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Abstract
The problem of supporting the modular extensibility of both data
and functions in one programming language at the same time is
known as the expression problem. Functional languages tradi-
tionally make it easy to add new functions, but extending data
(adding new data constructors) requires modifying existing code.
We present a semantically and syntactically lightweight variant of
open data types and open functions as a solution to the expression
problem in the Haskell language. Constructors of open data types
and equations of open functions may appear scattered throughout
a program with several modules. The intended semantics is as fol-
lows: the program should behave as if the data types and functions
were closed, defined in one place. The order of function equations
is determined by best-fit pattern matching, where a specific pattern
takes precedence over an unspecific one. We show that our solution
is applicable to the expression problem, generic programming, and
exceptions. We sketch two implementations: a direct implementa-
tion of the semantics, and a scheme based on mutually recursive
modules that permits separate compilation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords expression problem, extensible data types, extensible
functions, functional programming, Haskell, generic programming,
extensible exceptions, mutually recursive modules

1. Introduction
Suppose we have a very simple language of expressions, which
consists only of integer constants:

data Expr = Num Int

We intend to grow the language, and add new features as the need
for them arises. Here is an interpreter for expressions:

eval :: Expr → Int
eval (Num n) = n

There are two possible directions to extend the program: first, we
can add new functions, such as a conversion function from expres-
sions to strings; second, we can add new forms of expressions by
adding new constructors.
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Preferably, such extensions should be possible without modify-
ing the previously written code, because we want to organize differ-
ent aspects separately, and the existing code may have been written
by a different person and exist in a closed library.

Alas, Haskell natively supports only one of the two directions
of extension. We can easily add a new function, such as

toString :: Expr → String
toString (Num n) = show n

but we cannot grow our language of expressions: in Haskell, all
constructors of the Expr data type must be defined the very mo-
ment when Expr is introduced. We therefore cannot add new con-
structors to the Expr data type without touching the original defi-
nition.

The above problem of supporting the modular extensibility of
both data and functions in one programming language at the same
time has been formulated by Wadler [1] and is called the expression
problem. As we have just witnessed, functional languages make it
easy to add new functions, but extending data (adding new data
constructors) requires modifying existing code. In object-oriented
languages, extension of data is directly supported by defining new
classes, but adding new functions to work on that data requires
changing the class definitions. Using the Visitor design pattern, one
can simulate the situation of functional programming in an object-
oriented language: one gains extensibility for functions, but loses
extensibility of data at the same time.

Many partial and proper solutions to the expression problem
have been proposed over the years. However, much of this work
suffers from one or more of the following disadvantages:

• It is focused on object-oriented programming, and cannot di-
rectly be translated to a functional language.

• It introduces rather complex extensions to the type system, such
as multi-methods [2, 3] or mixins [4].

• Open entities have their own special syntax or severe limi-
tations, thereby forcing a programmer to decide in advance
whether an entity should be open or not, because there is no
easy way to switch later.

Closest to our proposal is the work of Millstein et al. [3], who de-
scribe the addition of hierarchical classes and extensible functions
to ML. A discussion of this and other related work can be found in
Section 6.

In this paper, we present a semantically and syntactically
lightweight variant of open data types and open functions as a
solution to the expression problem in the functional programming
language Haskell. By declaring Expr (from the example above) as
an open data type, we can add new constructors at any time and at
any point in the program. If we want to evaluate or print the newly
introduced expression forms, we have to adapt eval and toString .



If these functions are declared as open functions, we can add new
defining equations for the functions at a later point in the program.
The intended semantics is as follows: the program should behave
as if the data types and functions were closed, defined in one place.

The main design goal of our proposal is simplicity: open data
types and open functions are easy to add to the language, and their
semantics is simple to explain as a source-to-source transformation.
In particular, the type system and the operational semantics of
the original language are unaffected by the addition. Interestingly,
we can implement our proposal in such a way that it supports
separate compilation: we employ Haskell’s support for mutually
recursive modules to tie the recursive knot of open functions (see
Section 5.2).

In addition to the expression problem, we present two other ap-
plications of open data types and open functions: generic program-
ming and extensible exceptions.

The rest of the paper is structured as follows: In Section 2,
we present the syntax and informal semantics of open data types
and open functions. We use the expression problem as a running
example and show how it is solved using the new features. We then
look at other applications (Section 3). A formal semantics is given
in Section 4. We investigate possible implementations in Section 5.
We then discuss related work (Section 6), before we conclude in
Section 7.

2. Open data types and open functions
In this section, we describe how to declare open data types and open
functions, and how to add new constructors to open data types and
new equations to open functions. We also explain the semantics of
these constructs, and we discuss the problem of pattern matching
for open functions.

We strive for a simple and pragmatic solution to the problem
of open data types. Therefore, we draw inspiration from a well-
known and widely used Haskell feature that is extensible: type
classes. Instances for type classes can be defined at any point in
the program, but type classes also have a number of restrictions
that make this possible: Type classes have a global, program-wide
meaning. Type class and instance declarations may only appear at
the top level of a module. All instances are valid for the entire
program, and instance declarations cannot be hidden.

We use a similar approach for open data types and functions:
they have a global, program-wide meaning. Open entities can only
be defined and extended at the top level of a module. All construc-
tors and function equations are valid for the entire program, and
cannot be hidden.

2.1 Open data types
The following declaration introduces an open data type of expres-
sions:

open data Expr :: ∗

The keyword open flags Expr as open. In contrast to ordinary data
type declarations, the declaration does not list any constructors.
Instead, constructors of an open data type are separate entities that
can be declared by giving a type signature for them at any point in
the program, for example:

Num :: Int → Expr

The fact that we are giving a type signature for a constructor
identifier (an identifier starting with an uppercase letter or a colon)
signals that this is a constructor of an open data type. The result
type Expr determines the data type that we are extending.

2.2 Open functions
Open functions are introduced by a mandatory type signature, also
marked with the open keyword:

open eval :: Expr → Int

Note that only top-level functions can be marked as open. The
defining equations for an open function can be provided at any
point of the program where the name of the function is in scope,
using the normal syntax for function definitions:

eval (Num n) = n

If we leave it at that, we have a program consisting of an Expr
data type with only one constructor, and an eval function consisting
of only one equation, just like in the introduction.

2.3 The expression problem
Open data types and open functions support both directions of
extension. A new function can be added as usual, except that we
also mark it as open:

open toString :: Expr → String
toString (Num n) = show n

It is now easy to add a new constructor for Expr . All we have to do
is provide its type signature:

Plus :: Expr → Expr → Expr

Of course, if we do not adapt eval and toString and call it on
expressions constructed with Plus , we get a pattern match failure.
However, since eval and toString are open functions, we can just
provide the missing equations:

eval (Plus e1 e2) = eval e1 + eval e2

toString (Plus e1 e2) = "(" ++ toString e1 ++ "+"

++ toString e2 ++ ")"

Note that we have extended our program without modifying exist-
ing code.

2.4 Semantics
Let us now turn to the semantics of open data types and open
functions. The driving goal of our proposal is to be as simple
as possible: a program should behave as if all open data types
and open functions were closed, defined in one place. Apart from
the syntactic peculiarity that they are defined in several places,
open data types and open functions define ordinary data types and
functions. Their addition to the language affects neither the type
system nor the operational semantics of the underlying language.

To return to our example: the meaning of the program written
above is exactly the same as the meaning of the following program
without open data types or open functions:

data Expr = Num Int
| Plus Expr Expr

eval :: Expr → Int
eval (Num n) = n
eval (Plus e1 e2) = eval e1 + eval e2

toString :: Expr → String
toString (Num n) = show n
toString (Plus e1 e2) = "(" ++ toString e1 ++ "+"

++ toString e2 ++ ")"

Compared to the original program, all the constructors are collected
into a single definition of Expr , and all function equations are
collected to provide a single definition of eval and toString . In
particular, the recursive calls in the Plus-equations of eval and
toString point to the complete definitions of eval and toString .



Let us consider the order in which the previously separate dec-
larations are grouped. The order of data type constructors is mostly
irrelevant. The only exception occurs when applying the deriving
construct to an open data type (see Section 4.4).

However, the order in which the defining equations of a function
appear is significant. Haskell employs first-fit pattern matching: the
equations of functions are matched linearly, from top to bottom.
The first equation that fits is selected.

2.5 Best-fit left-to-right pattern matching
For open functions, first-fit pattern matching is not suitable. To
see why, suppose that we want to provide a default definition for
toString in order to prevent pattern matching failures, stating that
everything without a specific definition is ignored in the string
representation:

toString = ""

Using first-fit pattern matching, this equation effectively closes the
definition of toString . Later equations cannot be reached at all.
Furthermore, if equations of the function definition are scattered
across multiple modules, it is unclear (or at least hard to track) in
which order they will be matched.

We therefore adopt a different scheme for open functions, called
best-fit left-to-right pattern matching. We describe the details in
Section 4.3, but the idea is that the most specific match (rather
than the first match) wins. This makes the order in which equations
of the function appear irrelevant. In the example above, it ensures
that the default case for toString will be chosen only if no other
equation matches. To be precise, the definition of toString with
a default case will behave as in the following standard Haskell
definition, in which the default case occurs last:

toString :: Expr → String
toString (Num n) = show n
toString (Plus e1 e2) = "(" ++ toString e1 ++ "+"

++ toString e2 ++ ")"

toString = ""

Before we describe the details and corner cases of the semantics in
Section 4, let us investigate two application areas of open datatypes
and open functions.

3. Applications
In this section, we present two applications where open data types
and open functions help to overcome severe limitations. First, we
show how lightweight generic programming becomes modular with
the introduction of an extensible type of type representations. Sec-
ond, we describe a replacement for Haskell’s ad-hoc approach to
exceptions.

3.1 Generic programming
A generic function is a function that is defined once, but works
on many data types, by viewing all data types in a uniform way.
Classical examples of generic functions are equality and compari-
son functions, parsing and pretty-printing, traversals over large data
structures such as abstract syntax trees etc.

Many ways to incorporate generic programming into func-
tional programming languages have been proposed, ranging from
lightweight libraries [5] to full-fledged language extensions [6].
One particularly attractive approach, recently discussed in a flurry
of papers [7, 8, 9], is to base generic functions on overloaded func-
tions, i.e., functions that are parametrized by a type representation.

A type of type representations is easy to define using a general-
ized algebraic data type (GADT), and to make it more useful, we
mark it as open:

open data Type :: ∗ → ∗
Int :: Type Int
Char :: Type Char
Pair :: Type a → Type b → Type (a, b)

A value of type Type a is a representation of type a . Using pat-
tern matching on such a representation, we can group specialized
functions for different data types in a single definition. As an ex-
ample, consider an overloaded function that turns a value into its
string representation:

open toString :: Type a → a → String
toString Int n = show n
toString Char c = show c
toString (Pair a b) (x , y) =
"(" ++ toString a x ++ "," ++ toString b y ++ ")"

Using a slightly more involved definition, we can produce a repre-
sentation with a minimal amount of parentheses such as Haskell’s
built-in function show , or a pretty-printer that handles indentation
and alignment.

Whenever we add new data types, we must equip existing over-
loaded and generic functions with new equations for the new data
type. That is why the Type data type and overloaded functions are
open.

If we add a new type, say binary trees

data Tree a = Empty | Node (Tree a) a (Tree a)

we adapt Type and overloaded functions accordingly:

Tree :: Type a → Type (Tree a)

toString (Tree a) Empty = "Empty"

toString (Tree a) (Node l x r) =
"(Node " ++ toString (Tree a) l ++ " "

++ toString a x ++ " "

++ toString (Tree a) r ++ ")"

Generic functions are built on top of overloaded functions and
reduce the overhead of adding a new data type. Only a single
overloaded function, which allows to access the structure of all data
types in a uniform way, must be augmented with a new equation
for the new type; all the generic functions then work on the new
type without modification. However, the extensibility of this single
overloaded function and the extensibility of the data type Type are
still required.

The approach to generic programming using type represen-
tations is particularly attractive, because overloaded and generic
functions are ordinary Haskell functions, and therefore first-class
citizens. Generic functions can be passed as arguments to other
functions, or returned as results of other functions. Pattern match-
ing on type arguments boils down to pattern matching on values.
However, without open data types, such an approach is only useful
for experimentation or in a closed setting where all types are known
in advance. In general, a generic programming library must be able
to deal with the case that new, application-specific data types are
defined later by a user. With open data types, this is possible, and a
lightweight generic programming framework can be distributed as
a library.

Furthermore, this example indicates that there is no problem in
having open GADTs. For GADTs, the types of the constructors
are less restricted, but the result type of a constructor still uniquely
determines the data type it belongs to.

3.2 Exception handling
Haskell (or, more precisely, GHC) has the following exception
interface:



program program ::= module∗

module module ::= module moduleid where {decl∗}
declaration decl ::= import moduleid

| data dataid :: kind where {consig∗}
| open data dataid :: kind
| consig
| varid :: type
| open varid :: type
| equation

function equation equation ::= varid pat∗ = expr
constructor type signature consig ::= conid :: type
pattern pat ::= varid | (conid varid∗)
kind kind ::= ∗ | (kind → kind)
type type ::= varid | conid | (type type) | (type → type)
expression expr ::= varid | conid | (expr expr)

Figure 1. Syntax of the core language for open data types and open functions

throw :: Exception → a
catch :: IO a → (Exception → IO a)→ IO a

An exception can be thrown anywhere using throw , but only
caught in a computation using catch . The first argument to catch
is the computation that is watched for exceptions, the second argu-
ment is the exception handler: if the computation raises an excep-
tion, the handler is called with the exception as an argument.

Different applications require different kinds of exceptions. For
example, an exception caused due to a filesystem permission prob-
lem should additionally provide the file name that could not be ac-
cessed, and the permissions of that file. An array exception should
provide the index that was determined to be out of bounds.

If we look at the definition of the type Exception in the GHC
libraries, we learn that there are several predefined constructors for
frequent errors. If an application-specific error arises, such as when
an illegal key is passed to the lookup function of a finite map library,
we must therefore try to find a close match among the predefined
constructors, where we would prefer to define a new tailor-made
constructor KeyNotFound .

The problem of extensible exceptions is so pressing that the ML
family of languages has a special language construct for exceptions.
In OCaml one can define

exception KeyNotFound of key ; ;

to extend the exception language. The exception construct de-
clares a new constructor KeyNotFound for the built-in expression
data type exn . The constructor is parametrized over an argument of
type key .

An exception in OCaml can be thrown using the function

raise : exn → ′a

which in OCaml syntax means that raise takes an exception exn
to any type ′a. If the lookup function does not find a key in a given
finite map, it can trigger an exception:

lookup k fm = . . . raise (KeyNotFound k) . . .

Associated with the exception keyword is a special form of case
statement to catch exceptions, called try:

try . . .with
| KeyNotFound k → . . .

If none of the patterns in a try statement match, the exception is
automatically propagated (i.e., re-raised).

With open data types, we can model the same approach in
Haskell. We declare the data type of exceptions to be open:

open data Exception :: ∗

Declaring a new exception boils down to declaring a new construc-
tor of the exception type

KeyNotFound :: Key → Exception

We can throw the exception using

lookup k fm = . . . throw (KeyNotFound k) . . .

and catch it using a combination of catch and a normal case
statement:

catch (. . .)
(λe → case e of KeyNotFound k → . . .

→ return (throw e))

The difference to the OCaml version is that we need an explicit
default case for the handler, in which we explicitly re-raise the
exception. Without this default case, we would get a run-time error
if none of the provided handlers matches.

Interestingly, we have no need for open functions in the con-
text of exception handling. Handlers are typically written as local
functions that match against a few known kinds of exceptions. Un-
known exceptions are always propagated using a default case, ren-
dering extension of the handler at a later time unnecessary.

We have shown that open data types subsume ML-style excep-
tion handling. A special-purpose language construct for exceptions
is not required. While it is also possible to implement extensible
exceptions in Haskell using dynamic typing via the Typeable type
class, we believe that our variant of exception handling is more in
the spirit of typed functional programming languages.

4. Semantics
After we have seen the proposed language extension “in action”,
let us now discuss the precise semantics.

4.1 Core language
To abstract from the unnecessary ballast that Haskell as a full-
blown programming language carries around, we will use a small
core language containing only the relevant features, with the syntax
given in Figure 1. The syntax is shown again, as Haskell data types,
in Figure 2, so that we can use Haskell code to specify parts of the
semantics concisely.

A program consists of several modules. A module has a name
and contains declarations. We only consider a few forms of decla-
rations. Other modules can be imported (but there are no export or



data Program = Program [Module ]
data Module = Module ModuleId [Declaration ]
data Declaration = ImportDecl ModuleId

| DataDecl DataId Kind [ConSig ]
| OpenDataDecl DataId Kind
| Constructor ConSig
| TypeSig VarId Type
| OpenTypeSig VarId Type
| Function Equation

data Equation = Equation VarId [Pattern ] Expr
data ConSig = Sig ConId Type
data Pattern = VarPat VarId

| ConPat ConId [Pattern ]
data Kind = Star | Arrow Kind Kind
data Type = TypeVar VarId | TypeConst DataId

| TypeApp Type Type
| TypeFun Type Type

data Expr = Var VarId | Con ConId
| App Expr Expr

Figure 2. Haskell syntax of the core language

import lists). We can define data types and open data types. We can
list constructors of open data types, provide type signatures for nor-
mal functions, provide type signatures for open functions. Finally,
functions are defined by listing one or more defining equations.

Such defining equations have a left hand side consisting of
several patterns, but there are no guards. Patterns are reduced to
variable and constructor patterns.

Kinds are only used in data type declarations.
The type and expression language are reduced as far as possible,

only leaving identifiers and application (and function types).
Note that only top-level entities can be declared as open. Be-

cause of this restriction, local definitions (let) do not add anything
interesting to the core language, hence we omit them.

There are several assumptions that a valid program must ful-
fil besides adhering to the correct syntax. There must be a distin-
guished module called Main , and the program must not contain
modules that are not reachable from Main in the import graph.

All function cases for non-open functions must appear consec-
utively in a single module. Constructors that appear in a data type
declaration must have the correct result type, and constructors ap-
pearing outside of data type declarations must have an open data
type (that is in scope) as a result type. Constructor patterns must be
fully applied.

All function cases for the same function (open or not) must have
the same number of left hand side arguments. This restriction is
somewhat arbitrary in Haskell (mainly in place to prevent errors),
but it is essential to implement best-fit pattern matching for open
functions, which only analyses left hand side arguments.

All identifiers used on the right hand sides of type signatures
and function definitions must be in scope, and also all constructors
that appear in patterns. A data declaration (and an open data decla-
ration) brings the name of the data type into scope. A constructor
signature brings the name of the constructor (for an open data type)
into scope. A type signature of an open function brings the name of
the open function into scope. A function definition for a non-open
function brings the name of the function into scope. An import
statement brings all entities (functions and data types) from the im-
ported module into scope, and a module exports all entities it de-
fines or imports.

We assume that all identifiers uniquely refer to a single entity in
scope, and to emphasize this point, we assume that all identifiers are
qualified with a module name. Defining occurrences of identifiers

must point to the current module, i.e., M .x can only be defined in
module M . The only exception are equations of open functions. If
new equations are added to an open function that is imported from
another module, the new equations define the same entity, with the
module identifier of the original module.

In Figure 3, we display the evaluator for expressions in the
core language. The definitions of the open data type Expr and
the open function eval are distributed over two modules Expr
and Main . The left hand side shows the program in an informal
style as it might be written by hand. The right hand side shows the
same program with unique qualified identifiers (it is not necessary
to qualify local variables; we use unqualified local variables for
reasons of space).

In Section 4.4, we will discuss issues that arise if we consider
the full Haskell language instead of our core language.

4.2 Semantics of open data types and open functions
We now define the semantics of open data types and open func-
tions by mapping a program of the core language to another pro-
gram in the same language that does not make use of open defini-
tions (in other words, the resulting program does not contain occur-
rences of the data constructors OpenDataDecl , Constructor , or
OpenTypeSig).

The transformation is straightforward. The resulting program
contains only a single module Main , which comprises all entities
of all modules from the original program. Names in the original
program are always qualified. We therefore mangle an entity M .x
into an identifier local to module Main that contains both M
and x . We write such a mangled identifier as Main.M -x in this
paper. Each open data type is mapped to an ordinary data type.
All constructors of the open data type are collected and appear as
constructors of the closed data type in the target program. Similarly
for functions, we group all cases that belong to an open function,
effectively turning it into a closed function.

The result of translating the example program of Figure 3 is
depicted in Figure 4.

Figure 5 formalizes the idea as a function translateDecls ,
which takes a single declaration to a list of declarations. As ad-
ditional inputs, the function translateDecls expects a list of all
constructors of open data types in the program, and a list of all
equations of open functions in the program. Import statements and
constructor type signatures are removed. They do not occur in the
resulting program. A declaration of an open data type is translated
into a declaration of an ordinary data type. We traverse the list of all
constructors to collect the constructors for the data type in question.
We proceed similarly for open functions: an open type signature is
replaced by an ordinary type signature, and we collect all defin-
ing equations for that function. All other forms of declarations are
unaffected by the translation.

The only tricky part of the process is how we order the collected
constructors and function equations. Let us first consider construc-
tors. The order of constructors in a data type definition has no ef-
fect in our example language. The order is, however, relevant in
full Haskell: some of the type class instances that can be generated
automatically by the compiler via the deriving construct (Ord ,
Enum , and Bounded ) are affected by the textual order of construc-
tors. Because we want to use the core language as a representative
example for full Haskell, we specify the order ccmp (“constructor
compare”) in the following paragraph, and assume that the allSigs
argument of translateDecls is sorted according to ccmp.

Consider the graph where each module that makes up the orig-
inal program is a node, and each import statement defines a di-
rected edge. The relative order between import statements in a
module defines an order between the outgoing edges of a node.



module Expr where
import Prelude

open data Expr :: ∗
Num :: Int → Expr

open eval :: Expr → Int
eval (Num n) = n

module Main where
import Prelude
import Expr

Plus :: Expr → Expr → Expr
eval (Plus e1 e2) = eval e1 + eval e2

module Prelude where
data Int :: ∗ where { . . .}
(+) :: Int → Int → Int
(+) = . . .

module Expr where
import Prelude

open data Expr .Expr :: ∗
Expr .Num :: Prelude.Int → Expr .Expr

open Expr .eval :: Expr .Expr → Prelude.Int
Expr .eval (Expr .Num n) = n

module Main where
import Prelude
import Expr

Main.Plus :: Expr .Expr → Expr .Expr → Expr .Expr
Expr .eval (Main.Plus e1 e2) = Expr .eval e1 Prelude.+ Expr .eval e2

module Prelude where
data Prelude.Int :: ∗ where { . . .}
(Prelude.+) :: Prelude.Int → Prelude.Int → Prelude.Int
(Prelude.+) = . . .

Figure 3. Expression problem in the core language

module Main where

data Main.Expr -Expr :: ∗ where
Main.Expr -Num :: Main.Prelude-Int → Main.Expr -Expr
Main.Main-Plus :: Main.Expr -Expr → Main.Expr -Expr → Main.Expr -Expr

Main.Expr -eval :: Main.Expr -Expr → Main.Prelude-Int
Main.Expr -eval (Main.Expr -Num n) = n
Main.Expr -eval (Main.Main-Plus e1 e2) = Main.Expr -eval e1 Main.Prelude-+ Main.Expr -eval e2

data Main.Prelude-Int :: ∗ where { . . .}
(Main.Prelude-+) :: Main.Prelude-Int → Main.Prelude-Int → Main.Prelude-Int
(Main.Prelude-+) = . . .

Figure 4. Example translation of expression evaluator

translateDecls :: [ConSig ]→ [Equation ]→ Declaration → [Declaration ]
translateDecls allSigs allOpenEquations d =

case d of
ImportDecl → [ ]
OpenDataDecl n k → [DataDecl n k (filter (constrForData n) allSigs)]
Constructor → [ ]
OpenTypeSig n t → TypeSig n t :

[Function f | f ← allOpenEquations,nameOf f = = n ]
Function f → if nameOf f ∈ map nameOf allOpenEquations

then [ ] else [Function f ]
→ [d ]

Figure 5. Semantics of declarations



pcmp :: [Pattern ]→ [Pattern ]→ Ordering
pcmp ps ps ′ = foldr (C) EQ (zipWith (∼) ps ps ′)

(∼) :: Pattern → Pattern → Ordering
VarPat ∼ ConPat = LT
ConPat ∼ VarPat = GT
VarPat ∼ VarPat = EQ
ConPat n ps ∼ ConPat n ′ ps ′ = ccmp n n ′ C pcmp ps ps ′

(C) :: Ordering → Ordering → Ordering
LT C = LT
EQ C x = x
GT C = GT

Figure 7. Best-fit ordering

An order between modules is induced by a depth-first traversal of
the graph, where the children are smaller than the parent, starting
at Main (i.e., Main is the largest element). The order ccmp is de-
termined by the location of the data constructors to compare: if both
are in the same module, we use the relative order of statements; if
the data constructors reside in different modules, we use the mod-
ule order. Note that even though ccmp can be slightly difficult to
track for the programmer, the important fact is that there exists a
well-specified order, so that the above-mentioned classes can be
derived.

For functions, however, the situation is different. We will ex-
plain in Section 4.3 how we order the equations of open functions.

4.3 Best-fit pattern matching
In Section 2.5, we have argued that best-fit pattern matching is
preferable to first-fit pattern matching in the context of open func-
tions. Let us now formalize the semantics of best-fit pattern match-
ing. As outlined in Section 2, our proposed approach is inspired by
technology that is available for type classes, namely the resolution
of overlapping instances.

To summarize, the idea is that we take not the first matching
case, but the best matching case. A value of constructor C matches
a pattern of constructor C better than a pattern that is a variable. If
C has arguments, then the arguments are matched according to the
same policy from left to right. It is an error if the exact same pattern
occurs twice for the same open function.

Figure 6 shows an example. The left hand side lists the equa-
tions of a function f in an order in which they might appear in the
program. The right hand side shows a closed version of f where
the equations of f have been reordered so that the best-fit seman-
tics and Haskell’s first-fit semantics coincide.

Such a reordering of the equations can be computed by defin-
ing an ordering on lists of patterns as given in Figure 7. Lists of
patterns are ordered lexicographically using (C), where the order
on individual patterns is given by (∼) as follows: variable patterns
are smaller than constructor patterns. If we have to compare two
constructor patterns, we compare the constructor names and the ar-
gument patterns and combine the results lexicographically. The or-
der on constructor names is irrelevant (because patterns of different
constructors never overlap), so we choose the constructor ordering
ccmp.

If the function translateDecls from Figure 5 receives the list
allOpenEquations sorted according to the specified order, then
the resulting program will contain the equations of open functions
in such an order that best-fit and first-fit pattern matching coincide,
as in the right hand side of Figure 6.

4.4 Haskell
Let us now delve into the finer points of our proposal, and consider
all of Haskell rather than our core language.

Module system The Haskell module system allows to specify
export and import lists, and it allows to import modules qualified
and under a different name. We have the following design choice
for open data types and functions:

• open functions, open data types, and constructors of open data
types are always exported and cannot be hidden, or

• open entities can selectively be hidden, but that only controls
their visibility, without affecting the semantics. If a constructor
of an open data type is not visible in a certain module, it cannot
be referenced by name, but it still exists.

Qualified imports and module renamings only complicate the rules
of how identifiers refer to entities, but they do not interact with open
data types and functions.

Local bindings As we have explained before, all open entities are
top-level entities. Local (let-bound) function definitions cannot be
open, even if they have a local name. We do not think that this is a
problem, because functions that should be open can be lifted to the
top level.

Type classes Although we used type classes for inspiration, there
is almost no interaction between type classes and open entities.
The deriving construct is one exception. Deriving type class
instances for open data types is possible. The deriving clause can
be specified at the point where the open data type is introduced. The
semantics is that the translated normal data type contains the same
deriving clause. A useful variation for open data types would
be that derived type classes can be specified separately from the
open data definition. A statement such as

derive Show Expr

could ask the compiler to equip the open data type Expr with a
Show instance at a later point.

Type class instances for open data types can be defined nor-
mally. If a class method is desired to be open, it must be defined to
be equal to an open top-level function.

Patterns and guards Haskell’s pattern language is more expres-
sive than the patterns of the core language. Let us consider each of
the different pattern constructs in turn:

As-patterns do not affect the semantics of open functions at
all. An as-pattern is ordered like that pattern with the as-clauses
removed.

Wildcard patterns ( ) are syntactic sugar for variable patterns
and are thus treated like variable patterns.

Irrefutable patterns are matched lazily. In other words, the
match always succeeds at first; the value is only actually decom-
posed if the components are accessed later (leading to potential
run-time failure at that point). For the purpose of selecting the right
equation of a function, an irrefutable pattern behaves as a variable
pattern (the match always succeeds), and we therefore treat it like
a variable.

Guards in Haskell interact with pattern matching. Guards are
boolean conditions that can be attached to the left hand side of a
function. An equation only matches if the patterns of the equation
match and the guard succeeds. Otherwise, the next function equa-
tion is matched.

If guards are added to the pattern language, it is somewhat
unclear what “the next function equation” means in the context of
best-fit pattern matching. There are several options to deal with this
problem:



open f :: [Int ]→ Either Int Char → . . .

f (x : xs) (Left 1) = . . .
f y (Right a) = . . .
f (0 : xs) (Right ’X’) = . . .
f (1 : [ ]) z = . . .
f (0 : [ ]) z = . . .
f [ ] z = . . .
f (0 : [ ]) (Left b) = . . .
f (0 : [ ]) (Left 2) = . . .
f y z = . . .
f (x : [ ]) z = . . .

f :: [Int ]→ Either Int Char → . . .

f [ ] z = . . .
f (0 : [ ]) (Left 2) = . . .
f (0 : [ ]) (Left b) = . . .
f (0 : [ ]) z = . . .
f (0 : xs) (Right ’X’) = . . .
f (1 : [ ]) z = . . .
f (x : [ ]) z = . . .
f (x : xs) (Left 1) = . . .
f y (Right a) = . . .
f y z = . . .

Figure 6. Example of the semantics of best-fit left-to-right pattern matching

• Completely ignore the guards to determine the best-fitting equa-
tion (and possibly raise a run-time error if all guards of an oth-
erwise matching equation fail).

• Collect guards in equations for the same patterns according to
a variant of the ccmp order (the order in which they appear in
the program, inlining import statements).

• Disallow guards in equations for open functions.

5. Implementation
The goal of this section is to sketch two implementations of open
data types and functions. One is directly based on the semantics, the
other allows separate compilation, but requires mutually recursive
modules.

5.1 Naı̈ve implementation
The semantics of open data types and open functions defined in
Section 4 is defined as a source-to-source transformation where the
resulting program does not contain any open data types or open
functions. The Figures 3 and 4 illustrate the transformation for
the evaluator on expressions. This translation constitutes already a
possible implementation, and it has the advantage of being correct
by construction.

The disadvantage of this approach is that a whole program
must be compiled at once, i.e., there is no separate compilation of
modules. If any single module changes, the transformation has to be
applied again and the entire program must be compiled again. This
removes a bit of the just gained flexibility, because compilation
times of resulting programs can be high, and libraries containing
open data types or functions must be distributed in source form.

As a pragmatic optimization, modules that do not define or use
open data types or functions (for example, the Haskell Prelude)
can be excluded from the collapsing process.

It is important to realize that while compilation times may be
higher when the whole program is compiled at once, the resulting
programs are probably more efficient. Experience with the tool
Haskell All-In-One [10], which performs the process of collapsing
a Haskell program into one module (without any further support
for open data types and functions, however), suggests that resulting
programs are usually faster than programs compiled via separate
compilation, because compilers can apply more optimizations if the
complete program information is available at every point.

The new Haskell compiler Jhc [11] is also based on this assump-
tion and compiles whole programs at once for better optimization.
Jhc can cache module information in an internal format, and com-
pilation times are acceptable for moderately-sized applications. We
expect that open data types and open functions would be easy to
add to Jhc using the naı̈ve implementation technique.

5.2 Implementation that supports separate compilation
We now present an alternative translation scheme for open data
types and open functions that supports separate compilation. A look
back at the naı̈ve implementation immediately reveals a simple op-
portunity for optimization: only because we have open data types
and open functions in some parts of the program, we have entirely
collapsed the program into a single module. But the idea to col-
lect open data types and open functions and translate them into
closed data types and closed functions only affects the declarations
of such open entities, which probably constitute a relatively small
part of the entire program. A better approach is thus to translate
each module M to a module M ′ which contains all the original
declarations except the declarations of open entities. In particular,
Main is translated to Main ′ and if M imports N , then M ′ im-
ports N ′. The resulting program consists of an additional module,
a new Main module, which contains all the collected open entities
of the program.

The modules of the resulting program are usually mutually
recursive: each module M that defines an open entity results in a
module M ′ that imports Main; but Main in turn depends on many
modules of the program, because it contains the definitions of all
the open entities.

The above solution has two disadvantages:

• The code of open functions is not compiled separately. Even if
the structure of an open function is unchanged and only a single
right hand side of one equation of that function is modified, the
entire module Main has to be recompiled.

• While a Haskell implementation supporting mutually recursive
modules can now compile the modules separately, it cannot
compile them independently. Whenever a definition of an open
entity changes, all modules depending on Main must be recom-
piled.

In the following, we explain how these two problems can be alle-
viated. Figure 8 shows the result of translating the program from
Figure 3 according to the final version of this translation scheme.

Splitting left and right hand sides of functions An equation of
a function can be split into two equations: the first performs the
pattern matching and in the case of success calls the other; the
second executes the right hand side.

As an example, consider the equation for eval on the Plus
constructor:

eval (Plus e1 e2) = eval e1 + eval e2

This equation is split into the two following equations:

eval (Plus e1 e2) = eval ′ e1 e2

eval ′ e1 e2 = eval e1 + eval e2



module Expr ′ where
import Prelude
import Main

(Main.Expr -Expr :: ∗,
Main.Expr -Num :: Prelude.Int → Expr ,
Main.Expr -eval :: Main.Expr -Expr → Prelude.Int)

Expr .Expr -eval1 n = n

module Main ′ where
import Prelude
import Expr ′

import Main
(Main.Expr -Expr :: ∗,
Main.Expr -Num :: Prelude.Int → Expr ,
Main.Main-Plus :: Main.Expr -Expr → Main.Expr -Expr → Main.Expr -Expr ,
Main.Expr -eval :: Main.Expr -Expr → Prelude.Int)

Main.Expr -eval2 e1 e2 = Main.Expr -eval e1 Prelude.+ Main.Expr -eval e2

module Main where
import Expr ′

import Main ′

data Main.Expr -Expr :: ∗ where
Main.Expr -Num :: Main.Prelude-Int → Main.Expr -Expr
Main.Main-Plus :: Main.Expr -Expr → Main.Expr -Expr → Main.Expr -Expr

Main.Expr -eval :: Main.Expr -Expr → Prelude.Int
Main.Expr -eval (Main.Expr -Num n) = Expr .eval1 n
Main.Expr -eval (Main.Main-Plus e1 e2) = Expr .eval2 e1 e2

Figure 8. Example translation of expression evaluator supporting separate compilation

The second equation no longer performs pattern matching. It has
only variables as arguments: the free variables that occur in the
patterns of the original function. The second equation thus stands
alone and can be compiled separately, whereas the first must con-
stitute a part of the final eval function that contains all patterns.

The general technique is the following: If module M contains
an open function equation of the form

N .f p1 . . . pn = rhs

and if v1, . . . , vk are the variables bound by the patterns p1, . . . , pn,
we generate two equations for the target program:

Main.N -f p1 . . . pn = M ′.M -fu v1 . . . vk

M ′.M -fu v1 . . . vk = rhs

Here, u is a module-wide unique number, to distinguish different
equations of one function M ′.f defined in a single module. The
second equation is placed as a function definition in the translated
module M ′, whereas the first equation constitutes part of a function
definition in module Main .

Stable module interfaces While many modules import Main ,
most modules use only a small part of it. The functionality that
a module M ′ expects Main to provide can be captured in an
interface. The interface changes only when the original module M
is modified, because the interface comprises just the open data
types, constructors, and open functions that are in scope in M .

On the other hand, as long as the interface between Main and
M remains stable, it is reasonable to assume that an implementa-
tion does not have to recompile M when Main changes.

In the example in Figure 8, we have attached the interface to
the import statements. The syntax of the core language must be
extended as shown in Figure 9.

An interface consists of many interface declarations. Each in-
terface declaration can be the kind signature of a data type, a type
signature of a constructor, or a type signature of a function. The im-
ported module implements the interface if it exports the specified
entities with the specified kinds or types. A program is valid only if
all specified interfaces are implemented by the imported modules.

GHC implements almost all the features we describe here. It
supports mutually recursive modules, and it supports the declara-
tion of stable interfaces in such a way that a module only has to
be recompiled if the interface changes. Interfaces have to be speci-
fied by the programmer in GHC-specific .hs-boot files, which are
written in a subset of Haskell.

What GHC does not currently support is to specify constructors
as single entities within an interface. Data types can only be en-
tirely abstract (not allowing pattern matching) or concrete with all
constructors. The reason is that pattern matching can be compiled
more efficiently if the layout of the data type is known completely.
There are no theoretical difficulties in lifting this restriction, but it
might imply a small performance loss if closed functions pattern
match on open data types.

6. Related work
6.1 The expression problem
The expression problem which was originally posted by Wadler [1]
has received a lot of attention, and an impressive amount of re-
search has been performed in order to solve the problem.



declaration decl ::= import moduleid (idecl∗) | . . .
interface declaration idecl ::= data dataid :: kind | consig | varid :: type

Figure 9. Syntax of the core language for open data types and open functions

Zenger and Odersky [12] present a list of criteria to evaluate
solutions to the expression problem:
• extensibility for both data types and functions,
• strong static type safety,
• no modification or duplication of existing code,
• and separate compilation.

Our solution – using the translation based on mutually recursive
modules – fulfills all four properties.

Strong static type safety can be implemented to various degrees:
Haskell’s type system automatically ensures that functions are only
applied to values of the correct (open) data type, but it does not
guarantee the absence of pattern match failures, which usually are
runtime errors in Haskell. Haskell implementations such as GHC
check exhaustiveness of pattern matching and issue a compile-
time warning, but transferred to our approach, this means that the
exhaustiveness check is global for the open functions only occurs
when Main is compiled, and is therefore not modular.

Millstein et al. [3] have a solution to the expression problem
for ML that is in some ways very close to ours: their approach is
also based on both open data types (hierarchical classes in their
language) and open functions, and their syntax can be mapped
to ours almost one-to-one. In their system, there is no distinction
between open and closed entities, making it possible to extend
anything at any time without a major impact on the program.
Function cases are also ordered according to a form of best-fit
pattern matching. However, their approach is both stronger and
more complex than ours: they support “implementation-side type
checking”, i.e., their system can statically and modularly check that
all pattern matches are exhaustive and unambiguous; on the other
hand, their system adds classes and inheritance (and thus a form of
subtyping to the language), and places a couple of restrictions on
the patterns of open functions.

Most of the work on the expression problem is focused on
OO languages. A noteworthy example is the one of Zenger and
Odersky [13], because their solution is very similar to ours, albeit
in an OO language: algebraic data types and pattern matching are
added to an OO language, thereby providing a mixture of object-
oriented and functional constructs within a single language. By
integrating subclassing with algebraic data types, such data types
can be extended by new constructors. Open functions can then also
be modelled by subclassing and redefining a method.

Both Zenger and Odersky [12, 13] as well as Torgersen [14]
compare and categorize many proposed solutions. Most approaches
to the expression problem are based on rather heavyweight type
system extensions, such as mixins [4] or multi-methods [2, 3] and
subtyping, which is a central feature in (usually type-checked) OO
feature, but not trivial to add to functional languages (see also
below).

6.2 Polymorphic variants, extensible variants
Polymorphic variants are implemented in OCaml [15] and have
been proposed for Haskell [16, 17]. Variant types are anonymous
types that enumerate a number of constructors. If one variant’s
constructors are a subset of another, the two variant types are in
a subtype relationship. The programmer can thus extend a variant
with a new constructor, and existing functions continue to work.
Garrigue [18] shows that variants can solve the expression problem.
Variants do not, however, yield open functions: if a function is

supposed to work on an additional constructor, the programmer
must adapt the original definition, or define a new function that
adds the new case and otherwise refers to the old version.

If open functions are simulated by the definition of a new wrap-
per function, recursive calls in the original function will not point
to the new wrapper, but continue to point to the original function.
Recursion must therefore be tied manually using a fixed-point oper-
ator at appropriate places, causing more work for the programmer.

Variants are by no means a simple language extension, and
complicate the type system significantly. Gaster and Jones [16]
show that extensible variants are related to extensible records.

6.3 O’Haskell, OOHaskell
Several attempts have been made to add object-oriented program-
ming capabilities to Haskell. O’Haskell [19] is a language exten-
sion that adds subtyping to Haskell’s type system and introduces
objects as a special language construct. OOHaskell [20] is a library
and a collection of coding techniques that enable to simulate object-
oriented programming in current Haskell (with some widely used
extensions), using the type class system.

The main difference of this line of work in contrast to ours is
that these approaches are far more ambitious: they aim at allowing
object-oriented techniques in Haskell, whereas we only want to add
a new direction of extensibility.

While the two approaches may allow solutions to the expression
problem involving objects, they have the significant drawback that
they force an object-oriented mind-set on the programmer in order
to do so: if we discover that a closed data type should in fact be
open, the program has to be restructured such that the data type is
mapped to a class. In contrast, declaring the data type as open can
be achieved by adding a keyword open and removing a keyword
where in order to ‘free’ the constructors – a very local change.

6.4 Type classes
Even without the OOHaskell machinery, it is simple to simulate
open data types and functions using type classes. While the same
argument just made – restructuring of the program and syntactical
overhead – holds for this encoding, too, it is nevertheless worth-
while to explore the connection a bit further, because we have used
ideas from type classes throughout this paper to guide us in our
design for open data types and open functions.

When using a type class encoding, open data types are mapped
to several data types, one per constructor, and open functions are
mapped to type classes with a single method. Figure 10 shows the
evaluator on expressions rewritten in this style as an example.

This encoding bears several disadvantages:

• If we use type classes, we cannot define open functions in a
natural syntax with the full powers of pattern matching. This
disadvantage is most obvious if we reconsider the exception ex-
ample from Section 3.2. An exception handler is usually a lo-
cal function pattern matching on a limited number of exception
constructors. It would be extremely inconvenient to lift each
handler to a top-level class definition, with each branch of the
case statement being an instance of that class.

• Data type definitions become awkward, because constructors
have to be lifted to types. There is no clear relation anymore be-
tween a constructor and the data type it constructs. If construc-
tors are data types, we cannot express in Haskell that a function



data Num = Num Int

class Eval a
where eval :: a → Int

instance Eval Num
where eval (Num n) = n

data Plus a b = Plus a b

instance (Eval a,Eval b)⇒ Eval (Plus a b)
where eval (Plus a b) = eval a + eval b

Figure 10. Extensible evaluator on expressions using type classes

such as Eval expects only constructors of a certain data type.
This weakness could be eliminated by introducing data kinds
as in Omega [21].

• By turning constructors into data types, the type system is likely
to get in the way: the compiler wants to keep track of which
constructor a value belongs to at all times, and if that choice
is dependent on the outcome of a run-time computation, this is
impossible.

There are, however, also advantages of the type class encoding
that we have not yet exploited in our design of open data types.
Because constructors live on the type level, there is improved type
safety: for each call site of a class method, the compiler checks
if an appropriate instance is available. In the example, if we call
the eval method on a Plus value, the compiler will actually verify
that there is an instance of class Eval for type Plus , and if such
an instance does not exist, a compile-time error is triggered. Calls
to open functions are only checked for type correctness. But for
open functions on open data types, pattern match failures are not
unlikely, and only revealed at runtime.

A possibility to get a static check without lifting constructors to
the type level is to perform the check whenever the constructor of a
function argument is known at compile time, and to issue warnings
if a pattern match failure cannot be ruled out statically. There is
ongoing work by Mitchell and Runciman to develop a system that
performs such checks for the Haskell language [22]. Such a system
can be used independently of open data types and open functions,
but we expect it to be particularly useful in this context.

Another feature of type classes is that the correct dictionary ar-
gument is inferred automatically. As it turns out, we can use the
same technique to infer the correct argument to both closed and
open functions in some situations. Recall the application of open
functions to generic programming from Section 3.1. An overloaded
function is implemented as an open function with an argument of
type Type . This type of type representations is a GADT with the
property that for any choice of a , Type a is a singleton type, i.e.,
a type with only one value (modulo the use of ⊥). We can infer
this type representation automatically in many cases. It is possi-
ble to program the class plus instances out by hand, but given the
definition of the Type GADT, the class and instance declarations
follow the structure of the GADT precisely, and could be generated
automatically by a compiler. If generalized in such a way that argu-
ments can be inferred if there is exactly one way to construct them,
this technique constitutes a way to implement explicit implicit pa-
rameters [23]. Dependently typed systems like Epigram [24] can
sometimes infer pieces of code if they are uniquely determined by
the context.

6.5 Pattern matching
Haskell’s first-fit pattern matching semantics are not suitable for
open functions, because first-fit relies on the relative order of the
defining equations, which is hard to track for open functions.

We have therefore proposed best-fit pattern matching as an al-
ternative pattern matching semantics. Our use of best-fit pattern
matching in the context of open data types is inspired by the reso-
lution mechanism for overlapping instances and by the support of
nondeterministic functions in the functional-logical programming
language Curry [25], where all equations that match are chosen.
Best-fit pattern matching (without the left-to-right bias, and with-
out connections to open data types) is described by Field and Har-
rison [26]. Best-fit pattern matching is also related to method dis-
patch in OO languages, and the relation becomes more pronounced
in the context of multi-methods [2, 3].

First-class patterns [27] allow the programmer to choose differ-
ent forms of pattern matching for different functions. This comes
at the price of complexity, and it seems as if first-fit and best-fit
pattern matching are sufficient for many applications.

7. Conclusions
We have presented a lightweight solution to the expression problem
by proposing the addition of open data types and open functions to
the Haskell language. The semantics of open data types and open
functions is stunningly simple, and we firmly believe that this is a
good thing: in the related work, many of the approaches either aim
at far higher goals or consist of much more radical changes to the
underlying language.

In contrast, our proposal does not have any consequences for the
type system of Haskell, and it does not affect the semantics of other
Haskell constructs. Furthermore, open data types provide a solution
to the expression problem that fits well into the functional program-
ming paradigm: we can continue to work with algebraic data types
and to write functions that are defined via pattern matching.

A key concept is the introduction of best-fit pattern matching,
which provides a way to compose several defining equations of a
function without resorting to order of appearance in the code. We
think that best-fit pattern matching is easy to grasp and adequate for
open functions, as a similar mechanism is used already to resolve
overlapping type class instances.

Haskell’s support for mutually recursive modules turned out to
be essential to achieve separate compilation for open functions. It
would be interesting to compare this situation with separate compi-
lation approaches for the expression problem in OO languages, but
we have not done so yet.

We have presented several applications of open data types and
open functions. We expect that open data types are also useful in
the context of dynamic applications [28].
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