
Exploiting Unique Fixed Points

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Functional programmers happily use equational reasoning
and induction to prove properties of recursive programs. To show prop-
erties of corecursive programs they employ coinduction, per perhaps less
enthusiastically. Coinduction is often considered as a rather low-level
proof method, especially, as it seems to depart rather radically from
equational reasoning. In this talk we introduce an alternative proof tech-
nique based on unique fixed points. To make the idea concrete, consider
the simplest example of a coinductive type: the type of streams, where
a stream is an infinite sequence of elements. In a lazy functional lan-
guage, such as Haskell, streams are easy to define and many textbooks
on Haskell reproduce the folklore examples of Fibonacci or Hamming
numbers defined by recursion equations over streams. One has to be a
bit careful in formulating a recursion equation basically avoiding that
the sequence defined swallows its own tail. However, if this care is exer-
cised, the equation even possesses a unique solution, a fact that is not
very widely appreciated. Uniqueness can be exploited to prove that two
streams are equal: if they satisfy the same recursion equation, then they
are! We will use this proof technique to infer some intriguing facts about
particular streams and to develop the basics of finite calculus. Quite
attractively, the resulting proofs have a strong equational flavour. In a
nutshell, the proof method brings equational reasoning to the coworld.
Of course, it is by no means restricted to streams and can be used equally
well to prove properties of infinite trees or the observational equivalence
of instances of an abstract datatype.


