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Abstract. Tired of writing boilerplate code? Tired of repeating es-
sentially the same function definition for lots of different data types?
Datatype-generic programming promises to end these coding nightmares.
In these lecture notes, we present the key abstractions of datatype-generic
programming, give several applications, and provide an elegant embed-
ding of generic programming into Haskell. The embedding builds on re-
cent advances in type theory: generalised algebraic data types and open
data types. We hope to convince you that generic programming is useful
and that you can use generic programming techniques today!

1 Introduction

A type system is like a suit of armour: it shields against the modern dangers
of illegal instructions and memory violations, but it also restricts flexibility.
The lack of flexibility is particularly vexing when it comes to implementing
fundamental operations such as showing a value or comparing two values. In a
statically typed language such as Haskell 98 [36] it is simply not possible, for
instance, to define an equality test that works for all types. As a rule of thumb,
the more expressive a type system, the more fine-grained the type information,
the more difficult it becomes to write general-purpose functions.

This problem has been the focus of intensive research for more than a decade.
In Haskell 1.0 and in subsequent versions of the language, the problem was only
partially addressed: by attaching a so-called deriving form to a data type dec-
laration the programmer can instruct the compiler to generate an instance of
equality for the new type. In fact, the deriving mechanism is not restricted to
equality: parsers, pretty printers and several other functions are derivable, as
well. These functions have to become known as data-generic or polytypic func-
tions, functions that work for a whole family of types. Unfortunately, Haskell’s
deriving mechanism is closed: the programmer cannot introduce new generic
functions.
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A multitude of proposals have been put forward that support exactly this,
the definition of generic functions. Some of the proposals define new languages,
some define extensions to existing languages. The early proposals had a strong
background in category theory; the recent years have seen a gentle shift towards
type-theoretic approaches. In these lecture notes, we present a particularly prag-
matic approach: we show how to embed generic programming into Haskell. The
embedding builds upon recent advances in type theory: generalised algebraic
data types and open data types. Or to put it the other way round, we propose
and employ language features that are useful for generic programming. Along
the way, we will identify the basic building blocks of generic programming and
we will provide an overview of the overall design space.

To cut a long story short, we hope to convince you that generic programming
is useful and that you can use generic programming techniques today!

To get the most out of the lecture notes you require a basic knowledge of
Haskell. To this end, Section 2 provides a short overview of the language and its
various extensions. (The section is, however, too dense to serve as a beginner’s
guide to Haskell.) Section 3 then provides a gentle introduction to the main topic
of these lecture notes: we show how to define generic functions, dynamic values
and give several applications. The remaining sections are overviewed at the end
of Section 3.

2 Preliminaries

2.1 Values, types and kinds

kinds

types

values

Haskell has the three level structure depicted on the right. The
lowest level, that is, the level where computations take place,
consists of values. The second level, which imposes structure
on the value level, is inhabited by types. Finally, on the third
level, which imposes structure on the type level, we have so-
called kinds. Why is there a third level? Haskell allows the
programmer to define parametric types such as the popular
data type of lists. The list type constructor can be seen as
a function on types and the kind system allows us to specify
this in a precise way. Thus, a kind is simply the ‘type’ of a
type constructor.

Types and their kinds In Haskell, new data types are declared using the data
construct. Here are three examples: the type of booleans, the type of pairs and
the type of lists:

data Bool = False | True
data [α ] = Nil | Cons α [α ]
data Pair α β = (α, β )
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In general, a data type comprises one or more constructors, and each constructor
can have multiple fields. A data type declaration of the schematic form

data T α1 . . . αs = C 1 τ1,1 . . . τ1,m1 | · · · | Cn τn,1 . . . τn,mn

introduces data constructors C 1, . . . , Cn with signatures

C i :: ∀α1 . . . αs.τi,1 → · · · → τi,mi
→ T α1 . . . αs

The constructors False and True of Bool have no arguments. The list construc-
tors Nil and Cons are written [ ] and ‘:’ in Haskell. For the purposes of these
lecture notes, we stick to the explicit names, as we will use the colon for some-
thing else.

The following alternative definition of the pair data type

data Pair α β = Pair{fst :: α, snd :: β}

makes use of Haskell’s record syntax: the declaration introduces the data con-
structor Pair and two accessor functions

fst :: ∀α β.Pair α β → α
snd :: ∀α β.Pair α β → β

Pairs and lists are examples of parameterised data types or type construc-
tors. The kind of manifest types such as Bool is ∗, whereas the kind of a type
constructor is a function of the kind of its parameters to ∗. The kind of Pair is
∗ → ∗ → ∗, the kind of [ ] is ∗ → ∗.

In general, the order of a kind is given by

order (∗) = 0
order (ι→ κ) = max{1 + order (ι), order (κ)}.

Haskell supports kinds of arbitrary order.

Values and their types Functions in Haskell are usually defined using pattern
matching. Here is the function length that computes the number of elements in
a list:

length :: ∀α.[α ]→ Int
length Nil = 0
length (Cons x xs) = 1 + length xs

The patterns on the left hand side are matched against the actual arguments
from left to right. The first equation, from top to bottom, where the match
succeeds is applied. The first line of the definition is the type signature of length.
Haskell can infer types of functions, but we generally provide type signatures of
all top-level functions. The function length is parametrically polymorphic: the
type of list elements is irrelevant; the function applies to arbitrary lists.
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In general, the rank of a type is given by

rank (T ) = 0
rank (∀α.τ) = max{1, rank (τ)}
rank (σ → τ) = max{inc (rank (σ)), rank (τ)},

where inc 0 = 0 and inc (n + 1) = n + 2. Most implementations of Haskell
support rank-2 types. Recent versions of the Glasgow Haskell Compiler (GHC)
[38] support types of arbitrary rank. In Haskell, type variables that appear free in
a type signature are implicitly universally quantified on the outside. For example,
the type signature of length could have been defined as length :: [α ]→ Int .

Sometimes, we use pattern definitions as a form of syntactic sugar. (Pat-
tern definitions are not currently supported by any Haskell implementation.) A
definition such as

Single x = Cons x Nil

defines Single x to be an abbreviation of Cons x Nil . We can use Single on
the right-hand side of a function definition to construct a value, but also as
a derived pattern on the left-hand side of a function definition to destruct a
function argument.

2.2 Generalised algebraic data types

Using a recent version of GHC, there is an alternative way of defining data
types: by listing the signatures of the constructors explicitly. For example, the
definition of lists becomes

data [ ] :: ∗ → ∗ where
Nil :: ∀α.[α ]
Cons :: ∀α.α→ [α ]→ [α ]

The first line declares the kind of the new data type: [ ] is a type constructor that
takes types of kind ∗ to types of kind ∗. The type is then inhabited by listing
the signatures of the data constructors. The original data type syntax hides the
fact that the result type of all constructors is [α ]; this is made explicit here. We
can now also define data types where this is not the case, so-called generalised
algebraic data types (GADTs):

data Expr :: ∗ → ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: ∀α.Expr Bool → Expr α→ Expr α→ Expr α

The data type Expr represents typed expressions: the data constructor Plus,
for instance, can only be applied to arithmetic expressions of type Expr Int ;
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applying Plus to a Boolean expression results in a type error. It is important to
note that the type Expr cannot be introduced by a standard Haskell 98 data
declaration since the constructors have different result types.

For functions on GADTs, type signatures are mandatory. Here is an evaluator
for the Expr data type:

eval :: Expr α→ α
eval (Num i) = i
eval (Plus e1 e2) = eval e1 + eval e2

eval (Eq e1 e2) = eval e1 = = eval e2

eval (If e1 e2 e3) = if eval e1 then eval e2 else eval e3

Even though eval is assigned the type ∀α.Expr α → α, each equation — with
the notable exception of the last one — has a more specific type as dictated by
the type constraints. As an example, the first equation has type Expr Int → Int
as Num constrains α to Int . The interpreter is quite noticeable in that it is tag
free. If it receives a Boolean expression, then it returns a Boolean.

2.3 Open data types and open functions

Re-consider the data type of expressions that we have introduced in the previ-
ous section. The expression language supports integers, addition, equality and
conditionals, but nothing else. If we want to add additional constructs to the
expression language, then we have to extend the data type.

In these lecture notes, we assume that we can extend data types that have
been flagged as “open” in a modular way: new constructors can be freely added
without modifying the code that already has been written. In order to mark
Expr as an open data type, we declare it as follows:

open data Expr :: ∗ → ∗

Constructors can then be introduced just by providing their type signatures.
Here, we add three new constructors for strings, for turning numbers into strings
and for concatenating strings:

Str :: String → Expr String
Show :: Expr Int → Expr String
Cat :: Expr String → Expr String → Expr String

In order to extend a function, we first have to declare it as open. This is accom-
plished by providing a type signature flagged with the open keyword:

open eval :: Expr α→ α

The definition of an open function needs not be contiguous; the defining equa-
tions may be scattered around the program. We can thus extend the evaluator
to cover the three new constructors of the Expr data type:
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eval (Str s) = s
eval (Show e) = show Int (eval e)
eval (Cat e1 e2) = eval e1 ++ eval e2

The semantics of open data types and open functions is the same as if data
types and functions had been defined closed, in a single place. Openness is
therefore mainly a matter of convenience and modularity; it does not increase
the expressive power of the language. We use open data types and open func-
tions throughout these lecture notes, but the code remains executable in current
Haskell implementations that do not support these constructs by applying a
preprocessor.

Using open data types and open functions gives us both directions of extensi-
bility mentioned in the famous expression problem: we can add additional sorts
of data, by providing new constructors, and we can add additional operations,
by defining new functions. Here is another function on expressions, which turns
a given expression into its string representation:

open string :: Expr α→ String
string (Num i) = "(Num" +++ show Int i ++ ")"
string (Plus e1 e2) = "(Plus" +++ string e1 +++ string e2 ++ ")"
string (Eq e1 e2) = "(Eq" +++ string e1 +++ string e2 ++ ")"
string (If e1 e2 e3) = "(If" +++ string e1 +++ string e2 +++ string e3 ++ ")"
string (Str s) = "(Str" +++ showString s ++ ")"
string (Show e) = "(Show" +++ string e ++ ")"
string (Cat e1 e2) = "(Cat" +++ string e1 +++ string e2 ++ ")"

The auxiliary operator ‘+++’ concatenates two strings with an intermediate blank:

s1 +++ s2 = s1 ++ " " ++ s2

As an aside, the type of string , ∀α.Expr α → String , is isomorphic to the
existential type (∃α.Expr α)→ String , as α does not occur in the result type.

For open functions, first-fit pattern matching is not suitable. To see why,
suppose that we want to provide a default definition for string in order to prevent
pattern matching failures, stating that everything without a specific definition
is ignored in the string representation:

string = ""

Using first-fit pattern matching, this equation effectively closes the definition of
string . Later equations cannot be reached at all. Furthermore, if equations of
the function definition are scattered across multiple modules, it is unclear (or at
least hard to track) in which order they will be matched with first-fit pattern
matching.

We therefore adopt a different scheme for open functions, called best-fit left-
to-right pattern matching. The idea is that the most specific match rather than
the first match wins. This makes the order in which equations of the function
appear irrelevant. In the example above, it ensures that the default case for string
will be chosen only if no other equation matches. The details are described in a
recent paper [31].



Generic Programming, Now! 7

3 A guided tour

3.1 Type-indexed functions

In Haskell, showing values of a data type is particularly easy: one simply attaches
a deriving (Show) clause to the declaration of the data type.

data Tree α = Empty | Node (Tree α) α (Tree α)
deriving (Show)

The compiler then automatically generates a suitable show function. This func-
tion is used, for instance, in interactive sessions to print the result of a submitted
expression (‘Now〉 ’ is the prompt of the interpreter).

Now〉 tree [0 . . 3]
Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node Empty 3 Empty)

Here tree :: [α ] → Tree α transforms a list into a balanced tree (see Ap-
pendix A.1). The function show can be seen as a pretty printer. The display
of larger structures, however, is not especially pretty, due to lack of indentation.

Now〉 tree [0 . . 9]
Node (Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node (Node Em
pty 3 Empty) 4 Empty)) 5 (Node (Node (Node Empty 6 Empty) 7 Empt
y) 8 (Node Empty 9 Empty))

In the sequel we shall develop a replacement for show , a generic prettier printer.
There are several pretty printing libraries around; since these lecture notes focus
on generic programming techniques we pick a very basic one (see Appendix A.2),
which just offers basic support for indentation.

data Text
text :: String → Text
nl :: Text
indent :: Int → Text → Text
(♦) :: Text → Text → Text

The function text converts a string to a text, where Text is type of documents
with indentation. By convention, the string passed to text must not contain
newline characters. The constant nl has to be used for that purpose. The function
indent adds i spaces after each newline. Finally, ‘♦’ concatenates two pieces of
text.

Given this library it is a simple exercise to write a prettier printer for trees
of integers.

prettyInt :: Int → Text
prettyInt n = text (show Int n)
prettyTreeInt :: Tree Int → Text
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prettyTreeInt Empty = text "Empty"
prettyTreeInt (Node l x r) = align "(Node " (prettyTreeInt l ♦ nl ♦

prettyInt x ♦ nl ♦
prettyTreeInt r ♦ text ")")

align :: String → Text → Text
align s d = indent (length s) (text s ♦ d)

While the program does the job, it is not very general: we can print trees of
integers, but not, say, trees of characters. Of course, it is easy to add another
two ad-hoc definitions.

prettyChar :: Char → Text
prettyChar c = text (showChar c)
prettyTreeChar :: Tree Char → Text
prettyTreeChar Empty = text "Empty"
prettyTreeChar (Node l x r) = align "(Node " (prettyTreeChar l ♦ nl ♦

prettyChar x ♦ nl ♦
prettyTreeChar r ♦ text ")")

The code of prettyTreeChar is almost identical to that of prettyTreeInt . It seems
that we actually need a family of pretty printers: Tree is a parameterised data
type and quite naturally one would like the elements contained in a tree to be
pretty printed, as well. For concreteness, let us assume that the types of interest
are given by the following grammar.

τ ::= Char | Int | (τ , τ ) | [τ ] | Tree τ

Implementing a type-indexed family of functions sounds like a typical case for
Haskell’s type classes. In particular, since the deriving mechanism itself relies on
the class system: deriving (Show) generates an instance of Haskell’s predefined
Show class. However, this is only one of several options. In the sequel we explore
a different route that does not depend on Haskell’s most beloved feature. Sec-
tions 4 and 5 will then put this approach in perspective providing an overview
of the overall design space.

type-indexed functions. A simple approach to generic programming
defines a family of functions indexed by type.

polyτ :: Poly τ

The family contains a definition of polyτ for each type τ of interest; the
type of polyτ is parametric in the type index τ . For brevity, we call poly
a type-indexed function (omitting the ‘family of’).

Now, instead of implementing a type-indexed family of pretty-printers, we
shall define a single function that receives the type as an additional argument
and suitably dispatches on this type argument. However, Haskell doesn’t permit
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the explicit passing of types. An alternative is to pass the pretty printer an
additional argument that represents the type of the value we wish to convert to
text. As a first try, we could assign the pretty printer the type Type → α→ Text
where Type is the type of type representations. Unfortunately, this is too simple-
minded: the parametricity theorem [40] implies that a function of this type must
necessarily ignore its second parameter. This argument breaks down, however,
if we additionally parameterise Type by the type it represents. The signature
of the pretty printer then becomes Type α → α → Text . The idea is that an
element of type Type τ is a representation of the type τ . Using a generalised
algebraic data type, we can define Type directly in Haskell.

open data Type :: ∗ → ∗ where
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β → Type (α, β )
List :: Type α→ Type [α ]
Tree :: Type α→ Type (Tree α)

String :: Type String
String = List Char

We declare Type to be open so that we can add a new type representation
whenever we define a new data type. The derived constructor String , defined
by a pattern definition, is equal to List Char in all contexts. Recall that we
allow to use String also on the left-hand side of equations. Each type has a
unique representation: the type Int is represented by the constructor Int , the
type (String , Int ) is represented by Pair String Int and so forth. For any given τ
in our family of types, Type τ comprises exactly one element; Type τ is a so-called
singleton type.

In the sequel, we shall often need to annotate an expression with its type
representation. We introduce a special type for this purpose.1

infixl 1:
data Typed α = (:){val :: α, type :: Type α}

The definition, which makes use of Haskell’s record syntax, introduces the colon
‘:’ as an infix data constructor. Thus, 4711 : Int is an element of Typed Int
and (47, "hello") : Pair Int String is an element of Typed (Int ,String ). It is
important to note the difference between x : t and x :: τ . The former expression
constructs a pair consisting of a value x and a representation t of its type. The
latter expression is Haskell syntax for ‘x has type τ ’.

Given these prerequisites, we can finally define the desired pretty printer.

1 The operator ‘:’ is predefined in Haskell for constructing lists. However, since we use
type annotations much more frequently than lists, we use ‘:’ for the former and Nil
and Cons for the latter purpose. Furthermore, we agree upon that the pattern x : t
is matched from right to left : first the type representation t is matched, then the
associated value x .
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open pretty :: Typed α→ Text
pretty (c : Char) = prettyChar c
pretty (n : Int) = prettyInt n
pretty ((x , y) : Pair a b) = align "( " (pretty (x : a)) ♦ nl ♦

align ", " (pretty (y : b)) ♦ text ")"
pretty (xs : List a) = bracketed [pretty (x : a) | x ← xs ]
pretty (Empty : Tree a) = text "Empty"
pretty (Node l x r : Tree a)

= align "(Node " (pretty (l : Tree a) ♦ nl ♦
pretty (x : a) ♦ nl ♦
pretty (r : Tree a) ♦ text ")")

We declare pretty to be open so that we can later extend it by additional
equations. The function pretty makes heavy use of type annotations; it’s type
Typed α → Text is essentially an uncurried version of Type α → α → Text .
Even though pretty has a polymorphic type, each equation implements a more
specific case as dictated by the type annotations. For example, the first equation
has type Typed Int → Text .

Let us consider each equation in turn. The first two equations take care of
integers and characters, respectively. Pairs are enclosed in parentheses, the two
elements being separated by a comma. Lists are shown using bracketed , defined in
Appendix A.2, which produces a comma-separated sequence of elements between
square brackets. Finally, trees are displayed using prefix notation.

The function pretty is defined by explicit case analysis on the type repre-
sentation. This is typical of a type-dependent function, but not compulsory: the
wrapper function show , defined below, is given by a simple abstraction.

show :: Typed α→ String
show x = render (pretty x )

The pretty printer produces output in the following style.

Now〉 pretty (tree : Tree Int [0 . . 3])
(Node (Node (Node Empty

0
Empty)

1
Empty)

2
(Node Empty

3
Empty))

Now〉 pretty ([(47, "hello"), (11, "world")] : List (Pair Int String))
[ (47
, [ ’h’
, ’e’
, ’l’
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, ’l’
, ’o’ ])

, (11
, [ ’w’
, ’o’
, ’r’
, ’l’
, ’d’ ])]

While the layout nicely emphasises the structure of the tree, the pretty-printed
strings look slightly odd: a string is formatted as a list of characters. Fortunately,
this problem is easy to remedy: we add a special case for strings.

pretty (s : String) = text (showString s)

This case is more specific than the one for lists; best-fit pattern matching ensures
that the right instance is chosen. Now, we get

Now〉 pretty ([(47, "hello"), (11, "world")] : List (Pair Int String))
[ (47
, "hello")
, (11
, "world")]

The type of type representations is, of course, by no means special to pretty
printing. Using type representations we can define arbitrary type-dependent
functions. Here is a second example: collecting strings.

open strings :: Typed α→ [String ]
strings (i : Int) = Nil
strings (c : Char) = Nil
strings (s : String) = [s ]
strings ((x , y) : Pair a b) = strings (x : a) ++ strings (y : b)
strings (xs : List a) = concat [strings (x : a) | x ← xs ]
strings (t : Tree a) = strings (inorder t : List a)

The function strings returns the list of all strings contained in the argument
structure. The example shows that we need not program every case from scratch:
the Tree case falls back on the list case. Nonetheless, most of the cases have a
rather ad-hoc flavour. Surely, there must be a more systematic approach to
collecting strings.

type-polymorphic functions. A function of type

poly :: ∀α.Type α→ Poly α

is called type-polymorphic or intensionally polymorphic. By contrast, a
function of type ∀α.Poly α is called parametrically polymorphic.
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A note on style: if Poly α is of the form α → σ where α does not occur in
σ (poly is a so-called consumer), we will usually prefer the uncurried variant
poly :: ∀α.Typed α→ σ over the curried version.

3.2 Introducing new data types

We have declared Type to be open so that we can freely add new constructors
to the Type data type and that we can freely add new equations to existing
open functions on Type. To illustrate the extension of Type, consider the type
of perfect binary trees [12].

data Perfect α = Zero α | Succ (Perfect (α, α))

As an aside, note that Perfect is a so-called nested data type [3]. To be able
to pretty-print perfect trees, we add a constructor to the type Type of type
representations and extend pretty by suitable equations.

Perfect :: Type α→ Type (Perfect α)
pretty (Zero x : Perfect a) = align "(Zero " (pretty (x : a) ♦ text ")")
pretty (Succ x : Perfect a)

= align "(Succ " (pretty (x : Perfect (Pair a a)) ♦ text ")")

Here is a short interactive session that illustrates the extended version of pretty .

Now〉 pretty (perfect 4 1 : Perfect Int)
(Succ (Succ (Succ (Succ (Zero ((((1

, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))

, (((1
, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))))))))

The function perfect d a generates a perfect tree of depth d whose leaves are
labelled with as.
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3.3 Generic functions

Using type representations we can program functions that work uniformly for
all types of a given family, so-called overloaded functions. Let us now broaden
the scope of pretty and strings so that they work for all data types, including
types that the programmer is yet to define. For emphasis, we call these functions
generic functions.

overloaded and generic functions. An overloaded function works
for a fixed family of types. By contrast, a generic function works for all
types, including types that the programmer is yet to define.

We have seen in the previous section that whenever we define a new data type,
we add a constructor of the same name to the type of type representations and
we add corresponding equations to all generic functions. While the extension of
Type is cheap and easy (a compiler could do this for us), the extension of all type-
indexed functions is laborious and difficult (can you imagine a compiler doing
that?). In this section we shall develop a scheme so that it suffices to extend Type
by a new constructor and to extend one or two particular overloaded functions.
The remaining functions adapt themselves.

To achieve this goal we need to find a way to treat elements of a data type
in a general, uniform way. Consider an arbitrary element of some data type. It
is always of the form C e1 · · · en, a constructor applied to some values. For
instance, an element of Tree Int is either Empty or of the form Node l a r .
The idea is to make this applicative structure visible and accessible: to this end
we mark the constructor using Con and each function application using ‘♦’.
Additionally, we annotate the constructor arguments with their types and the
constructor itself with information on its syntax. Consequently, Empty becomes
Con empty and Node l a r becomes Con node♦(l :Tree Int)♦(a :Int)♦(r :Tree Int)
where empty and node are the tree constructors augmented with additional
information. The functions Con and ‘♦’ are themselves constructors of a data
type called Spine.

infixl 0 ♦

data Spine :: ∗ → ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial
spine of a constructor application. The following table illustrates the stepwise
construction of a spine.

node :: Constr (Tree Int → Int → Tree Int → Tree Int)
Con node :: Spine (Tree Int → Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)
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If we ignore the type constructors Constr , Spine and Typed , then Con has the
type of the identity function, α→ α, and ‘♦’ has the type of function application,
(α→ β)→ α→ β. Note that the type variable α does not appear in the result
type of ‘♦’: it is existentially quantified.2 This is the reason why we annotate the
second argument with its type. Otherwise, we wouldn’t be able to use it as an
argument of an overloaded function, see below.

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus some additional information about its syntax: its name,
its arity, its fixity and its order. The order is a pair (i ,n) with 0 6 i < n, which
specifies that the constructor is the ith of a total of n constructors.

data Constr α = Descr{constr :: α
, name :: String
, arity :: Int
, fixity :: Fixity
, order :: (Integer , Integer)}

data Fixity = Prefix Int | Infix Int | Infixl Int | Infixr Int | Postfix Int

Given a value of type Spine α, we can easily recover the original value of type
α by undoing the conversion step.

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x ) = (fromSpine f ) (val x )

The function fromSpine is parametrically polymorphic, it works independently
of the type in question as it simply replaces Con with the original constructor
and ‘♦’ with function application.

The inverse of fromSpine is not polymorphic; rather, it is an overloaded
function of type Typed α → Spine α. Its definition, however, follows a trivial
pattern (so trivial that the definition could be easily generated by a compiler):
if the data type comprises a constructor C with signature

C :: τ1 → · · · → τn → τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi. As
an example, here is the definition of toSpine for binary trees.

toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty

2 All type variables in Haskell are universally quantified. However, ∀α.σ → τ is iso-
morphic to (∃α.σ) → τ provided α does not appear free in τ , which is where the
term ‘existential type’ comes from.
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toSpine (Node l x r : Tree a) = Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)
empty :: Constr (Tree α)
empty = Descr{constr = Empty ,

name = "Empty",
arity = 0,
fixity = Prefix 10,
order = (0, 2)}

node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Descr{constr = Node,

name = "Node",
arity = 3,
fixity = Prefix 10,
order = (1, 2)}

Note that this scheme works for arbitrary data types including generalised alge-
braic data types!

With all the machinery in place we can now turn pretty and strings into truly
generic functions. The idea is to add a catch-all case to each function that takes
care of all the remaining type cases in a uniform manner. Let’s tackle strings
first.

strings x = strings (toSpine x )
strings :: Spine α→ [String ]
strings (Con c) = [ ]
strings (f ♦ x ) = strings f ++ strings x

The helper function strings traverses the spine calling strings for each argument
of the spine.

Actually, we can drastically simplify the definition of strings: every case ex-
cept the one for String is subsumed by the catch-all case. Hence, the definition
boils down to:

strings :: Typed α→ [String ]
strings (s : String) = [s ]
strings x = strings (toSpine x )

The revised definition makes clear that strings has only one type-specific case,
namely the one for String . This case must be separated out, because we want
to do something specific for strings, something that does not follow the general
pattern.

The catch-all case for pretty is almost as easy. We only have to take care
that we do not parenthesize nullary constructors.

pretty x = pretty (toSpine x )
pretty :: Spine α→ Text
pretty (Con c) = text (name c)
pretty (f ♦ x ) = pretty1 f (pretty x )
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pretty1 :: Spine α→ Text → Text
pretty1 (Con c) d = align ("(" ++ name c ++ " ") (d ♦ text ")")
pretty1 (f ♦ x ) d = pretty1 f (pretty x ♦ nl ♦ d)

Now, why are we in a better situation than before? When we introduce a new
data type such as, say, XML, we still have to extend the representation type with
a constructor XML :: Type XML and provide cases for the data constructors of
XML in the toSpine function. However, this has to be done only once per data
type, and it is so simple that it could easily be done automatically. The code
for the generic functions (of which there can be many) is completely unaffected
by the addition of a new data type. As a further plus, the generic functions are
unaffected by changes to a given data type (unless they include code that is
specific to the data type). Only the function toSpine must be adapted to the
new definition and possibly the type representation if the kind of the data type
changes.

3.4 Dynamic values

Haskell is a statically typed language. Unfortunately, one cannot guarantee the
absence of run-time errors using static checks only. For instance, when we com-
municate with the environment, we have to check dynamically whether the im-
ported values have the expected types. In this section we show how to embed
dynamic checking in a statically typed language.

To this end we introduce a universal data type, the type Dynamic, which
encompasses all static values. To inject a static value into the universal type we
bundle the value with a representation of its type, re-using the Typed data type.

data Dynamic :: ∗ where
Dyn :: Typed α→ Dynamic

Note that the type variable α does not appear in the result type: it is effectively
existentially quantified. In other words, Dynamic is the union of all typed values.
As an example, misc is a list of a dynamic values.

misc :: [Dynamic ]
misc = [Dyn (4711 : Int),Dyn ("hello world" : String)]

Since we have introduced a new type, we must extend the type of type repre-
sentations.

Dynamic :: Type Dynamic

Now, we can also turn misc itself into a dynamic value: Dyn (misc:List Dynamic).
Dynamic values and generic functions go well together. In a sense, they are

dual concepts.3 We can quite easily extend the generic function strings so that
it additionally works for dynamic values.
3 The type Dynamic corresponds to the infinite union

S
Typed α; a generic function

of type Typed α → σ corresponds to the infinite intersection
T

Typed α → σ which
equals (

S
Typed α) → σ if α does not occur in σ. Hence, a generic function of this

type can be seen as taking a dynamic value as an argument.
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strings (Dyn x : Dynamic) = strings x

An element of type Dynamic just contains the necessary information required by
strings. In fact, the situation is similar to the Spine data type where the second
argument of ‘♦’ also has an existentially quantified type (this is why we had to
add type information).

Can we also extend toSpine by a case for Dynamic so that strings works
without any changes? Of course! As a first step we add Type and Typed to the
type of representable types.

Type :: Type α→ Type (Type α)
Typed :: Type α→ Type (Typed α)

The first line looks a bit scary with four occurrences of the identifier Type, but
it exactly follows the scheme for unary type constructors: the representation of
T :: ∗ → ∗ is T :: Type α→ Type (T α).

As a second step, we provide suitable instances of toSpine pedantically fol-
lowing the general scheme given in Section 3.3 (hastype is the infix operator ‘:’
augmented by additional information).

toSpine (Char : Type Char) = Con char
toSpine (List t : Type (List a)) = Con list ♦ (t : Type a) -- t = a
. . .
toSpine ((x : t) : Typed a) = Con hastype ♦ (x : t) ♦ (t : Type t) -- t = a

Note that t and a must be the same type representation since the type repre-
sentation of x : t is Typed t . It remains to extend toSpine by a Dynamic case.

toSpine (Dyn x : Dynamic) = Con dyn ♦ (x : Typed (type x ))

It is important to note that this instance does not follow the general pat-
tern for toSpine. The reason is that Dyn’s argument is existentially quanti-
fied and the general scheme cannot cope with existentially quantified types
(see Section 5.1). As an aside, note that since ‘:’ is left-associative, we have
x : t : Typed t : Typed (Typed t) : · · ·.

To summarise, for every (closed) type with n constructors we have to add
n + 1 equations for toSpine, one for the type representation itself and one for
each of the n constructors.

Given these prerequisites strings now works without any changes. There is,
however, a slight difference to the previous version: the generic case for Dynamic
traverses both the static value and its type as ‘:’ is treated just like every other
data constructor. This may or this may not what you want.

For pretty we decide to give an ad-hoc type case for typed values (we want
to use infix rather than prefix notation for ‘:’) and to fall back on the generic
case for dynamic values.

pretty ((x : t) : Typed a) = align "( " (pretty (x : t)) ♦ nl ♦ -- t = a
align ": " (pretty (t : Type t)) ♦ text ")"
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Here is a short interactive session that illustrates pretty printing dynamic values.

Now〉 pretty (misc : List Dynamic)
[ (Dyn (4711

:Int))
, (Dyn ("hello world"

:(List Char)))]

The constructor Dyn turns a static into a dynamic value. The other way
round involves a dynamic type check. This operation, usually termed cast, takes
a dynamic value and a type representation and checks whether the type rep-
resentation of the dynamic value and the one supplied are identical. The type
equality check itself is given by an overloaded function that takes two type rep-
resentations and possibly returns a proof of their equality (a simple truth value
is not enough). The proof states that one type may be substituted for the other.
Adapting Leibniz’s principle of substituting equals for equals to types, we define

newtype α :=: β = Proof {apply :: ∀ϕ.ϕ α→ ϕ β}

This type has the intriguing property that it is non-empty if and only if its
argument types are equal.4 An element of α :=: β is a function that converts
an element of type ϕ α into an element of ϕ β for any type constructor ϕ.
Operationally, this function is always the identity. And, in fact, the identity
serves as the proof of reflexivity.

refl :: α :=: α
refl = Proof id

The type equality type has all the properties of a congruence relation. We have
already seen that it is reflexive. It is furthermore symmetric, transitive, and
congruent. Here are programs that implement the proofs of congruence for type
constructors of kind ∗ → ∗ and ∗ → ∗ → ∗.

newtype Ctx ϕ ψ α = InCtx{outCtx :: ϕ (ψ α)}
ctx 1 :: (α :=: β)→ (ψ α :=: ψ β)
ctx 1 p = Proof (outCtx · apply p · InCtx )
newtype Ctx 0,2 ϕ ψ β α = InCtx0,2{outCtx0,2 :: ϕ (ψ α β)}
newtype Ctx 1,2 ϕ ψ α β = InCtx1,2{outCtx1,2 :: ϕ (ψ α β)}
ctx 2 :: (α1 :=: β1)→ (α2 :=: β2)→ (ψ α1 α2 :=: ψ β1 β2)
ctx 2 p1 p2 = Proof (outCtx1,2 · apply p2 · InCtx1,2 · outCtx0,2 · apply p1 · InCtx0,2)

The newtypes guide the Haskell type inferencer so that it always figures out
the correct context. As an example, to show that ψ α and ψ β are equal, we
have to convert an element of ϕ (ψ α) into an element of ϕ (ψ β). Now, the
constructor InCtx turns an ϕ (ψ α) into a (Ctx ϕ ψ) α, which the proof p of

4 We ignore the fact here, that in Haskell every type contains the bottom element.



Generic Programming, Now! 19

α :=: β then converts to an (Ctx ϕ ψ) β. Note that p’s context is instantiated
to Ctx ϕ ψ. Finally, outCtx transforms (Ctx ϕ ψ) β back to ϕ (ψ β), as desired.

The type equality check is then given by

unify :: Type α→ Type β → Maybe (α :=: β)
unify Int Int = return refl
unify Char Char = return refl
unify (Pair a1 a2) (Pair b1 b2) = liftM2 ctx 2 (unify a1 b1) (unify a2 b2)
unify (List a) (List b) = liftM ctx 1 (unify a b)
unify = fail "types are not unifiable"

Since the equality check may fail, we must lift the congruence proofs into the
Maybe monad using return, liftM , and liftM2 . Note that the running time of the
cast function that unify returns is linear in the size of the type (it is independent
of the size of its argument structure).

The cast operation simply calls unify and then applies the conversion function
to the dynamic value.

newtype Id α = InId{outId :: α}
cast :: Dynamic → Type α→ Maybe α
cast (Dyn (x : a)) t = fmap (λp → (outId · apply p · InId) x ) (unify a t)

Again, we have to introduce an auxiliary data type to direct Haskell’s type-
checker. Here is a short session that illustrates the use of cast .

Now〉 let d = Dyn (4711 : Int)
Now〉 pretty (d : Dynamic)
(Dyn (4711

:Int))
Now〉 d ‘cast ‘ Int
Just 4711
Now〉 fromJust (d ‘cast ‘ Int) + 289
5000
Now〉 d ‘cast ‘ Char
Nothing

In a sense, cast can be seen as the dynamic counterpart of the colon operator:
x ‘cast ‘ T yields a static value of type τ if T is the representation of τ .

generic functions and dynamic values. Generics and dynamics are
dual concepts:

generic function: ∀α.Type α→ σ
dynamic value: ∃α.Type α× σ

This is analogous to first-order predicate logic where ∀x :T .P(x ) is short-
hand for ∀x .T (x ):P(x ) and ∃x :T .P(x ) abbreviates ∃x .T (x ) ∧ P(x ).
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3.5 Stocktaking

Before we proceed let us step back to see what we have achieved so far.
Broadly speaking, generic programming is about defining functions that work

for all types but that also exhibit type-specific behaviour. Using a GADT we
have reflected types onto the value level. For each type constructor we have
introduced a data constructor: types of kind ∗ are represented by constants; pa-
rameterised types are represented by functions that take type representations
to type representations. Using reflected types we can program overloaded func-
tions, functions that work for a fixed class of types and that exhibit type-specific
behaviour. Finally, we have defined the Spine data type that allows us to treat
data in a uniform manner. Using this uniform view on data we can generalise
overloaded functions to generic ones.

In general, support for generic programming consists of three essential ingre-
dients:

– a type reflection mechanism,
– a type representation, and
– a generic view on data.

Let us consider each ingredient in turn.

Type reflection Using the type of type representations we can program functions
that depend on or dispatch on types. Alternative techniques include Haskell’s
type classes and a type-safe cast. We shall stick to the GADT technique in these
lecture notes.

Type representation Ideally, a representation type is a faithful mirror image of
the language’s type system. To be able to define such a representation type or
some representation type at all, the type system must be sufficiently expressive.
We have seen that GADTs allow for a very direct representation; in a less expres-
sive type system we may have to encode types less directly or in a less type-safe
manner. However, the more expressive a type system, the more difficult it is to
reflect the full system onto the value level. We shall see in Section 4 that there
are several ways to model the Haskell type system and that the one we have
used in this section is not the most natural or the most direct one. Briefly, the
type Type models the type system of Haskell 1.0; it is difficult to extend to the
more expressive system of Haskell 98 (or to one of its manifold extensions).

Generic view The generic view has the largest impact on the expressivity of a
generic programming system: it affects the set of data types we can cover, the
class of functions we can write and potentially the efficiency of these functions.
In this section we have used the spine view to represent data in a uniform
way. We shall see that this view is applicable to a large class of data types,
including GADTs. The reason for the wide applicability is simple: a data type
definition describes how to construct data, the spine view captures just this. Its
main weakness also roots in the ‘value-orientation’: one can only define generic
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functions that consume data (show) but not ones that produce data (read).
Again, the reason for the limitation is simple: a uniform view on individual
constructor applications is useful if you have data in your hands, but it is of
no help if you want to construct data. Section 5 shows how to overcome this
limitation and furthermore introduces alternative views.

4 Type representations

4.1 Representation types for types of a fixed kind

Representation type for types of kind ∗ The type Type of Section 3.1
represents types of kind ∗. A type constructor T is represented by a data con-
structor T of the same name. Since type constructors are reflected onto the
value level, the type of the data constructor T depends on the kind of the type
constructor T . To see the precise relationship between the type of T and the
kind of T , re-consider the declaration of Type, this time making polymorphic
types explicit.

open data Type :: ∗ → ∗ where
Char :: Type Char
Int :: Type Int
Pair :: ∀α.Type α→ (∀β.Type β → Type (α, β ))
List :: ∀α.Type α→ Type [α ]
Tree :: ∀α.Type α→ Type (Tree α)

A type constructor T of higher kind is represented by a polymorphic function
that takes a type representation for α to a type representation for T α, for all
types α. In general, Tκ has the signature

Tκ :: Typeκ Tκ

where Typeκ is defined

type Type∗ α = Type α
type Typeι→κ ϕ = ∀α.Typeι α→ Typeκ (ϕ α)

Thus, application on the type level corresponds to application of polymorphic
functions on the value level.

So far we have only encountered first-order type constructors. Here is an
example of a second-order one:

newtype Fix ϕ = In{out :: ϕ (Fix ϕ)}
The declaration introduces a fixed point operator on the type level, whose kind
is Fix :: (∗ → ∗) → ∗. Consequently, the value counterpart of Fix has a rank-2
type: it takes a polymorphic function as an argument.

Fix :: ∀ϕ.(∀α.Type α→ Type (ϕ α))→ Type (Fix ϕ)
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Using Fix , the representation of type fixed points, we can now extend, for in-
stance, strings by an appropriate case.

strings (In x : Fix f ) = strings (x : f (Fix f ))

Of course, this case is not really necessary: if we add a Fix equation to toSpine,
then the specific case above is subsumed by the generic one of Section 3.3.

toSpine (In x : Fix f ) = Con in ♦ (x : f (Fix f ))

Here in is the annotated variant of In. Again, the definition of toSpine pedan-
tically follows the general scheme.

Unfortunately, we cannot extend the definition of unify to cover the Fix case:
unify cannot recursively check the arguments of Fix for equality as they are
polymorphic functions. In general, we face the problem that we cannot pattern
match on polymorphic functions: Fix List , for instance, is not a legal pattern.
In Section 4.2 we shall introduce an alternative type representation that does
not suffer from this problem.

Representation type for types of kind ∗ → ∗ The generic functions of
Section 3 abstract over a type. For instance, pretty generalises functions of type

Char → Text , String → Text , [[Int ] ]→ Text

to a single generic function of type

Type α→ α→ Text ∼= Typed α→ Text

A generic function may also abstract over a type constructor of higher kind. Take,
as an example, the function size that counts the number of elements contained
in some data structure. This function generalises functions of type

[α ]→ Int , Tree α→ Int , [Tree α ]→ Int

to a single generic function of type

Type ′ ϕ→ ϕ α→ Int ∼= Typed ′ ϕ α→ Int

where Type ′ is a representation type for types of kind ∗ → ∗ and Typed ′ is a
suitable type, to be defined shortly, for annotating values with these representa-
tions.

How can we represent type constructors of kind ∗ → ∗? Clearly, the type
Type∗→∗ is not suitable as we intend to define size and other generic functions
by case analysis on the type constructor. Again, the elements of Type∗→∗ are
polymorphic functions and pattern-matching on functions would break referen-
tial transparency. Therefore, we define a new tailor-made representation type.

open data Type ′ :: (∗ → ∗)→ ∗ where
List :: Type ′ [ ]
Tree :: Type ′ Tree
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Think of the prime as shorthand for the kind index ∗ → ∗. Additionally, we
introduce a primed variant of Typed .

infixl 1 :′

data Typed ′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type ′ ϕ}

The type Type ′ is only inhabited by two constructors since the other data types
have kinds different from ∗ → ∗.

An overloaded version of size is now straightforward to define.

size :: Typed ′ ϕ α→ Int
size (Nil :′ List) = 0
size (Cons x xs :′ List) = 1 + size (xs :′ List)
size (Empty :′ Tree) = 0
size (Node l x r :′ Tree) = size (l :′ Tree) + 1 + size (r :′ Tree)

Unfortunately, size is not as flexible as pretty . If we have some compound data
structure x , say, a list of trees of integers, then we can simply call pretty (x :
List (Tree Int)). We cannot, however, use size to count the total number of
integers, simply because the new versions of List and Tree take no arguments!

There is one further problem, which is more fundamental. Computing the size
of a compound data structure is inherently ambiguous: in the example above,
shall we count the number of integers, the number of trees or the number of
lists? Formally, we have to solve the type equation ϕ τ = List (Tree Int). The
equation has, in fact, not three but four principal solutions: ϕ = Λα→ α and τ =
List (Tree Int), ϕ = Λα → List α and τ = Tree Int , ϕ = Λα → List (Tree α)
and τ = Int , and ϕ = Λα → List (Tree Int) and τ arbitrary. How can we
represent these different container types? They can be easily expressed using
functions: λa → a, λa → List a, λa → List (Tree a), and λa → List (Tree Int).
Alas, we are just trying to get rid of the functional representation. There are
several ways out of this dilemma. One possibility is to lift the type constructors
[14] so that they become members of Type ′ and to include Id , the identity type
defined in Section 3.4, as a representation of the type variable α:

Id :: Type ′ Id
Char ′ :: Type ′ Char ′

Int ′ :: Type ′ Int ′

List ′ :: Type ′ ϕ→ Type ′ (List ′ ϕ)
Tree ′ :: Type ′ ϕ→ Type ′ (Tree ′ ϕ)

The type List ′, for instance, is the lifted variant of List : it takes a type con-
structor of kind ∗ → ∗ to a type constructor of kind ∗ → ∗. Using the lifted
types we can specify the four different container types as follows: Id , List ′ Id ,
List ′ (Tree ′ Id) and List ′ (Tree ′ Int ′). Essentially, we replace the types by their
lifted counterparts and the type variable α by Id . Note that the above construc-
tors of Type ′ are exactly identical to those of Type except for the kinds.

It remains to define the lifted versions of the type constructors.
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newtype Char ′ χ = InChar ′{outChar ′ :: Char }
newtype Int ′ χ = InInt′{outInt′ :: Int }
data List ′ α′ χ = Nil ′ | Cons ′ (α′ χ) (List ′ α′ χ)
data Pair ′ α′ β′ χ = Pair ′ (α′ χ) (β′ χ)
data Tree ′ α′ χ = Empty ′ | Node ′ (Tree ′ α′ χ) (α′ χ) (Tree ′ α′ χ)

The lifted variants of the nullary type constructors Char and Int simply ignore
the additional argument χ. The data definitions follow a simple scheme: each
data constructor C with signature

C :: τ1 → · · · → τn → τ

is replaced by a polymorphic data constructor C ′ with signature

C ′ :: ∀χ.τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

where τ ′i is the lifted variant of τi.
The function size can be easily extended to Id and to the lifted types.

size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a ′) = 0
size (Cons ′ x xs :′ List ′ a ′) = size (x :′ a ′) + size (xs :′ List ′ a ′)
size (Empty ′ :′ Tree ′ a ′) = 0
size (Node ′ l x r :′ Tree ′ a ′)

= size (l :′ Tree ′ a ′) + size (x :′ a ′) + size (r :′ Tree ′ a ′)

The instances are similar to the ones for the unlifted types except that size is now
also called recursively for list elements and tree labels, that is, for components
of type α′.

Unfortunately, in Haskell size no longer works on the original data types: we
cannot call, for instance, size (x :′ List ′ (Tree ′ Id)) where x is is a list of trees
of integers, since List ′ (Tree ′ Id) Int is different from [Tree Int ]. However, both
types are isomorphic: τ = τ ′ Id where τ ′ is the lifted variant of τ [14]. We leave
it at that for the moment and return to the problem later in Section 5.

We have already noted that Type ′ is similar to Type except for the kinds.
This becomes even more evident when we consider the signature of a lifted type
representation: the lifted version of Tκ has signature

T ′
κ :: Type ′κ T ′

κ

where Type ′κ is defined

type Type ′∗ α = Type ′ α
type Type ′ι→κ ϕ = ∀α.Type ′ι α→ Type ′κ (ϕ α)

Defining an overloaded function that abstracts over a type of kind ∗ → ∗ is
similar to defining a ∗-indexed function except that one has to consider one
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additional case, namely Id , which defines the action of the overloaded function
on the type parameter. It is worth noting, that it is not necessary to define
instances for the unlifted type constructors ([ ] and Tree in our running example)
though we have done so as these instances can be automatically derived from
the lifted ones by virtue of the isomorphism τ = τ ′ Id , see Section 5.3.

Representation type for types of kind ω Up to now we have confined
ourselves to generic functions that abstract over types of kind ∗ or ∗ → ∗. An
obvious question is whether the approach can be generalised to kind indices of
arbitrary kinds. This is indeed possible. However, functions that are indexed
by higher-order kinds, for instance, by (∗ → ∗) → ∗ → ∗ are rare. For that
reason, we only sketch the main points. For a formal treatment see Hinze’s
earlier work [14]. Assume that ω = κ1 → · · · → κn → ∗ is the kind of the type
index. We first introduce a suitable type representation and lift the data types
to kind ω by adding n type arguments of kind κ1, . . . , κn.

open data Typeω :: ω → ∗ where
Tω

κ :: Typeω
κ Tω

κ

where Tω
κ is the lifted version of Tκ and Typeω

κ is defined

type Typeω
∗ α = Typeω α

type Typeω
ι→κ ϕ = ∀α.Typeω

ι α→ Typeω
κ (ϕ α)

The lifted variant Tω
κ of the type Tκ has kind κω where (−)ω is defined induc-

tively on the structure of kinds

∗ω = ω
(ι→ κ)ω = ιω → κω

Types and lifted types are related as follows: τ is isomorphic to τ ′ Out1 . . . Outn

where Out i is the projection type that corresponds to the i -th argument of ω.
The generic programmer has to consider the cases for the lifted type constructors
plus n additional cases, one for each of the n projection types Out1, . . . , Outn.

4.2 Kind-indexed families of representation types

We have seen that type-indexed functions may abstract over arbitrary type con-
structors: pretty abstracts over types of kind ∗, size abstracts over types of kind
∗ → ∗. Sometimes a type-indexed function even makes sense for types of different
kinds. A paradigmatic example is the mapping function: the mapping function
of a type ϕ of kind ∗ → ∗ lifts a function of type α1 → α2 to a function of type
ϕ α1 → ϕ α2; the mapping function of a type ψ of kind ∗ → ∗ → ∗ takes two
functions of type α1 → α2 and β1 → β2 respectively and returns a function of
type ψ α1 β1 → ψ α2 β2. As an extreme case, the mapping function of a type σ
of kind ∗ is the identity of type σ → σ.
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Dictionary-passing style The above discussion suggests to turn map into a
family of overloaded functions. Since the type of the mapping functions depends
on the kind of the type argument, we have, in fact, a kind-indexed family of
overloaded functions. To make this work we have to represent types differently:
we require a kind-indexed family of representation types.

open data Typeκ :: κ→ ∗ where
Tκ :: Typeκ Tκ

In this scheme Int :: ∗ is represented by a data constructor of Type∗; the type
constructor Tree :: ∗ → ∗ is represented by a data constructor of type Type∗→∗
and so forth. There is, however, a snag in it. If the representation of Tree is
not a function, how can we represent the application of Tree to some type? The
solution is simple: we also represent type application syntactically using a family
of kind-indexed constructors.

Appι,κ :: Typeι→κ ϕ→ Typeι α→ Typeκ (ϕ α)

The result type dictates that Appι,κ is an element of Typeκ. Theoretically, we
need an infinite number of Appι,κ constructors, one for each combination of ι
and κ. Practically, only a few are needed, since types with a large number of
type arguments are rare. For our purposes the following declarations suffice.

open data Type∗ :: ∗ → ∗ where
Char∗ :: Type∗ Char
Int∗ :: Type∗ Int
App∗,∗ :: Type∗→∗ ϕ→ Type∗ α→ Type∗ (ϕ α)

open data Type∗→∗ :: (∗ → ∗)→ ∗ where
List∗→∗ :: Type∗→∗ [ ]
Tree∗→∗ :: Type∗→∗ Tree
App∗,∗→∗ :: Type∗→∗→∗ ϕ→ Type∗ α→ Type∗→∗ (ϕ α)

open data Type∗→∗→∗ :: (∗ → ∗ → ∗)→ ∗ where
Pair∗→∗→∗ :: Type∗→∗→∗ (, )

For example, Tree Int is now represented by Tree∗→∗ ‘App∗,∗‘ Int∗. We have
(Pair∗→∗→∗ ‘App∗,∗→∗‘ Int∗) ‘App∗,∗‘ Int∗ :: Type∗ (Int , Int ). Since App∗,∗ is
a data constructor, we can pattern match both on Tree∗→∗ ‘App∗,∗‘ a and on
Tree∗→∗ alone. Since Haskell allows type constructors to be partially applied,
the family Typeκ is indeed a faithful representation of Haskell’s type system.

It is straightforward to adapt the type-indexed functions of Section 3 to the
new representation. In fact, using a handful of pattern definitions we can re-use
the code without any changes.

Int :: Type∗ Int
Int = Int∗
Char :: Type∗ Char
Char = Char∗
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Pair :: Type∗ α→ Type∗ β → Type∗ (α, β )
Pair a b = Pair∗→∗→∗ ‘App∗,∗→∗‘ a ‘App∗,∗‘ b
List :: Type∗ α→ Type∗ [α ]
List a = List∗→∗ ‘App∗,∗‘ a
Tree :: Type∗ α→ Type∗ (Tree α)
Tree a = Tree∗→∗ ‘App∗,∗‘ a

The definitions show that the old representation can be defined in terms of
the new representation. The reverse, however, is not true: we cannot turn a
polymorphic function into a data constructor.

Now, let’s tackle an example of a type-indexed function that works for types
of different kinds. We postpone the implementation of the mapping function
until the end of the section and first re-implement the function size that counts
the number of elements contained in a data structure (see Section 4.1).

size :: Type∗→∗ ϕ→ ϕ α→ Int

How can we generalise size so that it works for types of arbitrary kinds? The
essential step is to abstract away from size’s action on values of type α turning
the action of type α→ Int into an additional argument:

count∗→∗ :: Type∗→∗ ϕ→ (α→ Int)→ (ϕ α→ Int)

We call size’s kind-indexed generalisation count . If we instantiate the argument
of count∗→∗ to const 1, we obtain the original function back. But there is also a
second choice: if we instantiate the argument to id , we obtain a generalisation
of Haskell’s sum function, which sums the elements of a container.

size :: Type∗→∗ ϕ→ ϕ α→ Int
size f = count∗→∗ f (const 1)
sum :: Type∗→∗ ϕ→ ϕ Int → Int
sum f = count∗→∗ f id

Two generic functions for the price of one!
Let us now turn to the definition of countκ. Since countκ is indexed by kind

it also has a kind-indexed type.

countκ :: Typeκ α→ Countκ α

where Countκ is defined

type Count∗ α = α→ Int
type Count ι→κ ϕ = ∀α.Count ι α→ Countκ (ϕ α)

The definition looks familiar: it follows the scheme we have already encountered
in Section 4.1 (Typeκ is defined analogously). The first line specifies that a
‘counting function’ maps an element to an integer. The second line expresses
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that count ι→κ f takes a counting function for α to a counting function for
ϕ α, for all α. This means that the kind-indexed function countκ maps type
application to application of generic functions.

countκ (Appι,κ f a) = (count ι→κ f ) (count ι a)

This case for Appι,κ is truly generic: it is the same for all kind-indexed generic
functions (in dictionary-passing style, see below) and for all combinations of ι
and κ. The type-specific behaviour of a generic function is solely determined
by the cases for the different type constructors. As an example, here are the
definitions for countκ:

open count∗ :: Type∗ α→ Count∗ α
count∗ (f ‘App∗,∗‘ a) = (count∗→∗ f ) (count∗ a)
count∗ t = const 0
open count∗→∗ :: Type∗→∗ α→ Count∗→∗ α
count∗→∗ List∗→∗ c = sum [ ] ·map[ ] c
count∗→∗ Tree∗→∗ c = count∗→∗ List∗→∗ c · inorder
count∗→∗ (f ‘App∗,∗→∗‘ a) c = (count∗→∗→∗ f ) (count∗ a) c
open count∗→∗→∗ :: Type∗→∗→∗ α→ Count∗→∗→∗ α
count∗→∗→∗ (Pair∗→∗→∗) c1 c2 = λ(x1, x2)→ c1 x1 + c2 x2

Note that we have to repeat the generic Appι,κ case for every instance of ι and κ.
The catch-all case for types of kind ∗ determines that elements of types of kind ∗
such as Int or Char are mapped to 0.

Taking the size of a compound data structure such as a list of trees of integers
is now much easier than before: the count function for Λα → List (Tree α) is
the unique function that maps c to count∗→∗ (List∗→∗) (count∗→∗ (Tree∗→∗) c).
Here is a short interactive session that illustrates the use of count and size.

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9]]
Now〉 size (List∗→∗) ts
10
Now〉 count∗→∗ (List∗→∗) (size (Tree∗→∗)) ts
55

The fact that count∗→∗ is parameterised by the action on α allows us to mimic
type abstraction by abstraction on the value level. Since count∗→∗ receives the
∗-instance of the count function as an argument, we say that count is defined in
dictionary-passing style. There is also an alternative style, which we shall discuss
in a moment, where the type representation itself is passed as an argument.

The definition of the mapping function is analogous to the definition of size
except for the type. Recall that the mapping function of a type ϕ of kind ∗ → ∗
lifts a function of type α1 → α2 to a function of type ϕ α1 → ϕ α2. The instance
is doubly polymorphic: both the argument and the result type of the argument
function may vary. Consequently, we assign map a kind-indexed type that has
two type arguments:
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mapκ :: Typeκ α→ Mapκ α α

where Mapκ is defined

type Map∗ α1 α2 = α1 → α2

type Mapι→κ ϕ1 ϕ2 = ∀α1 α2.Mapι α1 α2 → Mapκ (ϕ1 α1) (ϕ2 α2)

The definition of map itself is straightforward:

open map∗ :: Type∗ α→ Map∗ α α
map∗ Int∗ = id
map∗ Char∗ = id
map∗ (App∗,∗ f a) = (map∗→∗ f ) (map∗ a)
open map∗→∗ :: Type∗→∗ ϕ→ Map∗→∗ ϕ ϕ
map∗→∗ List∗→∗ = map[ ]

map∗→∗ Tree∗→∗ = mapTree

map∗→∗ (App∗,∗→∗ f a) = (map∗→∗→∗ f ) (map∗ a)
open map∗→∗→∗ :: Type∗→∗→∗ ϕ→ Map∗→∗→∗ ϕ ϕ
map∗→∗→∗ Pair∗→∗→∗ f g (a, b) = (f a, g b)

Each instance simply defines the mapping function for the respective type.

kind-indexed functions. A kind-indexed family of type-polymorphic
functions

polyκ :: ∀α.Typeκ α→ Polyκ α

contains a definition of polyκ for each kind κ of interest. The type rep-
resentation Typeκ and the type Polyκ are indexed by kind, as well. For
brevity, we call polyκ a kind-indexed function (omitting the ‘family of
type-polymorphic’).

Type-passing style The functions above are defined in dictionary-passing
style, as instances of overloaded functions are passed around. An alternative
scheme passes the type representation instead. We can use it, for instance, to
define ∗-indexed functions in a less verbose way. To illustrate, let us re-define the
overloaded function pretty in type-passing style. Its kind-indexed type is given
by

type Pretty∗ α = α→ Text
type Prettyι→κ ϕ = ∀α.Typeι α→ Prettyκ (ϕ α)

The equations for prettyκ are similar to those of pretty of Section 3.1, ex-
cept for the ‘type patterns’: the left-hand side pretty (T a1 . . . an) becomes
prettyκ Tκ a1 . . . an, where κ is the kind of T .

open pretty∗ :: Type∗ α→ Pretty∗ α
pretty∗ Char∗ c = prettyChar c
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pretty∗ Int∗ n = prettyInt n
pretty∗ (f ‘App∗,∗‘ a) x = pretty∗→∗ f a x
open pretty∗→∗ :: Type∗→∗ α→ Pretty∗→∗ α
pretty∗→∗ List∗→∗ a xs = bracketed [pretty∗ a x | x ← xs ]
pretty∗→∗ Tree∗→∗ a Empty = text "Empty"
pretty∗→∗ Tree∗→∗ a (Node l x r)

= align "(Node " (pretty∗→∗ Tree∗→∗ a l ♦ nl ♦
pretty∗ a x ♦ nl ♦
pretty∗→∗ Tree∗→∗ a r ♦ text ")")

pretty∗→∗ (f ‘App∗,∗→∗‘ a) b x = pretty∗→∗→∗ f a b x
open pretty∗→∗→∗ :: Type∗→∗→∗ α→ Pretty∗→∗→∗ α
pretty∗→∗→∗ Pair∗→∗→∗ a b (x , y) = align "( " (pretty∗ a x ) ♦ nl ♦

align ", " (pretty∗ b y) ♦ text ")"

The equations for type application have a particularly simple form.

polyκ (Appι,κ f a) = polyι→κ f a

Type-passing style is preferable to dictionary-passing style for implementing
mutually recursive generic functions. In dictionary-passing style we have to tuple
the functions into a single dictionary (analogous to Haskell’s type classes). On
the other hand, using dictionary-passing style we can define truly polymorphic
generic functions such as, for example, size :: Type∗→∗ ϕ → ∀α.ϕ α → Int ,
which is not possible in type-passing style where size has type Type∗→∗ ϕ →
∀α.Type∗ α→ ϕ α→ Int .

dictionary- and type-passing style. A kind-indexed family of over-
loaded functions is said to be defined in dictionary-passing style if the
instances for type functions receive as an argument the instance (the
dictionary) for the type parameter. If instead the type representation
itself is passed, then the family is defined in type-passing style.

4.3 Representations of open type terms

Haskell’s type system is somewhat peculiar as it features type application but
not type abstraction. If Haskell had type-level lambdas, we could determine
the instances of ∗ → ∗-indexed functions using suitable type abstractions: for
our running example we could use representations of Λα → List (Tree Int),
Λα → α, Λα → List α, or Λα → List (Tree α). Interestingly, there is an
alternative. We can represent an anonymous type function by an open type
term: Λα→ List (Tree α), for instance, is represented by List (Tree a) where a
is a suitable representation of α.

Representation types for types of a fixed kind To motivate the represen-
tation of free type variables, let us work through a concrete example. Consider
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the following version of count that is defined on Type, the original type of type
representations.

count :: Type α→ (α→ Int)
count (Char) = const 0
count (Int) = const 0
count (Pair a b) = λ(x , y)→ count a x + count b y
count (List a) = sum [ ] ·map[ ] (count a)
count (Tree a) = sum [ ] ·map[ ] (count a) · inorder

As it stands, count is point-free but also pointless as it always returns the con-
stant 0 (unless the argument is not fully defined, in which case count is undefined,
as well). We shall see in a moment that we can make count more useful by adding
a representation of unbound type variables to Type. The one-million-dollar ques-
tion is, of course, what constitutes a suitable representation of an unbound type
variable? Now, if we extend count by a case for the unbound type variable, its
meaning must be provided from somewhere. An intriguing choice is therefore to
identify the type variable with its meaning. Thus, the representation of an open
type variable is a constructor that embeds a count instance, a function of type
α→ Int , into the type of type representations.

Count :: (α→ Int)→ Type α

Since the ‘type variable’ carries its own meaning, the count instance is particu-
larly simple.

count (Count c) = c

A moment’s reflection reveals that this approach is an instance of the ‘embedding
trick’ [9] for higher-order abstract syntax: Count is the inverse of count . Using
Count we can specify the action on the free type variable when we call count :

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ]]
Now〉 let a = Count (const 1)
Now〉 count (List (Tree Int)) ts
0
Now〉 count a ts
1
Now〉 count (List a) ts
10
Now〉 count (List (Tree a)) ts
55

Using a different instance we can also sum the elements of a data structure:

Now〉 let a = Count id
Now〉 count (Pair Int Int) (47, 11)
0
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Now〉 count (Pair a Int) (47, 11)
47
Now〉 count (Pair Int a ) (47, 11)
11
Now〉 count (Pair a a ) (47, 11)
58

The approach would work perfectly well if count were the only generic function.
But it is not:

Now〉 pretty (4711 : a)
*** Exception: Non-exhaustive patterns in function pretty

If we pass Count to a different generic function, we get a run-time error. Un-
fortunately, the problem is not easy to remedy as it is impossible to define a
suitable Count instance for pretty . We simply have not enough information in
our hands. There are at least two ways out of this dilemma: we can augment the
representation of unbound type variables by the required information or we can
use a different representation type that additionally abstracts over the type of a
generic function. Let us consider each alternative in turn.

To define a suitable equation for pretty or other generic functions we basically
need the representation of the instance type. Therefore we define:

infixl ‘Use‘
Use :: Type α→ Instance α→ Type α

where Instance gathers instances of generic functions:

data Instance :: ∗ → ∗ where
Pretty :: (α→ Text)→ Instance α
Count :: (α→ Int) → Instance α

Using the new representation Count c becomes a ‘Use‘ Count c, where a is
the representation of c’s instance type. Since Use couples each instance with a
representation of the instance type, we can easily extend count and pretty :

count (Use a d) = case d of {Count c → c; otherwise → count a }
pretty (Use a d) = case d of {Pretty p → p; otherwise → pretty a }

The definitional scheme is the same for each generic function: we first check
whether the instance matches the generic function at hand, otherwise we recurse
on the type representation. It is important to note that the scheme is indepen-
dent of the number of generic functions, in fact, the separate Instance type was
introduced to make the pattern matching more robust. A type representation
that involves Use such as Int ‘Use‘Count c ‘Use‘Pretty p ::Type Int can be seen
as a mini-environment that determines the action of the listed generic functions
at this point. The above instances of count and pretty effectively perform an
environment look-up at runtime.
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Let us now turn to the second alternative. The basic idea is to parameterise
Type by the type of generic functions.

open data PType :: (∗ → ∗)→ ∗ → ∗ where
PChar :: PType poly Char
PInt :: PType poly Int
PPair :: PType poly α→ PType poly β → PType poly (α, β )
PList :: PType poly α→ PType poly [α ]
PTree :: PType poly α→ PType poly (Tree α)

A generic function then has type PType Poly α→ Poly α for some suitable type
Poly . As before, the representation of an unbound type variable is a constructor
of the inverse type, except that now we additionally abstract away from Poly .

PVar :: poly α→ PType poly α

Since we abstract over Poly , we make do with a single constructor: PVar can be
used to embed instances of arbitrary generic functions.

The definition of count can be easily adapted to the new representation (for
technical reasons, we have to introduce a newtype for α→ Int).

newtype Count α = InCount{outCount :: α→ Int }
pcount :: PType Count α→ (α→ Int)
pcount (PVar c) = outCount c
pcount (PChar) = const 0
pcount (PInt) = const 0
pcount (PPair a b) = λ(x , y)→ pcount a x + pcount b y
pcount (PList a) = sum [ ] ·map[ ] (pcount a)
pcount (PTree a) = sum [ ] ·map[ ] (pcount a) · inorder

The code is almost identical to what we have seen before except that the type
signature is more precise.

Here is an interactive session that illustrates the use of pcount .

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ]]
Now〉 let a = PVar (InCount (const 1))
Now〉 :type a
a :: ∀α.PType Count α
Now〉 pcount (PList (PTree PInt)) ts
0
Now〉 pcount (a) ts
1
Now〉 pcount (PList a) ts
10
Now〉 pcount (PList (PTree a)) ts
55
Now〉 let a = PVar (InCount id)
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Now〉 :type a
PType Count Int
Now〉 pcount (PList (PTree a)) ts
165

Note that the type of a now limits the applicability of the unbound type variable:
passing it to pretty would result in a static type error.

We can also capture our standard idioms, counting elements and summing
up integers, as abstractions.

psize f = pcount (f a) where a = PVar (InCount (const 1))
psum f = pcount (f a) where a = PVar (InCount id)

Given these definitions, we can represent type constructors of kind ∗ → ∗ by
ordinary, value-level λ-terms.

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ]]
Now〉 psize (λa → PList (PTree PInt)) ts
0
Now〉 psize (λa → a) ts
1
Now〉 psize (λa → PList a) ts
10
Now〉 psize (λa → PList (PTree a)) ts
55
Now〉 psum (λa → PPair PInt PInt) (47, 11)
0
Now〉 psum (λa → PPair a PInt) (47, 11)
47
Now〉 psum (λa → PPair PInt a ) (47, 11)
11
Now〉 psum (λa → PPair a a ) (47, 11)
58

It is somewhat surprising that the calls above type-check, in particular, as Haskell
does not support anonymous type functions. The reason is that we can assign
psize and psum Hindler-Milner types:

psize :: (PType Count α → PType Count β)→ (β → Int)
psum :: (PType Count Int → PType Count β)→ (β → Int)

The functions also possess Fω types, which are different from the types above.
Using Fω types, however, the above calls do not type-check, since Haskell em-
ploys a kinded first-order unification of types.

Kind-indexed families of representation types The other representation
types, Type ′ and Typeκ, can be extended in an analogous manner to support
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open type terms. For instance, for Typeκ we basically have to introduce kind-
indexed versions of Use and Instance.

open data Instanceκ :: κ→ ∗ where
Polyκ :: Polyκ α→ Instanceκ α

Useκ :: Typeκ α→ Instanceκ α→ Typeκ α

polyκ (Useκ a d) = case d of {Polyκ p → p; otherwise → polyκ a }
The reader may wish to fill in the gory details and to work through the imple-
mentation of the other combinations.

5 Views

In Section 4 we have thoroughly investigated the design space of type representa-
tions. The examples in that section are without exception overloaded functions.
In this section we explore various techniques to turn these overloaded functions
into truly generic ones. Before we tackle this, let us first discuss the difference
between nominal and structural type systems.

Haskell has a nominal type system: each data declaration introduces a new
type that is incompatible with all the existing types. Two types are equal if and
only if they have the same name. By contrast, in a structural type system two
types are equal if they have the same structure. In a language with a structural
type system there is no need for a generic view; a generic function can be defined
exhaustively by induction on the structure of types.

For nominal systems the key to genericity is a uniform view on data. In
Section 3.3 we have introduced the spine view, which views data as constructor
applications. Of course, this is not the only generic view. PolyP [26], for instance,
views data types as fixed points of regular functors; Generic Haskell [19] uses
a sum-of-products view. We shall see that these two approaches can be charac-
terised as type-oriented: they provide a uniform view on all elements of a data
type. By contrast, the spine view is value-oriented: it provides a uniform view
on single elements.

View For the following it is useful to make the concept of a view explicit.

infixr 5→
infixl 5←
type α← β = β → α

data View :: ∗ → ∗ where
View :: Type β → (α→ β)→ (α← β)→ View α

A view consists of three ingredients: a so-called structure type that constitutes
the actual view on the original data type and two functions that convert to and
fro. To define a view the generic programmer simply provides a view function

view :: Type α→ View α
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that maps a type to its structural representation. The view function can then be
used in the catch-all case of a generic function. Take as an example the modified
definition of strings (the original catch-all case is defined in Section 3.1).

strings (x : t) = case view t of
View u fromData toData → strings (fromData x : u)

Using one of the conversion functions x : t is converted to its structural repre-
sentation fromData x : u, on which strings is called recursively. Because of the
recursive call, the definition of strings must contain additional case(s) that deal
with the structure type. For the spine view, a single equation suffices.

strings (x : Spine a) = strings x

Lifted view For the type Type ′ of lifted type representations we can set up a
similar machinery.

infixr 5 →̇
infixl 5 ←̇
type ϕ →̇ ψ = ∀α.ϕ α→ ψ α
type ϕ ←̇ ψ = ∀α.ψ α→ ϕ α

data View ′ :: (∗ → ∗)→ ∗ where
View ′ :: Type ′ ψ → (ϕ →̇ ψ)→ (ϕ ←̇ ψ)→ View ′ ϕ

The view function is now of type

view ′ :: Type ′ ϕ→ View ′ ϕ

and is used as follows:

map f m x = case view ′ f of
View ′ g fromData toData → (toData ·map g m · fromData) x

In this case, we require both the fromData and the toData function.

5.1 Spine view

The spine view of the type τ is simply Spine τ :

spine :: Type α→ View α
spine a = View (Spine a) (λx → toSpine (x : a)) fromSpine

Recall that fromSpine is parametrically polymorphic, while toSpine is an over-
loaded function. The definition of toSpine follows a simple pattern: if the data
type comprises a constructor C with signature

C :: τ1 → · · · → τn → τ0
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then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi. The
equation is only valid if vars (t1)∪ · · · ∪ vars (tn) ⊆ vars (t0), that is, if C ’s type
signature contains no existentially quantified type variables, see also below.

The spine view is particularly easy to use: the generic part of a generic
function only has to consider two cases: Con and ‘♦’.

A further advantage of the spine view is its generality: it is applicable to a
large class of data types. Nested data types, for instance, pose no problems: the
type of perfect binary trees (see Section 3.2)

data Perfect α = Zero α | Succ (Perfect (α, α))

gives rise to the following two equations for toSpine:

toSpine (Zero x : Perfect a) = Con zero ♦ (x : a)
toSpine (Succ x : Perfect a) = Con succ ♦ (x : Perfect (Pair a a))

The equations follow exactly the general scheme above. We have also seen that
the scheme is applicable to generalised algebraic data types. Consider as an
example the typed representation of expressions (see Section 2.2).

data Expr :: ∗ → ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: Expr Bool → Expr α→ Expr α→ Expr α

The relevant equations for toSpine are

toSpine (Num i : Expr Int) = Con num ♦ (i : Int)
toSpine (Plus e1 e2 : Expr Int) = Con plus ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (Eq e1 e2 : Expr Bool) = Con eq ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (If e1 e2 e3 : Expr a)

= Con if ♦ (e1 : Expr Bool) ♦ (e2 : Expr a) ♦ (e3 : Expr a)

Given this definition we can apply pretty to values of type Expr without further
ado. Note in this respect that the Glasgow Haskell Compiler (GHC) currently
does not support deriving (Show) for GADTs. When we turned Dynamic into a
representable type (Section 3.4), we discussed one limitation of the spine view: it
can, in general, not cope with existentially quantified types. Consider, as another
example, the following extension of the expression data type:

Apply :: Expr (α→ β)→ Expr α→ Expr β

The equation for toSpine
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toSpine (Apply f x : Expr b)
= Con apply ♦ (f : Expr (a → b)) ♦ (x : Expr a) -- not legal Haskell

is not legal Haskell, as a, the representation of α, appears free on the right-hand
side. The only way out of this dilemma is to augment x by a representation of
its type, as in Dynamic.5

To summarise: a data declaration describes how to construct data; the spine
view captures just this. Consequently, it is applicable to almost every data type
declaration. The other views are more restricted: Generic Haskell’s original sum-
of-products view is only applicable to Haskell 98 types excluding GADTs and
existential types (however, we will show in Section 5.4 how to extend the sum-
of-products view to GADTs); PolyP is even restricted to fixed points of regular
functors excluding nested data types and higher-order kinded types.

On the other hand, the classic views provide more information as they repre-
sent the complete data type, not just a single constructor application. The spine
view effectively restricts the class of functions we can write: one can only define
generic functions that consume or transform data (such as show) but not ones
that produce data (such as read). The uniform view on individual constructor
applications is useful if you have data in your hands, but it is of no help if you
want to construct data. We make this more precise in the following section.

Furthermore, functions that abstract over type constructors (such as size or
map) are out of reach for SYB. In the following two sections we show how to
overcome both limitations.

5.2 The type spine view

A generic consumer is a function of type Type α → α → τ (∼= Typed α → τ),
where the type we abstract over occurs in an argument position and possibly in
the result type τ . We have seen in Section 3.3 that the generic part of a consumer
follows the general pattern below.

consume :: Type α→ α→ τ
. . .
consume a x = consume (toSpine (x : a))
consume :: Spine α→ τ
consume . . . = . . .

The element x is converted to the spine representation, over which the helper
function consume then recurses. By duality, we would expect that a generic
producer of type Type α → τ → α, where α appears in the result type but not
in τ , takes on the following form.

produce :: Type α→ τ → α
. . .

5 Type-theoretically, we have to turn the existential quantifier ∃α.τ into an intensional
quantifier ∃α.Type α× τ . This is analogous to the difference between parametrically
polymorphic functions of type ∀α.τ and overloaded functions of type ∀α.Type α → τ .
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produce a t = fromSpine (produce t)
produce :: τ → Spine α -- does not work
produce . . . = . . .

The helper function produce generates an element in spine representation, which
fromSpine converts back. Unfortunately, this approach does not work. The for-
mal reason is that toSpine and fromSpine are different beasts: toSpine is an
overloaded function, while fromSpine is parametrically polymorphic. If it were
possible to define produce :: ∀α.τ → Spine α, then the composition fromSpine ·
produce would yield a parametrically polymorphic function of type ∀α.τ → α,
which is the type of an unsafe cast operation. And, indeed, a closer inspection
of the catch-all case of produce reveals that a, the type representation of α,
does not appear on the right-hand side. However, as we already know a truly
polymorphic function cannot exhibit type-specific behaviour.

Of course, this does not mean that we cannot define a function of type
Type α → τ → α. We just require additional information about the data type,
information that the spine view does not provide. Consider in this respect the
syntactic form of a GADT (eg Type itself or Expr in Section 2.2): a data type
is essentially a sequence of signatures. This motivates the following definitions.

type Datatype α = [Signature α ]
infixl 0 @
data Signature :: ∗ → ∗ where

Sig :: Constr α→ Signature α
(@) :: Signature (α→ β)→ Type α→ Signature β

The type Signature is almost identical to the Spine type, except for the second
argument of ‘@’, which is of type Type α rather than Typed α. Thus, an element
of type Signature contains the types of the constructor arguments, but not the
arguments themselves. For that reason, Datatype is called the type spine view.

This view is similar to the sum-of-products view, see Section 5.4: the list
encodes the sum, the constructor ‘@’ corresponds to a product and Sig is like
the unit element. To be able to use the type spine view, we additionally require
an overloaded function that maps a type representation to an element of type
Datatype α.

datatype :: Type α→ Datatype α
datatype (Bool) = [Sig false,Sig true ]
datatype (Char) = [Sig (char c) | c ← [minBound . .maxBound ]]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound ]]
datatype (List a) = [Sig nil ,Sig cons @ a @ List a ]
datatype (Pair a b) = [Sig pair @ a @ b ]
datatype (Tree a) = [Sig empty ,Sig node @ Tree a @ a @ Tree a ]

Here, char maps a character to its annotated variant and likewise int ; nil , cons
and pair are the annotated versions of Nil , Cons and ‘(, )’. As an aside, the
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second and the third equation produce rather long lists; they are only practical
in a lazy setting. The function datatype plays the same role for producers as
toSpine plays for consumers.

The first example of a generic producer is a simple test-data generator. The
function generate a d yields all terms of the data type α up to a given finite
depth d .

generate :: Type α→ Int → [α ]
generate a 0 = [ ]
generate a (d + 1) = concat [generate s d | s ← datatype a ]
generate :: Signature α→ Int → [α ]
generate (Sig c) d = [constr c ]
generate (s @ a) d = [f x | f ← generate s d , x ← generate a d ]

The helper function generate constructs all terms that conform to a given sig-
nature. The right-hand side of the second equation essentially computes the
cartesian product of generate s d and generate a d . Here is a short interactive
session that illustrates the use of generate.

Now〉 generate (List Bool) 3
[[ ], [False ], [False,False ], [False,True ], [True ], [True,False ], [True,True ]]
Now〉 generate (List (List Bool)) 3
[[ ], [[ ]], [[ ], [ ] ], [[False ]], [[False ], [ ] ], [[True ]], [[True ], [ ] ]]

As a second example, let us define a generic parser. For concreteness, we
re-implement Haskell’s readsPrec function of type Int → ReadS α. The Int
argument specifies the operator precedence of the enclosing context; ReadS ab-
breviates String → [(α,String)], the type of backtracking parsers [25].

readsPrec :: Type α→ Int → ReadS α
readsPrec (Char) d = readsPrecChar d
readsPrec (Int) d = readsPrecInt d
readsPrec (String) d = readsPrecString d
readsPrec (List a) d = readsList (reads a)
readsPrec (Pair a b) d

= readParen False (λs0 → [((x , y), s5) | ("(", s1)← lex s0,
(x , s2)← reads a s1,
(",", s3)← lex s2,
(y , s4)← reads b s3,
(")", s5)← lex s4 ])

readsPrec a d
= alt [readParen (arity ′ s > 0 ∧ d > 10) (reads s) | s ← datatype a ]

The overall structure is similar to that of pretty . The first three equations del-
egate the work to tailor-made parsers. Given a parser for elements, readsList ,
defined in Appendix A.3, parses a list of elements. Pairs are read using the usual
mix-fix notation. The predefined function readParen b takes care of optional
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(b = False) or mandatory (b = True) parentheses. The catch-all case implements
the generic part: constructors in prefix notation. Parentheses are mandatory if
the constructor has at least one argument and the operator precedence of the
enclosing context exceeds 10 (the precedence of function application is 11). The
parser for α is the alternation of all parsers for the individual constructors of α
(alt is defined in Appendix A.3). The auxiliary function reads parses a single
constructor application.

reads :: Signature α→ ReadS α
reads (Sig c) s0 = [(constr c, s1) | (t , s1)← lex s0,name c = = t ]
reads (s @ a) s0 = [(f x , s2) | (f , s1)← reads s s0,

(x , s2)← readsPrec a 11 s1 ]

Finally, arity ′ determines the arity of a constructor.

arity ′ :: Signature α→ Int
arity ′ (Sig c) = 0
arity ′ (s @ a) = arity ′ s + 1

As for pretty , we can define suitable wrapper functions that simplify the use of
the generic parser.

reads :: Type α→ ReadS α
reads a = readsPrec a 0
read :: Type α→ String → α
read a s = case [x | (x , t)← reads a s, ("", "")← lex t ] of

[x ]→ x
[ ] → error "read: no parse"
→ error "read: ambiguous parse"

From the code of generate and readsPrec we can abstract a general defini-
tional scheme for generic producers.

produce :: Type α→ τ → α
. . .
produce a t = . . . [. . . produce s t . . . | s ← datatype a ]
produce :: Signature α→ τ → α
produce . . . = . . .

The generic case is a two-step procedure: the list comprehension processes the list
of constructors; the helper function produce takes care of a single constructor.

The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers or
transformers. This is in contrast to Generic Haskell’s sum-of-products view or
PolyP’s fixed point view where a single view serves both purposes.

The type spine view shares the major advantage of the spine view: it is
applicable to a large class of data types. Nested data types such as the type of
perfect binary trees can be handled easily:
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datatype (Perfect a) = [Sig zero @ a,Sig succ @ Perfect (Pair a a)]

The scheme can even be extended to generalised algebraic data types. Since
Datatype α is a homogeneous list, we have to partition the constructors according
to their result types. Re-consider the expression data type of Section 2.2. We have
three different result types, Expr Bool , Expr Int and Expr α, and consequently
three equations for datatype.

datatype (Expr Bool)
= [Sig eq @ Expr Int @ Expr Int ,

Sig if @ Expr Bool @ Expr Bool @ Expr Bool ]
datatype (Expr Int)

= [Sig num @ Int ,
Sig plus @ Expr Int @ Expr Int ,
Sig if @ Expr Bool @ Expr Int @ Expr Int ]

datatype (Expr a)
= [Sig if @ Expr Bool @ Expr a @ Expr a ]

The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
Consequently, the If constructor, which has a polymorphic result type, appears
in every list. Given this declaration we can easily generate well-typed expressions
(for reasons of space we have modified generate Int so that only 0 is produced):

Now〉 let gen a d = putStrLn (show (generate a d : List a))
Now〉 gen (Expr Int) 4
[(Num 0), (Plus (Num 0) (Num 0)), (Plus (Num 0) (Plus (Num 0) (Num
0))), (Plus (Plus (Num 0) (Num 0)) (Num 0)), (Plus (Plus (Num 0) (Num
0)) (Plus (Num 0) (Num 0))), (If (Eq (Num 0) (Num 0)) (Num 0) (Num
0)), (If (Eq (Num 0) (Num 0)) (Num 0) (Plus (Num 0) (Num 0))), (If (Eq
(Num 0) (Num 0)) (Plus (Num 0) (Num 0)) (Num 0)), (If (Eq (Num 0)
(Num 0)) (Plus (Num 0) (Num 0)) (Plus (Num 0) (Num 0)))]
Now〉 gen (Expr Bool) 4
[(Eq (Num 0) (Num 0)), (Eq (Num 0) (Plus (Num 0) (Num 0))), (Eq (Plus
(Num 0) (Num 0)) (Num 0)), (Eq (Plus (Num 0) (Num 0)) (Plus (Num 0)
(Num 0))), (If (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num 0)) (Eq (Num 0)
(Num 0)))]
Now〉 gen (Expr Char) 4
[ ]

The last call shows that there are no character expressions of depth 4.
In general, for each constructor C with signature

C :: τ1 → · · · → τn → τ0

we add an element of the form

Sig c @ t1 @ · · · @ tn

to each right-hand side of datatype t provided τ0 is more general than τ .
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5.3 Lifted spine view

We have already mentioned that the original spine view is not suitable for defin-
ing ∗ → ∗-indexed functions as it cannot capture type abstractions. To illustrate,
consider a variant of Tree whose inner nodes are annotated with an integer, say,
a balance factor.

data BalTree α = Empty | Node Int (BalTree α) α (BalTree α)

If we call the generic function on a value of type BalTree Int , then the two integer
components are handled in a uniform way. This is fine for generic functions on
types, but not acceptable for generic functions on type constructors. For instance,
a generic version of sum must consider the label of type α = Int , but ignore the
balance factor of type Int . In the sequel we introduce a suitable variant of Spine
that can be used to define the latter brand of generic functions.

A constructor of a lifted type has the signature ∀χ.τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ
where the type variable χ marks the parametric components. We can write the
signature more perspicuously as ∀χ.(τ ′1 →′ · · · →′ τ ′n →′ τ ′0) χ, using the lifted
function space:

infixr→′

newtype (ϕ→′ ψ) χ = Fun{app :: ϕ χ→ ψ χ}
For technical reasons, ‘→′’ must be defined by a newtype rather than a type
declaration.6 As an example, here are variants of Nil ′ and Cons ′:

nil ′ :: ∀χ.∀α′.(List ′ α′) χ
nil ′ = Nil ′

cons ′ :: ∀χ.∀α′.(α′ →′ List ′ α′ →′ List ′ α′) χ
cons ′ = Fun (λx → Fun (λxs → Cons ′ x xs))

Now, an element of a lifted type can always be put into the applicative form
c′ ‘app‘ e1 ‘app‘ · · · ‘app‘ en. As in the first-order case we can make this structure
visible and accessible by marking the constructor and the function applications.

data Spine ′ :: (∗ → ∗)→ ∗ → ∗ where
Con ′ :: (∀χ.ϕ χ)→ Spine ′ ϕ α
(♦′) :: Spine ′ (ϕ→′ ψ) α→ Typed ′ ϕ α→ Spine ′ ψ α

The structure of Spine ′ is very similar to that of Spine except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ.ϕ χ to an element of Spine ′ ϕ; the constructor ‘♦′’ applies an element of
type Spine ′ (ϕ→′ ψ) to a Typed ′ ϕ yielding an element of type Spine ′ ψ.

Turning to the conversion functions, fromSpine ′ is again polymorphic.

fromSpine ′ :: Spine ′ ϕ α→ ϕ α
fromSpine ′ (Con ′ c) = c
fromSpine ′ (f ♦′ x ) = fromSpine ′ f ‘app‘ val ′ x

6 In Haskell, types introduced by type declarations cannot be partially applied.
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Its inverse is an overloaded function that follows a similar pattern as toSpine:
each constructor C ′ with signature

C ′ :: ∀χ.τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′0) = Con c′ ♦ (x1 : t ′1) ♦ · · · ♦ (xn : t ′n)

where c′ is the variant of C ′ that uses the lifted function space and t ′i is the type
representation of the lifted type τ ′i . As an example, here is the instance for lifted
lists.

toSpine ′ :: Typed ′ ϕ α→ Spine ′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a ′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a ′) = Con ′ cons ′ ♦′ (x :′ a ′) ♦′ (xs :′ List ′ a ′)

The equations are surprisingly close to those of toSpine; pretty much the only
difference is that toSpine ′ works on lifted types.

Let us make the generic view explicit. In our case, the structure view of ϕ is
simply Spine ′ ϕ.

Spine ′ :: Type ′ ϕ→ Type ′ (Spine ′ ϕ)
spine ′ :: Type ′ ϕ→ View ′ ϕ
spine ′ a ′ = View ′ (Spine ′ a ′) (λx → toSpine ′ (x :′ a ′)) fromSpine ′

Given these prerequisites we can turn size (see Section 4.1) into a generic
function.

size (x :′ Spine ′ a ′) = size x
size (x :′ a ′) = case spine ′ a ′ of

View ′ b′ from to → size (from x :′ b′)

The catch-all case applies the spine view: the argument x is converted to the
structure type, on which size is called recursively. Currently, the structure type is
always of the form Spine ′ ϕ (this will change in a moment), so the first equation
applies, which in turn delegates the work to the helper function size .

size :: Spine ′ ϕ α→ Int
size (Con ′ c) = 0
size (f ♦′ x ) = size f + size x

The implementation of size is entirely straightforward: it traverses the spine
summing up the sizes of the constructors arguments. It is worth noting that the
catch-all case of size subsumes all the previous instances except the one for Id , as
we cannot provide a toSpine ′ instance for the identity type. In other words, the
generic programmer has to take care of essentially three cases: Id , Con ′ and ‘♦′’.

As a second example, here is an implementation of the generic mapping
function:



Generic Programming, Now! 45

map :: Type ′ ϕ→ (α→ β)→ (ϕ α→ ϕ β)
map Id m = InId ·m · outId
map (Spine ′ a ′) m = map m
map a ′ m = case spine ′ a ′ of

View ′ b′ from to → to ·map b′ m · from
map :: (α→ β)→ (Spine ′ ϕ α→ Spine ′ ϕ β)
map m (Con ′ c) = Con ′ c
map m (f ♦′ (x :′ a ′)) = map m f ♦′ (map a ′ m x :′ a ′)

The definition is stunningly simple: the argument function m is applied in the Id
case; the helper function map applies map to each argument of the constructor.
Note that the mapping function is of type Type ′ ϕ → (α → β) → (ϕ α → ϕ β)
rather than (α → β) → (Typed ′ ϕ α → ϕ β). Both variants are commensurate,
so picking one is just a matter of personal taste.

Bridging the gap We have noted in Section 4.1 that the generic size function
does not work on the original, unlifted types as they are different from the lifted
ones. However, both are closely related: if τ ′ is the lifted variant of τ , then τ ′ Id
is isomorphic to τ [14]. (This relation only holds for Haskell 98 types, not for
GADTs, see also below.) Even more, τ ′ Id and τ can share the same run-time
representation, since Id is defined by a newtype declaration and since the lifted
data type τ ′ has exactly the same structure as the original data type τ .

As an example, the functions fromList InId and toList outId exhibit the
isomorphism between [ ] and List ′ Id .

fromList :: (α→ α′ χ)→ ([α ]→ List ′ α′ χ)
fromList from Nil = Nil ′

fromList from (Cons x xs) = Cons ′ (from x ) (fromList from xs)
toList :: (α′ χ→ α)→ (List ′ α′ χ→ [α ])
toList to Nil ′ = Nil
toList to (Cons ′ x xs) = Cons (to x ) (toList to xs)

Operationally, if the types τ ′ Id and τ have the same run-time representation,
then fromList InId and toList outId are identity functions (the Haskell Report
[36] guarantees this for InId and outId).

We can use the isomorphism to broaden the scope of generic functions to
unlifted types. To this end we simply re-use the view mechanism.

spine ′ List = View ′ (List ′ Id) (fromList InId) (toList outId)

The following interactive session illustrates the use of size.

Now〉 let ts = [tree [0 . . i :: Int ] | i ← [0 . . 9]]
Now〉 size (ts :′ List)
10
Now〉 size (fromList (fromTree InInt′) ts :′ List ′ (Tree ′ Int ′))
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0
Now〉 size (InId ts :′ Id)
1
Now〉 size (fromList InId ts :′ List ′ Id)
10
Now〉 size (fromList (fromTree InId) ts :′ List ′ (Tree ′ Id))
55

With the help of the conversion functions we can implement each of the four
different views on a list of trees of integers. Since Haskell employs a kinded
first-order unification of types [27], the calls almost always additionally involve
a change on the value level. The type equation ϕ τ = List (Tree Int) is solved
setting ϕ = List and τ = Tree Int , that is, Haskell picks one of the four higher-
order unifiers. Only in this particular case we need not change the representa-
tion of values: size (ts :′ List) implements the intended call. In the other cases,
List (Tree Int) must be rearranged so that the unification with ϕ τ yields the
desired choice.

Discussion The lifted spine view is almost as general as the original spine view:
it is applicable to all data types that are definable in Haskell 98. In particular,
nested data types can be handled with ease. As an example, for the data type
Perfect , see Section 3.2, we introduce a lifted variant

data Perfect ′ α′ χ = Zero′ (α′ χ) | Succ′ (Perfect ′ (Pair ′ α′ α′) χ)
Perfect :: Type ′ Perfect
Perfect ′ :: Type ′ ϕ→ Type ′ (Perfect ′ ϕ)
toSpine ′ (Zero′ x :′ Perfect ′ a ′) = Con ′ zero′ ♦′ (x :′ a ′)
toSpine ′ (Succ′ x :′ Perfect ′ a ′) = Con ′ succ′ ♦′ (x :′ Perfect ′ (Pair ′ a ′ a ′))

and functions that convert between the lifted and the unlifted variant.

spine ′ (Perfect)
= View ′ (Perfect ′ Id) (fromPerfect InId) (toPerfect outId)

fromPerfect :: (α→ α′ χ)→ (Perfect α→ Perfect ′ α′ χ)
fromPerfect from (Zero x ) = Zero′ (from x )
fromPerfect from (Succ x ) = Succ′ (fromPerfect (fromPair from from) x )
toPerfect :: (α′ χ→ α)→ (Perfect ′ α′ χ→ Perfect α)
toPerfect to (Zero′ x ) = Zero (to x )
toPerfect to (Succ′ x ) = Succ (toPerfect (toPair to to) x )

The following interactive session shows some examples involving perfect trees.

Now〉 size (Succ (Zero (1, 2)) :′ Perfect)
2
Now〉 map (Perfect) (+1) (Succ (Zero (1, 2)))
Succ (Zero (2, 3))
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We have seen that the spine view is also applicable to generalised algebraic
data types. This does not hold for the lifted spine view, as it is not possible
to generalise size or map to GADTs. Consider the expression data type of Sec-
tion 2.2. Though Expr is parameterised, it is not a container type: an element of
Expr Int , for instance, is an expression that evaluates to an integer; it is not a
data structure that contains integers. This means, in particular, that we cannot
define a mapping function (α → β) → (Expr α → Expr β): How could we pos-
sibly turn expressions of type Expr α into expression of type Expr β? The type
Expr β might not even be inhabited: there are, for instance, no terms of type
Expr String . Since the type argument of Expr is not related to any component,
Expr is also called a phantom type [16].

It is instructive to see where the attempt to generalise size or map to GADTs
fails technically. We can, in fact, define a lifted version of the Expr type (we
confine ourselves to one constructor).

data Expr ′ :: (∗ → ∗)→ ∗ → ∗ where
Num ′ :: Int ′ χ→ Expr ′ Int ′ χ

However, we cannot establish an isomorphism between Expr and Expr ′ Id : the
following code simply does not type-check.

fromExpr :: (α→ α′ χ)→ (Expr α→ Expr ′ α′ χ)
fromExpr from (Num i) = Num ′ (InInt′ i) -- wrong: does not type-check

The isomorphism between τ and τ ′ Id only holds for Haskell 98 types.
We have seen two examples of generic consumers or transformers. As in the

first-order case generic producers are out of reach and for exactly the same
reason: fromSpine ′ is a polymorphic function while toSpine ′ is overloaded. Of
course, the solution to the problem suggests itself: we must also lift the type
spine view to type constructors of kind ∗ → ∗. In a sense, the spine view re-
ally comprises two views: one for consumers and transformers and one for pure
producers.

The spine view can even be lifted to kind indices of arbitrary kinds. The
generic programmer then has to consider two cases for the spine view and addi-
tionally n cases, one for each of the n projection types Out1, . . . , Outn.

Introducing lifted types for each possible type index sounds like a lot of
work. Note, however, that the declarations can be generated completely me-
chanically (a compiler could do this easily). Furthermore, we have already noted
that generic functions that are indexed by higher-order kinds, for instance, by
(∗ → ∗)→ ∗ → ∗ are rare. In practice, most generic functions are indexed by a
first-order kind such as ∗ or ∗ → ∗.

5.4 Sum of products

Let us now turn to the ‘classic’ view of generic programming: the sum-of-products
view, wich is inspired by the semantics of data types. Re-consider the schematic
form of a Haskell 98 data declaration.
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data T α1 . . . αs = C 1 τ1,1 . . . τ1,m1 | · · · | Cn τn,1 . . . τn,mn

The data construct combines several features in a single coherent form: type
abstraction, n-ary disjoint sums, n-ary cartesian products and type recursion.
We have already the machinery in place to deal with type abstraction (type
application) and type recursion: using type reflection the type-level constructs
are mapped onto value abstraction and value recursion. It remains to model n-
ary sums and n-ary products. The basic idea is to reduce the n-ary constructs
to binary sums and binary products.

infixr 7 ×
infixr 6 +
data Zero
data Unit = Unit
data α + β = Inl α | Inr β
data α × β = Pair{outl :: α, outr :: β}

The Zero data type, the empty sum, is used for encoding data types with no
constructors; the Unit data type, the empty product, is used for encoding con-
structors with no arguments. If a data type has more than two alternatives or
a constructor more than two arguments, then the binary constructors ‘+’ and
‘×’ are nested accordingly. With respect to the nesting there are several choices:
we can use a right-deep or a left-deep nesting, a list-like nesting or a (balanced)
tree-like nesting [32]. For the following examples, we choose — more or less
arbitrarily — a tree-like encoding.

We first add suitable constructors to the type of type representations.

infixr 7 ×
infixr 6 +
0 :: Type Zero
1 :: Type Unit
(+) :: Type α→ Type β → Type (α + β)
(×) :: Type α→ Type β → Type (α × β)

The view function for the sum-of-products view is slightly more elaborate
than the one for the spine view as each data type has a tailor-made structure
type: Bool has the structure type Unit + Unit , [α ] has Unit + α × [α ] and
finally Tree α has Unit + Tree α × α × Tree α.

structure :: Type α→ View α
structure Bool = View (1 + 1) fromBool toBool

where
fromBool :: Bool → Unit + Unit
fromBool False = Inl Unit
fromBool True = Inr Unit
toBool :: Unit + Unit → Bool
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toBool (Inl Unit) = False
toBool (Inr Unit) = True

structure (List a) = View (1 + a × List a) fromList toList
where
fromList :: [α ]→ Unit + α × [α ]
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (Pair x xs)
toList :: Unit + α × [α ]→ [α ]
toList (Inl Unit) = Nil
toList (Inr (Pair x xs)) = Cons x xs

structure (Tree a) = View (1 + Tree a × a × Tree a) fromTree toTree
where
fromTree :: Tree α→ Unit + Tree α × α × Tree α
fromTree Empty = Inl Unit
fromTree (Node l x r) = Inr (Pair l (Pair x r))
toTree :: Unit + Tree α × α × Tree α→ Tree α
toTree (Inl Unit) = Empty
toTree (Inr (Pair l (Pair x r))) = Node l x r

Two points are worth noting. First, we only provide structure types for concrete
types that are given by a data or a newtype declaration. Abstract types includ-
ing primitive types such as Char or Int cannot be treated generically; for these
types the generic programmer has to provide ad-hoc cases. Second, the structure
types are not recursive: they express just the top ‘layer’ of a data element. The
tail of the encoded list, for instance, is again of type [α ], the original list data
type. We could have used explicit recursion operators but these are clumsy and
hard to use in practice. Using an implicit approach to recursion has the advan-
tage that there is no problem with mutually recursive data types, nor with data
types with many parameters.

A distinct advantage of the sum-of-products view is that provides more in-
formation than the spine view as it represents the complete data type, not just
a single constructor application. Consequently, the sum-of-products view can
be used both for defining consumer and producers. The function memo, which
memoises a given function, is an intriguing example of a function that both
analyses and synthesises values of the generic type.

memo :: Type α→ (α→ ν)→ (α→ ν)
memo Char f c = f c -- no memoisation
memo Int f i = f i -- no memoisation
memo 1 f Unit = fUnit

where fUnit = f Unit
memo (a + b) f (Inl x ) = fInl x

where fInl = memo a (λx → f (Inl x ))
memo (a + b) f (Inr y) = fInr y

where fInr = memo b (λy → f (Inr y))
memo (a × b) f (Pair x y) = (fPair x ) y
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where fPair = memo a (λx → memo b (λy → f (Pair x y)))
memo a f x = fView x

where fView = case structure a of
View b from to → memo b (f · to) · from

To see how memo works note that the helper definitions fUnit , fInl , fInr , fPair

and fView do not depend on the actual argument of f . Thus, once f is given,
they can be readily computed. Memoisation relies critically on the fact that they
are computed only on demand and then at most once. This is guaranteed if the
implementation is fully lazy. Usually, memoisation is defined as the composition
of a function that constructs a memo table and a function that queries the table
[13]. If we fuse the two functions thereby eliminating the memo data structure, we
obtain the memo function above. Despite appearance, the memo data structures
did not vanish into thin air. Rather, they are now built into the closures. For
instance, the memo table for a disjoint union is a pair of memo tables. The
closure for memo (a + b) f consequently contains a pair of memoised functions,
namely fInl and fInr .

The sum-of-products view is also preferable when the generic function has to
relate different elements of a data type, the paradigmatic example being ordering.

compare :: Type α→ α→ α→ Ordering
compare Char c1 c2 = compareChar c1 c2

compare Int i1 i2 = compareInt i1 i2
compare 1 Unit Unit = EQ
compare (a + b) (Inl x1) (Inl x2) = compare a x1 x2

compare (a + b) (Inl x1) (Inr y2) = LT
compare (a + b) (Inr y1) (Inl x2) = GT
compare (a + b) (Inr y1) (Inr y2) = compare b y1 y2

compare (a × b) (Pair x1 y1) (Pair x2 y2)
= case compare a x1 x2 of

EQ → compare b y1 y2

ord → ord
compare a x1 x2

= case structure a of
View b from to → compare b (from x1) (from x2)

The central part of the definition is the case for sums: if the constructor are
equal, then we recurse on the arguments, otherwise we immediately return the
relative ordering (assuming Inl < Inr). The case for products implements the
so-called lexicographic ordering : the ordering of two pairs is determined by the
first elements, only if they are equal, we recurse on the second elements.

Implementing compare using the spine view faces the problem that the el-
ements of a spine possess existentially quantified types: even if we know that
the constructors of two values are identical, we cannot conclude that the types
of corresponding arguments are the same — and, indeed, this property fails,
for instance, for the type Dynamic. Consequently, a spine-based implementation
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of compare must either involve a dynamic type equality check, or the type of
compare must be generalised to

compare :: Type α→ α→ Type β → β → Ordering

The latter twist is not without problems as we have to relate elements of different
types.

The sum-of-products view in its original form is more restricted than the
spine view: it is only applicable to Haskell 98 data types. However, using a
similar technique as in Section 5.2 we can to broaden the scope of the sum-of-
products view to generalised algebraic data types. A GADT introduces a family
of Haskell 98 types indexed by the type argument of the GADT. If we partition
the constructors according to their result types, we can provide an individual
view for each instance. Re-consider the expression data type of Section 2.2.
We have three different result types, Expr Bool , Expr Int and Expr α, and
consequently three equations for structure.

structure (Expr Bool) = View expr fromExpr toExpr
where
expr = Expr Int × Expr Int +

Expr Bool × Expr Bool × Expr Bool
fromExpr (Eq x1 x2) = Inl (Pair x1 x2)
fromExpr (If x1 x2 x3) = Inr (Pair x1 (Pair x2 x3))
toExpr (Inl (Pair x1 x2)) = Eq x1 x2

toExpr (Inr (Pair x1 (Pair x2 x3)))
= If x1 x2 x3

structure (Expr Int) = View expr fromExpr toExpr
where
expr = Int +

Expr Int × Expr Int +
Expr Bool × Expr Int × Expr Int

fromExpr (Num i) = Inl i
fromExpr (Plus x1 x2) = Inr (Inl (Pair x1 x2))
fromExpr (If x1 x2 x3) = Inr (Inr (Pair x1 (Pair x2 x3)))
toExpr (Inl i) = Num i
toExpr (Inr (Inl (Pair x1 x2)))

= Plus x1 x2

toExpr (Inr (Inr (Pair x1 (Pair x2 x3))))
= If x1 x2 x3

structure (Expr a) = View expr fromExpr toExpr
where
expr = Expr Bool × Expr a × Expr a
fromExpr (If x1 x2 x3) = Pair x1 (Pair x2 x3)
toExpr (Pair x1 (Pair x2 x3)) = If x1 x2 x3

For the details we refer to the description of datatype in Section 5.2.
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5.5 Lifted sums of products

The sum-of-products view can be quite easily adapted to the type Type ′ of lifted
type representations. We only have to lift the type constructors of the structure
types.

infixr 7 ×′
infixr 6 +′

data Zero′ α
data Unit ′ α = Unit ′

data (ϕ +′ ψ) α = Inl ′ (ϕ α) | Inr ′ (ψ α)
data (ϕ ×′ ψ) α = Pair ′{outl ′ :: ϕ α, outr ′ :: ψ α}

The reader may wish to fill in the details.

6 Related work

There is a wealth of material on the subject of generic programming. The tuto-
rials [2, 19, 18] of previous summer schools provide an excellent overview of the
field.

We have seen that support for generic programming consists of three essential
ingredients:

– a type reflection mechanism,
– a type representation, and
– a generic view on data.

The first two items provide a way to write overloaded functions, and the third a
way to access the structure of values in a uniform way. The different approaches
to generic programming can be faithfully classified along these dimensions. Fig-
ure 1 provides an overview of the design space. Since the type representation is
closely coupled to the generic view, we have omitted the representation dimen-
sion. The two remaining dimensions are largely independent of each other and
for each there are various choices. Overloaded functions can be expressed using

– type reflection: This is the approach we have used in these lecture notes.
Its origins can be traced back to the work on intensional type analysis [11,
8, 7, 39, 42] (ITA). ITA is intensively used in typed intermediate languages,
in particular, for optimising purely polymorphic functions. Type reflection
avoids the duplication of features: a type case, for instance, boils down to
an ordinary case expression. Cheney and Hinze [5] present a library for
generics and dynamics (LIGD) that uses an encoding of type representations
in Haskell 98 augmented by existential types.

– type classes [10]: Type classes are Haskell’s major innovation for support-
ing ad-hoc polymorphism. A type class declaration corresponds to the type
signature of an overloaded value — or rather, to a collection of type sig-
natures. An instance declaration is related to a type case of an overloaded
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view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA [11, 8, 7,
39, 42]

– – –

fixed point Reloaded [22] PolyP [34, 35] – PolyP [26]

sum-of-products LIGD [5, 16] DTC [24],
GC [1],
GM [17]

– GH [15, 19,
32, 33]

spine Reloaded [22],
Revolutions
[21]

SYB [30],
Reloaded [23]

SYB [37, 29] –

Fig. 1. Generic programming: the design space.

value. For a handful of built-in classes Haskell provides support for genericity:
by attaching a deriving clause to a data declaration the Haskell compiler
automatically generates an appropriate instance of the class. Derivable type
classes (DTC) generalise this feature to arbitrary user-defined classes. A sim-
ilar, but more expressive variant is implemented in Generic Clean [1] (GC).
Clean’s type classes are indexed by kind so that a single generic function can
be applied to type constructors of different kinds. A pure Haskell 98 imple-
mentation of generics (GM) is described by Hinze [17]. The implementation
builds upon a class-based encoding of the type Type of type representations.

– type-safe cast [41]: A cast operation converts a value from one type to an-
other, provided the two types are identical at run-time. A cast can be seen
as a type-case with exactly one branch. The original SYB paper [37] is based
on casts.

– specialisation [14]: This implementation technique transforms an overloaded
function into a family of polymorphic functions (dictionary translation).
While the other techniques can be used to write a library for generics, spe-
cialisation is mainly used for implementing full-fledged generic programming
systems such as PolyP [26] or Generic Haskell [33], that are set up as pre-
processors or compilers.

The approaches differ mostly in syntax and style, but less in expressiveness —
except perhaps for specialisation, which cannot cope with higher-order generic
functions. The second dimension, the generic view, has a much larger impact: we
have seen that it affects the set of data types we can cover, the class of functions
we can write and potentially the efficiency of these functions.

– no view : Haskell has a nominal type system: each data declaration intro-
duces a new type that is incompatible with all the existing types. Two types
are equal if and only if they have the same name. By contrast, in a struc-
tural type system two types are equal if they have the same structure. In a
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language with a structural type system there is no need for a generic view;
a generic function can be defined exhaustively by induction on the structure
of types. The type systems that underly ITA are structural.

– fixed point view : PolyP [26] views data types as fixed points of regular
functors, which are in turn represented as lifted sums of products. This view
is quite limited in applicability: only data types of kind ∗ → ∗ that are
regular can be represented, excluding nested data types and higher-order
kinded data types. Its particular strength is that recursion patterns such as
cata- or anamorphisms can be expressed generically, because each data type
is viewed as a fixed point, and the points of recursion are visible. The original
implementation of PolyP is set up as a preprocessor that translates PolyP
code into Haskell. A later version [34] embeds PolyP program into Haskell
augmented by multiple parameter type classes with functional dependencies
[28]. Oliveira and Gibbons [35] present a lightweight variant of PolyP that
works within Haskell 98.

– sum-of-products view : Generic Haskell [19, 32, 33] (GH) builds upon this
view. In its original form it is applicable to all data types definable in
Haskell 98. We have seen in Section 5.4 that it can be generalised to GADTs.
Generic Haskell is a full-fledged implementation of generics based on ideas
by Hinze [15, 20] that features generic functions, generic types and various
extensions such as default cases and constructor cases [6]. Generic Haskell
supports the definition of functions that work for all types of all kinds, such
as, for example, a generalised mapping function.

– spine views: The spine view treats data uniformly as constructor applica-
tions. The SYB approach has been developed by Lämmel and Peyton Jones
in a series of papers [37, 29, 30]. The original approach is combinator-based:
the user writes generic functions by combining a few generic primitives. The
first paper [37] introduces two main combinators: a type-safe cast for defining
ad-hoc cases and a generic recursion operator, called gfoldl , for implement-
ing the generic part. It turns out that gfoldl is essentially the catamorphism
of the Spine data type [22]: gfoldl equals the catamorphism composed with
toSpine. The second paper [29] adds a function called gunfold to the set
of predefined combinators, which is required for defining generic produc-
ers. The name suggests that the new combinator is the anamorphism of the
Spine type, but it is not: gunfold is actually the catamorphism of Signature,
introduced in Section 5.2.

A Library

A.1 Binary trees

The function inorder yields the elements of a tree in symmetric order.

inorder :: ∀α.Tree α→ [α ]
inorder Empty = Nil
inorder (Node l a r) = inorder l ++ [a ] ++ inorder r
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The function tree turns a list of elements into a balanced binary tree, a
so-called Braun tree [4].

tree :: ∀α.[α ]→ Tree α
tree x
| null x = Empty
| otherwise = Node (tree x1) a (tree x2)
where (x1,Cons a x2) = splitAt (length x ‘div ‘ 2) x

The function perfect d a generates a perfect tree of depth d whose leaves are
labelled with as.

perfect :: ∀α.Int → α→ Perfect α
perfect 0 a = Zero a
perfect (n + 1) a = Succ (perfect n (a, a ))

A.2 Text with indentation

The pretty printing library is implemented as follows.

data Text = Text String
| NL
| Indent Int Text
| Text :♦ Text

text = Text
nl = NL
indent = Indent
(♦) = (:♦)

Each Text-generating function is implemented by a corresponding data con-
structor. The main work is done by the function render , which can be seen as
an interpreter for Text-documents.

render ′ :: Int → Text → String → String
render ′ i (Text s) x = s ++ x
render ′ i NL x = "\n" ++ replicate i ’ ’ ++ x
render ′ i (Indent j d) x = render ′ (i + j ) d x
render ′ i (d1 :♦ d2) x = render ′ i d1 (render ′ i d2 x )
render :: Text → String
render d = render ′ 0 d ""

The functions append and bracketed are derived combinators:

append :: [Text ]→ Text
append = foldr (♦) (text "")
bracketed :: [Text ]→ Text
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bracketed Nil = text "[]"
bracketed (Cons d ds) = align "[ " d

♦ append [nl ♦ align ", " d | d ← ds ] ♦ text "]"

The function append concatenates a list of documents; bracketed produces a
comma-separated sequence of elements between square brackets.

Finally, we provide a Show instance for Text , which renders a text as a string
(this instance is particularly useful for interactive sessions).

instance Show Text where
showsPrec p x = render ′ 0 x

A.3 Parsing

The type ReadS is Haskell’s parser type. The function alt implements the alter-
nation of a list of parsers.

alt :: [ReadS α ]→ ReadS α
alt rs = λs → concatMap (λr → r s) rs

Give a parser for elements, readsList parses a list of elements written as a comma-
separated sequence between square brackets.

readsList :: ReadS α→ ReadS [α ]
readsList r = readParen False (λs → [x | ("[", s1)← lex s, x ← readl s1 ])

where readl s = [(Nil , s1) | ("]", s1)← lex s ]
++ [(Cons x xs, s2) | (x , s1)← r s,

(xs, s2)← readl ′ s1 ]
readl ′ s = [(Nil , s1) | ("]", s1)← lex s ]

++ [(Cons x xs, s3) | (",", s1)← lex s,
(x , s2)← r s1,
(xs, s3)← readl ′ s2 ]
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