusteijn [1].
He conducts similar steps but misses the optimization introduced in Sec. 7.
Interestingly, Augusteijn employs a pointwise style for left-recursion elimination,
which is based on a rather specific theorem. We feel that the point-free argument
of Sec. 5 is more elegant.

We have mentioned before that the problem of constructing tournament rep-
resentations is closely related to precedence parsing. Though the work in this
area [8] predates the papers above, this relationship is hardly recognized. Prece-
dence parsing as an instance of bottom-up parsing uses a stack, which contains
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the recognized prefix of a sentential form. In the case of an expression grammar
this stack corresponds to the right spine representation of a tree. Our algorithm
can be seen as a stack-free implementation of the parsing algorithm, where the
stack is implicitly represented by the recursion stack, see also [21, 13].

List comprehensions, which are due to Burstall and Darlington, were in-
corporated in several non-strict functional languages such as KRC, Miranda,
and Haskell. Wadler generalized list comprehensions to monad comprehensions
[27]. List and set comprehensions also appear in several textbooks on program
derivation, most notably [4, 18], but they seem to play only a minor rôle in actual
derivations.

An alternative approach to pointwise relational programming was recently
put forward by de Moor and Gibbons [7]. They propose to use a nondetermin-
istic functional language that includes relational combinators such as converse
and choice. The use of choice allows for a much tighter integration of the rela-
tional and the functional world at the cost of weakening β- and η-conversion to
inequalities. In a sense, our approach is closer to pure functional languages such
as Haskell, which require an embedding of the relational part, whereas de Moor’s
and Gibbons’s calculus is closer to functional logic languages such as Curry [11].
In fact, there are several crosslinks to logic programming, for instance, embed-
dings of Prolog into Haskell [12, 22] and fold-unfold systems for logic programs
[23], which we plan to explore in the future.
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