
Science of Computer Programming 78 (2013) 2108–2159

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Adjoint folds and unfolds—An extended study
Ralf Hinze
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, England, United Kingdom

a r t i c l e i n f o

Article history:
Received 21 January 2011
Accepted 21 August 2011
Available online 14 August 2012

Keywords:
Initial algebra
Fold
Final coalgebra
Unfold
Adjunction
Kan extension
Fusion
Haskell

a b s t r a c t

Folds and unfolds are at the heart of the algebra of programming. They allow the
cognoscenti to derive andmanipulate programs rigorously and effectively. However, most,
if not all, programs require some tweaking to be given the form of an (un)fold. In this
article, we remedy the situation by introducing adjoint (un)folds. We demonstrate that
most programs are already of the required form and thus are directly amenable to formal
manipulation. Central to the development is the categorical notion of an adjunction,
which links adjoint (un)folds to standard (un)folds. We discuss a multitude of basic
adjunctions andways of combining adjunctions and show that they are directly relevant to
programming. Furthermore, we develop the calculational properties of adjoint (un)folds,
providing several fusion laws, which codify basic optimisation principles. We give a novel
proof of type fusion based on adjoint folds and discuss several applications—type fusion
states conditions for fusing a left adjoint with an initial algebra to form another initial
algebra. The formal development is complemented by a series of examples in Haskell.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them

The Lord of the Rings—J. R. R. Tolkien.

Effective calculations are likely to be based on a few fundamental principles. The theory of initial datatypes aspires to
play that rôle when it comes to calculating programs. And indeed, a single combining form and a single proof principle rule
them all: programs are expressed as folds, program calculations are based on the universal property of folds. In a nutshell,
the universal property formalises that a fold is the unique solution of its defining equation. It implies computation laws and
optimisation laws such as fusion. The economy of reasoning is further enhanced by the principle of duality: initial algebras
dualise to final coalgebras, and alongside folds dualise to unfolds. Two theories for the price of one.

However, all that glitters is not gold. Most, if not all, programs require some tweaking to be given the form of a fold or an
unfold and thus make them amenable to formal manipulation. Somewhat ironically, this is in particular true of the ‘‘Hello,
world!’’ programs of functional programming: factorial, the Fibonacci function and append. For instance, append does not
have the form of a fold as it takes a second argument that is later used in the base case.

We offer a solution to this problem in the form of adjoint folds and unfolds. The central idea is to gain flexibility by
allowing the argument of a fold or the result of an unfold to be wrapped up in a functor application. In the case of append,
the functor is essentially pairing. Not every functor is admissible though: to preserve the salient properties of folds and
unfolds, we require the functor to have a right adjoint and, dually, a left adjoint for unfolds. Like folds, adjoint folds are then
the unique solutions of their defining equations and, as to be expected, this dualises to unfolds. I cannot claim originality

E-mail address: ralf.hinze@cs.ox.ac.uk.
URL: http://www.cs.ox.ac.uk/ralf.hinze/.

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.07.011

http://dx.doi.org/10.1016/j.scico.2012.07.011
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:ralf.hinze@cs.ox.ac.uk
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://www.cs.ox.ac.uk/ralf.hinze/
http://dx.doi.org/10.1016/j.scico.2012.07.011

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2109

for the idea: Bird and Paterson [11] used the approach to demonstrate that their generalised folds are uniquely defined. The
purpose of the present article is to show that the idea is more profound and more far-reaching. In a sense, we turn a proof
technique into a definitional principle and explore the consequences and opportunities of doing this. Specifically, the main
contributions of this article are the following:

• we introduce folds and unfolds as solutions of so-calledMendler-style equations—Mendler-style folds have been studied
before [70], but we believe that they deserve to be better known;
• we show that by choosing suitable base categories mutually recursive types, parametric types and generalised algebraic

datatypes are subsumed by the framework;
• we generalise Mendler-style equations to adjoint equations and demonstrate that many programs are of the required

form;
• we conduct a systematic study of adjunctions and ways of combining adjunctions and show their relevance to program-

ming;
• we develop the calculational properties of adjoint folds and unfolds;
• we employ the laws to provide a novel proof of type fusion, fusing a left adjoint with an initial algebra to form another

initial algebra, and discuss several applications—type fusion has been described before [5], but again we believe that it
deserves to be better known;
• finally, we relate adjoint folds and unfolds to other recursion schemes, most notably generalised iteration [53] and hy-

lomorphisms based on recursive coalgebras [12].

We largely follow a deductive approach: simple (co)recursive programs are naturally captured as solutions of Mendler-style
equations; adjoint equations generalise them in a straightforward way. Furthermore, we emphasise duality throughout by
developing adjoint folds and unfolds in tandem.

Prerequisites. A basic knowledge of category theory is assumed, along the lines of the categorical trinity: categories, functors
and natural transformations. I have made some effort to keep the article sufficiently self-contained, explaining the more
advanced concepts as we go along. Most of the category-theoretic results can be found in the textbook by Mac Lane [49]—
whenever possible I point to the relevant definitions and theorems. In a sense, the purpose of this article is to demonstrate
that the results are highly relevant to programming. Some knowledge of the functional programming language Haskell [60]
is useful, as the formal development is parallelled by a series of programming examples.

Outline. The rest of the article is structured as follows. Section 2 introduces some notation, serving mainly as a handy
reference. Section 3 reviews conventional folds and unfolds. We take a somewhat non-standard approach and introduce
them as solutions of Mendler-style equations. Section 4 generalises these equations to adjoint equations and demonstrates
that many Haskell functions fall under this umbrella. Central to the development is the categorical notion of an adjunction.
Section 5 introduces a multitude of basic adjunctions and Section 6 looks at different ways of combining adjunctions.
Section 7 develops the calculational properties of adjoint folds and unfolds. Like their vanilla counterparts, they enjoy
reflection, computation and a variety of fusion laws. We then lift fusion to the realm of objects and functors in Section 8,
where type fusion allows us to fuse an application of a left adjoint with an initial algebra to form another initial algebra.
Each of the adjunctions introduced in Section 5 provides an interesting instance of type fusion.We discuss type firstification,
type specialisation, tabulation and several others. Section 9 relates adjoint (un)folds to other prominent recursion schemes:
hylomorphisms based on recursive coalgebras and cohylomorphisms based on corecursive algebras. Finally, Section 10
reviews related work and Section 11 concludes.

The article is based on the papers ‘‘Adjoint Folds and Unfolds, Or: Scything through the Thicket of Morphisms’’ presented
at MPC 2010 and ‘‘Type Fusion’’ presented at AMAST 2010. The material has been thoroughly revised and extended. Most
notably, Sections 3.5, 4.3, 5.2, 5.4, 5.9, 5.10, 6, 7, 8.1, 8.3, 8.4 and 9 are new.

2. Notation

We let C, D etc. range over categories. By abuse of notation C also denotes the class of objects: A : C expresses that A is
an object of C. We let A, B etc. range over objects. The class of arrows from A :C to B :C is denoted C(A, B). If the category C
is obvious from the context, we abbreviate f : C(A, B) by f : A→ B or by f : B← A. The arrow notation is used in particular
for total functions, arrows in Set, and functors, arrows in Cat. We let f , g etc. range over arrows. Sometimes, we abbreviate
the identity idA by A. The inverse of an isomorphism f is denoted f ◦. We also write f : A ∼= B : f ◦ to express that f : A→ B
and f ◦ : A← Bwitness the isomorphism A ∼= B.

Partial applications of functors are oftenwritten using ‘categorical dummies’, where−marks the first and= the optional
second argument. As an example,−× A denotes the functor which maps X to X × A and f to f × A. Another example is the
so-called hom-functor C(−,=) : Cop

× C→ Set, whose action on arrows is given by

C(f , g) h = g · h · f . (1)

We also use ‘big’ lambda notation to denote functors: − × A is alternatively written Λ X . X × A. Very briefly, lambda
terms can be interpreted in a cartesian closed category; the category Cat of small categories and functors is cartesian closed
[49, p. 98]. We let F, G etc. and F, G etc. range over functors.

2110 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Let F,G : C → D be two functors. The class of natural transformations from F to G is denoted Nat (F,G). We usually
abbreviate α : Nat (F,G) by α : F →̇ G. In line with the big lambda notation for functors, we also use α : ∀X . E1 → E2 as a
shorthand for (Λ X . E1) →̇ (Λ X . E2). This notation is particularly convenient if we do not wish to name the two functors.
Furthermore, we write α : F ∼= G or α : ∀X . E1 ∼= E2, if α is a natural isomorphism. We let α, β etc. range over natural
transformations.

The formal development is complemented by a series of Haskell programs. Unfortunately, Haskell’s lexical and syntactic
conventions deviate somewhat from standardmathematical practice. In Haskell, type variables startwith a lower-case letter
(identifiers with an initial upper-case letter are reserved for type and data constructors). Lambda expressions such as λ x . e
are written λx → e. In the Haskell code, the conventions of the language are adhered to, with one notable exception: I
have taken the liberty to typeset ‘::’ as ‘:’—in Haskell, ‘::’ is used to provide a type signature, while ‘:’ is syntax for consing an
element to a list, an operator I do not use in this article.

3. Fixed-point equations

To iterate is human, to recurse divine.

L. Peter Deutsch

In this section we review the semantics of datatypes and introduce folds and unfolds, albeit with a slight twist. The
following two Haskell programs serve as running examples.

Example 1. The datatype Stackmodels stacks of natural numbers.

data Stack = Empty | Push (Nat, Stack)

The type (A, B) is Haskell syntax for the cartesian product A× B.
The function total computes the sum of a stack of natural numbers.

total : Stack → Nat
total (Empty) = 0
total (Push (n, s)) = n+ total s

This is a typical example of a fold, a function that consumes data. �

Example 2. The type Sequ captures infinite sequences of naturals.

data Sequ = Next (Nat, Sequ)

The function from constructs the infinite sequence of natural numbers, from the given argument onwards.

from : Nat → Sequ
from n = Next (n, from (n+ 1))

This is a typical example of an unfold, a function that produces data. �

Both the types, Stack and Sequ, and the functions, total and from, are given by recursion equations. At the outset, it is
not at all clear that these equations have solutions and if so whether the solutions are unique. It is customary to rephrase
the problem of solving equations as a fixed-point problem: a recursion equation of the form x = Ψ x implicitly defines a
functionΨ in the unknown x, the so-called base function of the recursion equation. A fixed-point of the base function is then
a solution of the recursion equation and vice versa.

Consider the type equation defining Stack. Its base function or, rather, its base functor is given by

dataStack stack = Empty | Push (Nat, stack)
instance Functor Stackwhere
fmap f (Empty) = Empty

fmap f (Push (n, s)) = Push (n, f s).

We adopt the convention that the base functor is named after the underlying type, using this font for the former and this
font for the latter. The type argument of Stack marks the recursive component. In Haskell, the object part of a functor is
defined by a data declaration; the arrow part is given by a Functor instance. Using categorical notation Stack is written
Stack S = 1+Nat×S, where 1 is the final object,+ denotes the sumor coproduct, and× denotes the product. (Furthermore,
we use 0 to denote the initial object.)

All functors underlying first-order datatype declarations (sums of products, no function types) have two extremal fixed
points: the initial F-algebra ⟨µF, in⟩ and the final F-coalgebra ⟨νF, out⟩, where F : C → C is the functor in question. The
proof that these fixed points exist is beyond the scope of this article, but see, for instance, [48]. Briefly, an F-algebra is a pair
⟨A, a⟩ consisting of an object A :C and an arrow a :C(F A, A). Likewise, an F-coalgebra is a pair ⟨C, c⟩ consisting of an object
C :C and an arrow c :C(C, F C). By abuse of language, we shall use the term (co)algebra also for the components of the pair.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2111

The import of initiality is that there is a unique algebra homomorphism from the initial algebra ⟨µF, in⟩ to any algebra
⟨A, a⟩, where an algebra homomorphism between algebras ⟨A, a⟩ and ⟨B, b⟩ is an arrow h : C(A, B) such that h · a = b · F h.
This unique arrow, called fold, is written ((f))—the algebra is enclosed in banana brackets. The uniqueness property, also called
universal property or characterisation, is captured by the following equivalence.

x = ((a)) ⇐⇒ x · in = a · F x (2)

Dually, a coalgebra homomorphism between coalgebras ⟨C, c⟩ and ⟨D, d⟩ is an arrow h : C(C,D) such that c · h = F h · d.
Finality means that there is a unique coalgebra homomorphism from any coalgebra ⟨C, c⟩ to the final coalgebra ⟨νF, out⟩.
This unique arrow, called unfold, is written [(f)]—the coalgebra is enclosed in lens brackets. Again, the uniqueness property
can be captured by an equivalence.

x = [(c)] ⇐⇒ out · x = F x · c

The objects µF and νF are indeed fixed points of the functor F: the two isomorphisms are witnessed by the arrows
in : F (µF) ∼= µF : ((F in)) and [(F out)] : F (νF) ∼= νF : out .

Some programming languages such as Charity [15] or Coq [66] allow the user to choose between initial and final
solutions—the datatype declarations are flagged as inductive or coinductive. Haskell is not one of them. Since Haskell’s
underlying category is SCpo, the category of complete partial orders and strict continuous functions, initial algebras and final
coalgebras actually coincide [28,65]—some background is provided at the end of this section. By contrast, in Set elements
of an inductive type are finite, whereas elements of a coinductive type are potentially infinite. Operationally, an element of
an inductive type can be constructed in a finite number of steps, whereas an element of a coinductive type allows any finite
number of observations.

Turning to our running examples, we view Stack as an initial algebra—though inductive and coinductive stacks are both
equally useful. For sequences only the coinductive readingmakes sense, since in Set the initial algebra of Sequ’s base functor
is the empty set.

Definition 1. In Haskell, initial algebras and final coalgebras can be defined as follows.

newtypeµf = In { in◦ : f (µf)}
newtype ν f = Out◦ {out : f (ν f)}

The definitions use Haskell’s record syntax to introduce the destructors in◦ and out in addition to the constructors In and
Out◦. The newtype declaration guarantees thatµf and f (µf) share the same representation at run-time, and likewise for νf
and f (νf). In other words, the constructors and destructors are no-ops. Of course, since initial algebras and final coalgebras
coincide in Haskell, they could be defined by a single newtype definition. However, since we use Haskell as ameta-language
for Set, we keep them separate. �

Working towards a semantics for total, let us first adapt its definition to the new ‘two-level type’µStack. The term is due
to [64]; one level describes the structure of the data, the other level ties the recursive knot.

total : µStack → Nat
total (In (Empty)) = 0
total (In (Push (n, s))) = n+ total s

Now, if we abstract away from the recursive call, we obtain a non-recursive base function of type (µStack → Nat) →
(µStack→ Nat). Functions of this type possibly havemany fixed points—consider as an extreme example the identity base
function, which has an infinite number of fixed points. Interestingly, the problem of ambiguity disappears into thin air, if
we additionally remove the constructor In.

total : ∀x . (x→ Nat)→ (Stack x → Nat)
total total (Empty) = 0
total total (Push (n, s)) = n+ total s

The type of the base function has become polymorphic in the argument of the recursive call. We shall show in the next
section that this type guarantees that the recursive definition of total

total : µStack→ Nat
total (In s) = total total s

is well-defined in the sense that the equation has exactly one solution.
Applying an analogous transformation to the type Sequ and the function fromwe obtain

dataSequ sequ = Next (Nat, sequ)
from : ∀x . (Nat → x)→ (Nat → Sequ x)
from from n = Next (n, from (n+ 1))
from : Nat → νSequ

from n = Out◦ (from from n).

Again, the base function enjoys a polymorphic type that guarantees that the recursive function is well-defined.

2112 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Abstracting away from the particulars of the syntax, the examples suggest to consider fixed-point equations of the form
x · in = Ψ x, and dually out · x = Ψ x, (3)

where the unknown x has type C(µF, A) on the left and C(A, νG) on the right. The Haskell definitions above are pointwise
versions of these equations: x (In a) = Ψ x a and x a = Out◦ (Ψ x a). Arrows defined by equations of this form are known
as Mendler-style folds and unfolds, because they were originally introduced by Mendler [56] in the setting of type theory.
We shall usually drop the qualifier and call the solutions simply folds and unfolds. In fact, the abuse of language is justified
as each Mendler-style equation is equivalent to the defining equation of a standard (un)fold. This is what we show next,
considering folds first.

3.1. Initial fixed-point equations

Let C be some base category and let F : C → C be some endofunctor. An initial fixed-point equation in the unknown
x : C(µF, A) has the syntactic form

x · in = Ψ x, (4)

where the base function Ψ has type
Ψ : ∀X . C(X, A)→ C(F X, A).

In the fixed-point equation the natural transformation Ψ is instantiated to the initial algebra: x · in = Ψ (µF) x. For reasons
of readability we will usually omit the ‘type arguments’ of natural transformations.

The naturality condition can be seen as the semantic counterpart of the guarded-by-destructors condition [27]. This
becomes visible, if wemove the isomorphism in :F (µF) ∼= µF to the right-hand side: x = Ψ x · in◦. Here in◦ is the destructor
that guards the recursive calls. The equation has a straightforward operational reading. The argument of x is destructed
yielding an element of type F (µF). The base function Ψ then works on the F-structure, possibly applying its first argument,
the recursive call of x, to elements of typeµF. These elements are proper sub-terms of the original argument—recall that the
type argument of F marks the recursive components. The naturality of Ψ ensures that only these sub-terms can be passed
to the recursive calls.

Does this imply that x is terminating? Termination is an operational notion; how the notion translates to a denotational
setting depends on the underlying category. Our primary goal is to show that Equation (4) has a unique solution. When
working in Set this result implies that the equation admits a solution that is indeed a total function. Furthermore, the
operational reading of x = Ψ x · in◦ suggests that x is terminating, as elements of an inductive type can only be destructed a
finite number of times. (Depending on the evaluation strategy this claim is also subject to the proviso that the F-structures
themselves are finite.) On the other hand, if the underlying category is SCpo, then the solution is a continuous function that
does not necessarily terminate for all its inputs, since initial algebras in SCpo possibly contain infinite elements. (We shall
say more about termination in Section 9.)

While the definition of total fits nicely into the framework above, the following program does not.
Example 3. The naturality condition is sufficient but not necessary as the example of factorial demonstrates.

dataNat = Z | S Nat
fac : Nat → Nat
fac (Z) = 1
fac (S n) = S n ∗ fac n

Like for total, we split the datatype into two levels.
typeNat = µNat

dataNat nat = Z | S nat
instance Functor Natwhere

fmap f (Z) = Z

fmap f (S n) = S (f n)

In Set, the implementation of factorial is clearly terminating. However, the associated base function
fac : (Nat → Nat)→ (NatNat → Nat)
fac fac (Z) = 1
fac fac (S n) = In (S n) ∗ fac n

lacks naturality. In a sense, its type is too concrete, as it reveals that the recursive call is passed anatural number. An adversary
can make use of this information turning the terminating program into a non-terminating one:

bogus : (Nat → Nat)→ (NatNat → Nat)
bogus fac (Z) = 1
bogus fac (S n) = n ∗ fac (In (S n)).

We will get back to this example in Section 5.5 (Example 20). �

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2113

Turning to the proof of uniqueness, let us spell out the naturality property of the base function Ψ . If h : C(X1, X2), then
C(F h, id) · Ψ = Ψ · C(h, id). Using the definition of hom-functors (1), this unfolds to

Ψ f · F h = Ψ (f · h), (5)

for all arrows f : C(X2, A). This property implies, in particular, that Ψ is completely determined by its image of id as
Ψ h = Ψ id · F h. Now, to prove that Eq. (4) has a unique solution, we show that x is a solution if and only if x is a standard
fold.

x · in = Ψ x
⇐⇒ { Ψ is natural (5) }

x · in = Ψ id · F x
⇐⇒ { uniqueness property of standard folds (2) }

x = ((Ψ id))

Overloading the banana brackets, the unique solution of x · in = Ψ x is written ((Ψ)).
Let us explore the relation between standard folds and Mendler-style folds in more depth. The proof above rests on the

fact that the type of Ψ is isomorphic to C(F A, A), the type of F-algebras. With hindsight, we generalise the isomorphism
slightly. Let F : D→ C be an arbitrary functor, then

γ : ∀A, B . C(F A, B) ∼= (∀X : D . D(X, A)→ C(F X, B)). (6)

Readers versed in category theorywill notice that this bijection between arrows andnatural transformations is an instance of
the Yoneda Lemma [49, p. 61]. LetH = C(F−, B) be the contravariant functorH :Dop

→ Set that maps an object A :Dop to the
set of arrowsC(F A, B):Set. The Yoneda Lemma states that this set is naturally isomorphic to a set of natural transformations:

∀H, A . H A ∼= (Dop(A,−) →̇ H), (7)

which is (6) in abstract clothing. Let us explicate the proof of (6). The functions witnessing the isomorphism are

γ f = λ k . f · F k and γ ◦ Ψ = Ψ id. (8)

The reader should convince herself that γ f is a natural transformation of the required type. It is easy to see that γ ◦ is the
left-inverse of γ .

γ ◦ (γ f)
= { definition of γ and definition of γ ◦ (8) }

f · F id
= { F functor and identity }

f

For the opposite direction, we have to make use of the naturality property (5). (Even though Ψ has now a slightly more
general type, the naturality property is the same.)

γ (γ ◦ Ψ)

= { definition of γ ◦ and definition of γ (8) }
λ k . Ψ id · F k

= { Ψ is natural (5) }
λ k . Ψ (id · k)

= { identity and extensionality (Ψ is a function) }
Ψ

Remark 1. A special case of (6) is worth singling out: if F = Id, then γ f is just post-composition: γ f = C(X, f) = (f · −).
(Recall that functors respect the types: if f : C(A, B), then C(X, f) : C(X, A) → C(X, B). Furthermore, C(X, f) is natural
in X .) �

To summarise, the type of base functions is isomorphic to the type of algebras. Consequently, Mendler-style folds and
standard folds are related by ((Ψ)) = ((γ ◦ Ψ)) = ((Ψ id)) and ((λ x . a · F x)) = ((γ a)) = ((a)).

2114 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

3.2. Final fixed-point equations

The development of the previous section dualises to final coalgebras. For reference, let us spell out the details.
A final fixed-point equation in the unknown x : C(A, νG) has the form

out · x = Ψ x, (9)

where the base function Ψ has type

Ψ : ∀X . C(A, X)→ C(A,G X).

Overloading the lens brackets, the unique solution of (9) is denoted [(Ψ)].
In the category Set, the naturality condition captures the guarded-by-constructors condition [27] ensuring productivity.

Again, this can be seen more clearly, if we move the isomorphism out : νG ∼= G (νG) to the right-hand side: x = out◦ · Ψ x.
Here out◦ is the constructor that guards the recursive calls. The base function Ψ has to produce an G (νG) structure. To
create the recursive components of type νG, the base function Ψ can use its first argument, the recursive call of x. However,
the naturality of Ψ ensures that these calls can only be made in guarded positions.

The type of Ψ is isomorphic to C(A,G A), the type of G-coalgebras. More generally, let G : D→ C, then

γ : ∀A, B . C(A,G B) ∼= (∀X : D . D(B, X)→ C(A,G X)). (10)

Again, this is an instance of the Yoneda Lemma: now H = C(A,G−) is a covariant functor H : D→ Set and

∀H, B . H B ∼= (D(B,−) →̇ H). (11)

The functions witnessing the isomorphism are

γ f = λ k . G k · f and γ ◦ Ψ = Ψ id.

In the following three sections we show that fixed-point equations are quite general. More functions fit under this
umbrella than one might initially think.

3.3. Mutual type recursion: C× D

In Haskell, datatypes can be defined by mutual recursion.

Example 4. The type of multiway trees, also known as rose trees, is defined by mutual type recursion.

data Rose = Node (Nat, Roses)
data Roses = Nil | Cons (Rose, Roses)

As function follows form, functions that consume a tree or a list of trees are typically defined by mutual value recursion.

flattena : Rose → Stack
flattena (Node (n, ts)) = Push (n, flattens ts)
flattens : Roses → Stack
flattens (Nil) = Empty
flattens (Cons (t, ts)) = cat (flattena t, flattens ts)

The helper function cat , defined in Example 9, concatenates two stacks. �

Can we fit the above definitions into the framework of the previous section? Yes, we only have to choose a suitable base
category: in this case, a product category.

Given two categories C1 and C2, the product category C1 × C2 is constructed as follows: an object of C1 × C2 is a pair
⟨A1, A2⟩ of objects A1 :C1 and A2 :C2; an arrow of (C1×C2)(⟨A1, A2⟩, ⟨B1, B2⟩) is a pair ⟨f1, f2⟩ of arrows f1 :C1(A1, B1) and
f2 : C2(A2, B2). Identity and composition are defined component-wise:

id = ⟨id, id⟩ and ⟨f1, f2⟩ · ⟨g1, g2⟩ = ⟨f1 · g1, f2 · g2⟩.

The functorOutl:C1×C2 → C1, which projects onto the first category, is defined byOutl ⟨A1, A2⟩ = A1 andOutl ⟨f1, f2⟩ = f1,
and, likewise, Outr : C1 × C2 → C2. (As an aside, C1 × C2 is the categorical product in Cat.)

Returning to Example 4, the base functor underlying Rose and Roses can be seen as an endofunctor over a product
category:

F ⟨A, B⟩ = ⟨Nat × B, 1+ A× B⟩.

The Haskell types Rose and Roses are then the components of the fixed point µF = ⟨Rose, Roses⟩. The functions flattena and
flattens are handled accordingly: we bundle them to a single arrow

flatten = ⟨flattena, flattens⟩ : (C× C)(µF, ⟨Stack, Stack⟩).

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2115

The following calculation makes explicit that an initial fixed-point equation in C×D corresponds to two equations, one
in C and one in D.

x · in = Ψ x : (C× D)(F (µF), ⟨A1, A2⟩)

⇐⇒ { surjective pairing: f = ⟨Outl f , Outr f ⟩ }
⟨Outl x, Outr x⟩ · ⟨Outl in, Outr in⟩ = Ψ ⟨Outl x, Outr x⟩

⇐⇒ { set x1 = Outl x, x2 = Outr x and in1 = Outl in, in2 = Outr in }
⟨x1, x2⟩ · ⟨in1, in2⟩ = Ψ ⟨x1, x2⟩

⇐⇒ { definition of composition in C× D }
⟨x1 · in1, x2 · in2⟩ = Ψ ⟨x1, x2⟩

⇐⇒ { surjective pairing: f = ⟨Outl f , Outr f ⟩ }
⟨x1 · in1, x2 · in2⟩ = ⟨Outl (Ψ ⟨x1, x2⟩), Outr (Ψ ⟨x1, x2⟩)⟩

⇐⇒ { set Ψ1 = Outl ◦ Ψ and Ψ2 = Outr ◦ Ψ }

⟨x1 · in1, x2 · in2⟩ = ⟨Ψ1 ⟨x1, x2⟩, Ψ2 ⟨x1, x2⟩⟩
⇐⇒ { equality of arrows in C× D }

x1 · in1 = Ψ1 ⟨x1, x2⟩ : C(Outl (F (µF)), A1) and
x2 · in2 = Ψ2 ⟨x1, x2⟩ : D(Outr (F (µF)), A2)

The base functions Ψ1 and Ψ2 are parametrised both with x1 and x2. Other than that, the syntactic form is identical to a
standard fixed-point equation.

It is a simple exercise to bring the equations of Example 4 into this form.

Definition 2. In Haskell, mutually recursive types can be modelled as follows.

newtypeµ1 f1 f2 = In1 { in◦1 : f1 (µ1 f1 f2) (µ2 f1 f2)}
newtypeµ2 f1 f2 = In2 { in◦2 : f2 (µ1 f1 f2) (µ2 f1 f2)}

Since Haskell has no concept of pairs on the type level, that is, no product kinds, we have to curry the type constructors:
µ1 f1 f2 = Outl (µ⟨f1, f2⟩) and µ2 f1 f2 = Outr (µ⟨f1, f2⟩). �

Example 5. The base functors of Rose and Roses are

dataRose tree trees = Node (Nat, trees)
dataRoses tree trees = Nil | Cons (tree, trees).

Since all Haskell functions live in the same category, we have to represent arrows in C× C by pairs of arrows in C.

flattena : ∀x1 x2 . (x1 → Stack, x2 → Stack)→ (Rose x1 x2 → Stack)
flattena (flattena, flattens) (Node (n, ts)) = Push (n, flattens ts)
flattens : ∀x1 x2 . (x1 → Stack, x2 → Stack)→ (Roses x1 x2 → Stack)
flattens (flattena, flattens) (Nil) = Empty
flattens (flattena, flattens) (Cons (t, ts)) = cat (flattena t, flattens ts)

The definitions of flattena and flattensmatch exactly the scheme above.

flattena : µ1 Rose Roses→ Stack
flattena (In1 t) = flattena (flattena, flattens) t
flattens : µ2 Rose Roses→ Stack
flattens (In2 ts) = flattens (flattena, flattens) ts

Since the two equations are equivalent to an initial fixed-point equation in C× C, they indeed have unique solutions. �

No new theory is needed to deal with mutually recursive datatypes and mutually recursive functions over them. By duality,
the same is true for final coalgebras. For final fixed-point equations we have the following correspondence.

out · x = Ψ x ⇐⇒ out1 · x1 = Ψ1 ⟨x1, x2⟩ and out2 · x2 = Ψ2 ⟨x1, x2⟩

3.4. Type functors: DC

In Haskell, datatypes can be parametrised by types.

2116 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Example 6. The type of perfectly balanced, binary leaf trees [31], perfect trees for short, is given by
data Perfect a = Zero a | Succ (Perfect (a, a))
instance Functor Perfectwhere

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f) p)

(f × g) (a, b) = (f a, g b).
The type Perfect is a so-called nested datatype [10] as the type argument is changed in the recursive call. The constructors
represent the height of the tree: a perfect tree of height 0 is a leaf; a perfect tree of height n+ 1 is a perfect tree of height n
that contains pairs of elements.

size : ∀a . Perfect a→ Nat
size (Zero a) = 1
size (Succ p) = 2 ∗ size p

The function size calculates the size of a perfect tree, making good use of the balance condition. The definition requires
polymorphic recursion [57], as the recursive call has type Perfect (a, a)→ Nat , which is a substitution instance of the declared
type. �

Can we fit the definitions above into the framework of Section 3.1? Again, the answer is yes. We only have to choose a
suitable base category: this time, a functor category.

Given two categories C and D, the functor category DC is constructed as follows: an object of DC is a functor F : C→ D;
an arrow of DC(F,G) is a natural transformation α : F →̇ G. (As an aside, DC is the exponential in Cat.)

The base functor of Perfect is an endofunctor over a functor category:
F P = Λ A . A+ P (A× A).

The second-order functor F sends a functor to a functor. Since its fixed point Perfect = µF lives in a functor category, folds
over perfect trees are necessarily natural transformations. The function size is a natural transformation, as we can assign it
the type

size : µF →̇ KNat,

where K : D→ DC is the constant functor defined K A = Λ B . A. Again, we can replay the development in Haskell.
Definition 3. The definition of second-order initial algebras and final coalgebras is identical to that of Definition 1, except
for an additional type argument.

newtypeµf a = In { in◦ : f (µf) a}
newtype ν f a = Out◦ {out : f (ν f) a}

To capture the fact that µf and νf are functors whenever f is a second-order functor, we need an extension of the Haskell
2010 class system [51].

instance (∀x . (Functor x)⇒ Functor (f x))⇒ Functor (µf)where
fmap f (In s) = In (fmap f s)

instance (∀x . (Functor x)⇒ Functor (f x))⇒ Functor (νf)where
fmap f (Out◦ s) = Out◦ (fmap f s)

The declarations use a so-called polymorphic predicate [38], which precisely captures the requirement that f sends functors
to functors. Unfortunately, the extension has not been implemented yet. It can be simulated within Haskell 2010 [68,51],
but the resulting code is somewhat clumsy. Alternatively, one can use ‘recursive dictionaries’

instance Functor (f (µf))⇒ Functor (µf)where
fmap f (In s) = In (fmap f s)

instance Functor (f (νf))⇒ Functor (νf)where
fmap f (Out◦ s) = Out◦ (fmap f s)

and rely on the compiler to tie the recursive knot [47]. �

Let us specialise fixed-point equations to functor categories.

x · in = Ψ x

⇐⇒ { equality of arrows in DC
}

∀A : C . (x · in) A = Ψ x A

⇐⇒ { definition of composition in DC
}

∀A : C . x A · in A = Ψ x A

InHaskell, type application is invisible, so fixed-point equations in functor categories cannot be distinguished fromequations
in the base category.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2117

Example 7. Continuing Example 6, the base functor of Perfect maps functors to functors: it has kind (⋆→ ⋆)→ (⋆→ ⋆).

dataPerfect perfect a = Zero a | Succ (perfect (a, a))
instance (Functor x)⇒ Functor (Perfect x)where

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f) p)

Its action on arrows, not shown above, maps natural transformations to natural transformations. Accordingly, the base
function of size is a second-order natural transformation that takes natural transformations to natural transformations.

size : ∀x . (∀a . x a→ Nat)→ (∀a . Perfect x a→ Nat)
size size (Zero a) = 1
size size (Succ p) = 2 ∗ size p
size : ∀a . µPerfect a→ Nat
size (In p) = size size p

The resulting equation fits the pattern of an initial fixed-point equation (type application is invisible in Haskell). Conse-
quently, it has a unique solution. �

3.5. A special case: generalised algebraic datatypes: CI

The following example illustrates a recent addition to Haskell: generalised algebraic datatypes [34,62]. In fact, the
example goes slightly beyondwhat is expressible inHaskell, drawing inspiration from the functional programming language
Ωmega [63].

Example 8. The datatype Expr a represents expressions of type a, where a ranges over types of kind Type. (Haskell’s notion
of kinds is somewhat restricted. The language distinguishes only between ⋆, the kind of inhabited types, and type functions.
The ability to define new kinds is one of the major innovations of Ωmega.)

kind Type = Bool | Nat | Expr Type
data Expr : Type→ ⋆where

Zero : Expr Nat
Succ : Expr Nat→ Expr Nat
IsZero : Expr Nat→ Expr Bool
If : (Expr Bool, Expr a, Expr a)→ Expr a
Quote : Expr a→ Expr (Expr a)

The kind signature makes explicit that Expr is not a parametric datatype in the usual sense, that is, a container type. An
element of type Expr Bool is an expression that when evaluated yields a truth value; it is not some container containing
truth values. The argument Bool : Type is a so-called type code. It is not an inhabited type, rather, it represents one, namely,
Bool : ⋆. For emphasis, the argument of Expr is sometimes called a type index.

The type function decodemaps a type code to the type it represents.

decode : Type → ⋆
decode (Bool) = Bool
decode (Nat) = Nat
decode (Expr t) = Expr t

The following function defines an interpreter for the expression language.

eval : Expr a → decode a
eval (Zero) = 0
eval (Succ e) = eval e+ 1
eval (IsZero e) = eval e 0
eval (If (e1, e2, e3)) = if eval e1 then eval e2 else eval e3
eval (Quote e) = e

The interpreter is noticeable in that it is tag free. If it receives a Boolean expression, then it returns a truth value. �

The definition of eval proceeds by straightforward structural recursion, but is it a fold? Again, the answer is yes, and again
we only have to find a suitable base category. Clearly, Expr does not denote a functor of type C→ C as this category models
container types of kind ⋆→ ⋆. Rather, it is a functor of type I→ C where I is some suitable index set.

A set forms a so-called discrete category: the objects are the elements of the set and the only arrows are the identities.
Consequently, a functor from a discrete category is uniquely defined by its action on objects. The category of indexed objects
and arrows CI, where I is some arbitrary index set, is a functor category from a discrete category: A : CI if and only if

2118 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Table 1
Initial algebras and final coalgebras in different categories.

Category Initial fixed-point equation Final fixed-point equation
x · in = Ψ x out · x = Ψ x

Set Inductive type Coinductive type
Standard fold Standard unfold

Cpo —
Continuous coalgebra (domain)
Continuous unfold
(F locally continuous in SCpo)

SCpo
Continuous algebra (domain) Continuous coalgebra (domain)
Strict continuous fold Strict continuous unfold

(F locally continuous in SCpo, µF ∼= νF)

C× D Mutually recursive inductive types Mutually recursive coinductive types
Mutually recursive folds Mutually recursive unfolds

DC Inductive type functor Coinductive type functor
Higher-order fold Higher-order unfold

CI Indexed inductive type Indexed coinductive type
Indexed standard fold Indexed standard unfold

∀i ∈ I . Ai : C and f : CI(A, B) if and only if ∀i ∈ I . fi : C(Ai, Bi). In other words, generalised algebraic datatypes are a
special case of parametric types and the results of the previous section are applicable.

In Example 8, the index set I is the set of all type codes—the initial algebra of F X = 1 + 1 + X in Set. Both Expr and
decode denote functors of type I→ C, that is, I-indexed families of objects. Finally, eval is a natural transformation of type
Expr →̇ decode, that is, an I-indexed family of arrows.

Table 1 summarises our findings so far. As a brief reminder, Cpo is the category of complete partial orders and continuous
functions; SCpo is the full subcategory of strict functions. A functor F : SCpo → SCpo is locally continuous if its action on
arrows SCpo(A, B) → SCpo(F A, F B) is continuous for any pair of objects A and B. A continuous algebra is just an algebra
whose carrier is a complete partial order andwhose action is a continuous function. In SCpo, every locally continuous functor
has an initial algebra and, furthermore, the initial algebra coincides with the final coalgebra. This is the reason why SCpo
is commonly considered to be Haskell’s ambient category. It may seem odd at first that lazy programs are modelled by
strict functions. Non-strict functions, however, are in one-to-one correspondence to strict functions from a lifted domain:
SCpo(A⊥, B) ∼= Cpo(A, B). (In other words, we have an adjunction (−)⊥ ⊣ Incl between lifting and the inclusion functor
Incl :SCpo→ Cpo.) The denotational notion of lifting, adding a new least element, models the operational notion of a thunk
(also known as a closure, laze or recipe).

4. Adjoint fixed-point equations

⟨. . .⟩, good general theory does not search for the

maximum generality, but for the right generality.

Categories for the Working Mathematician—Saunders Mac Lane

We have seen in the previous section that initial and final fixed-point equations are quite general. However, there are
obviously a lot of definitions that do not fit the pattern.Wehavementioned list concatenation and others in the introduction.
Example 9. The function cat concatenates two stacks.

cat : (Stack, Stack)→ Stack
cat (Empty, ns) = ns
cat (Push (m,ms), ns) = Push (m, cat (ms, ns))

The definition does not fit the pattern of an initial fixed-point equation as it takes two arguments and recurses only over the
first one. �

Example 10. The functions nats and squares generate the sequence of natural numbers interleaved with the sequence of
squares.

nats : Nat → νSequ

nats n = Out◦ (Next (n, squares n))
squares : Nat → νSequ

squares n = Out◦ (Next (n ∗ n, nats (n+ 1)))
The two definitions are not instances of final fixed-point equations, because even though the functions are mutually
recursive the datatype is not. �

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2119

In Example 9 the element of the initial algebra is embedded in a context.Written in a point-free style the definition of cat
is of the form x · (in× id) = Ψ x. The central idea of this article is to model this context by a functor, generalising fixed-point
equations to

x · L in = Ψ x, and dually R out · x = Ψ x, (12)

where the unknown x has type C(L (µF), A) on the left and C(A,R (νG)) on the right. The functor L models the context of
µF. In the case of cat the functor is L = − × Stack. Dually, R allows x to return an element of νG embedded in a context.
Section 5.5 discusses a suitable choice for R in Example 10.

Of course, the functors L and R cannot be arbitrary. For instance, for L = K Awhere K:C→ CD is the constant functor and
Ψ = id, the equation x · L in = Ψ x simplifies to x = x, which every arrow of the appropriate type satisfies. One approach
for ensuring uniqueness is to require L and R to be adjoint, a concept we introduce next.

Let C and D be categories. The functors L and R are adjoint, L ⊣ R,

C
≺

L

⊥

R
≻

D

if and only if there is a bijection between the hom-sets

φ : C(L A, B) ∼= D(A,R B) : φ◦,

that is natural both in A and B. The functor L is said to be a left adjoint for R, while R is L’s right adjoint. The isomorphism φ is
called the left adjunct or adjoint transposition. Accordingly, φ◦ is called the right adjunct. We shall introduce more material
about adjunctions as we go along. For a calculational introduction to adjunctions we refer the interested reader to the paper
‘‘Adjunctions’’ by Fokkinga and Meertens [22].

The adjoint transposition allows us to trade L in the source for R in the target of an arrow, which is the key for showing
that generalised fixed-point equations (12) have unique solutions. This is what we do next.

4.1. Adjoint initial fixed-point equations

One Size Fits All

Frank Zappa and The Mothers of Invention

Let C and D be categories, let L ⊣ R be an adjoint pair of functors L : C← D and R : C→ D and let F : D→ D be some
endofunctor. An adjoint initial fixed-point equation in the unknown x : C(L (µF), A) has the syntactic form

x · L in = Ψ x, (13)

where the base function Ψ has type

Ψ : ∀X : D . C(L X, A)→ C(L (F X), A).

The unique solution of (13) is called an adjoint fold, denoted ((Ψ))L.
The proof of uniqueness makes essential use of the fact that the left adjunct φ is natural in A, that is, D(h, id) · φ =

φ · C(L h, id), which translates to

φ f · h = φ (f · L h). (14)

We reason as follows.

x · L in = Ψ x
⇐⇒ { adjunction: φ · φ◦ = id and φ◦ · φ = id }

φ (x · L in) = φ (Ψ x)
⇐⇒ { φ is natural (14) }

φ x · in = φ (Ψ x)
⇐⇒ { adjunction: φ · φ◦ = id and φ◦ · φ = id }

φ x · in = (φ · Ψ · φ◦) (φ x)
⇐⇒ { Section 3.1 }

φ x = ((φ · Ψ · φ◦))

⇐⇒ { adjunction: φ · φ◦ = id and φ◦ · φ = id }
x = φ◦ ((φ · Ψ · φ◦))

In three simple steps we have transformed the adjoint fold x : C(L (µF), A) into the standard fold φ x : D(µF,R A) and,
alongside, the adjoint base function Ψ : ∀X . C(L X, A) → C(L (F X), A) into the standard base function (φ · Ψ · φ◦) :

2120 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

∀X . D(X,R A)→ D(F X,R A). We have shown in Section 3.1 that the resulting equation has a unique solution. We call the
standard fold φ x the transpose of x (usually named x′). To summarise,

((Ψ))L = φ◦ ((φ · Ψ · φ◦)) or, equivalently, φ ((Ψ))L = ((φ · Ψ · φ◦)).

Example 11. To turn the definition of cat , see Example 9, into the form of an adjoint equation, we follow the same steps as
in Section 3. First, we determine the base function abstracting away from the recursive call, additionally removing in, and
then we tie the recursive knot.

cat : ∀x . (L x→ Stack)→ (L (Stack x) → Stack)
cat cat (Empty, ns) = ns
cat cat (Push (m,ms), ns) = Push (m, cat (ms, ns))
cat : L Stack → Stack
cat (Inms, ns) = cat cat (ms, ns)

The defining equation fits the pattern of an adjoint initial fixed-point equation, x · (in× id) = Ψ x. It remains to check that
L = −×Stack has a right adjoint. It turns out that this is the case: the right adjoint is R = (−)Stack, the so-called exponential.
We shall study this adjunction, famously known as the ‘curry adjunction’, in detail in Section 5.3. For now, we just record
that cat is uniquely defined. �

4.2. Adjoint final fixed-point equations

Buy one get one free!

A common form of sales promotion (BOGOF).

Dually, an adjoint final fixed-point equation in the unknown x : D(A,R (νG)) has the syntactic form

R out · x = Ψ x, (15)

where the base function Ψ has type

Ψ : ∀X : C . D(A,R X)→ D(A,R (G X)).

The unique solution of (15) is called an adjoint unfold, denoted [(Ψ)]R.

4.3. Algebraic adjoint folds

It is the pervading law of all things organic and inorganic,

⟨. . .⟩ That form ever follows function. This is the law.

Louis Henri Sullivan

This section contains advanced material, which you may want to skip on a first reading.
We have seen in Section 3.1 that Mendler-style folds, which take a base function as an argument, are equivalent to

standard folds, which rely on the notion of an algebra.

Mendler-style: x · in = Ψ x algebraic: x · in = a · F x

The adjoint folds introduced in Section 4.1 can be loosely characterised as ‘Mendler-style adjoint folds’. There is also a
corresponding notion of ‘algebraic adjoint folds’, called generalised iteration in [53], and, like their vanilla variants, the two
schemes are inter-definable. A standard fold insists on the idea that the control structure of a function ever follows the
structure of its input data. Mendler-style adjoint folds loosen this tight coupling. The control structure is given implicitly
through the adjunction. An algebraic adjoint fold makes the control structure explicit by introducing a ‘control functor’ G.

Mendler-style: x · L in = Ψ x algebraic: x · L in = a · G x · α

An algebraic adjoint fold x : C(L (µF), A) is the unique solution of the equation on the right. The recursive call structure is
governed by the functor G : D→ D. The diagram below displays the functors involved.

CG 99
R

//⊥ D
Loo

F
yy

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2121

Apart from the G-algebra a : C(G A, A) one further ingredient is required: a natural transformation α : L ◦ F →̇ G ◦ L that
serves as an impedance matcher, translating the data into the control structure. (The types of x · L in : C(L (F (µF)), A) and
a · G x : C(G (L (µF)), A) dictate the type of α.) The diagram below visualises the type information.

G (L (µF))

L (F (µF))

α (µ
F) ≻

G A

G x

≻

L (µF)

L in
g x

≻ A

a
g

As an aside, there is no requirement that α is an isomorphism. However, if it is one, then we have L (µF) ∼= µG—this special
case is investigated in Section 8.

It is not hard to see that Mendler-style adjoint folds subsume algebraic adjoint folds. We only have to show that the base
function Ψ X x = a · G x · α X has the required naturality property. The easy proof is left to the reader.

The other way round—turning a Mendler-style into an algebraic adjoint fold—is more involved. It is useful to first
review some basic facts about adjunctions. An adjunction can be defined in a variety of ways. Recall that the adjuncts
φ : C(L A, B) ∼= D(A,R B) : φ◦ have to be natural both in A and B. This implies that φ◦ and φ are uniquely defined by
their images of the identity: ϵ = φ◦ id and η = φ id. An alternative definition of adjunctions is based on these two natural
transformations, which are called the counit ϵ :L◦R→̇ Id and the unit η : Id→̇R◦L of the adjunction. The units must satisfy
the so-called triangle identities

(ϵ ◦ L) · (L ◦ η) = idL and (R ◦ ϵ) · (η ◦ R) = idR, (16)

where◦denotes horizontal composition of a natural transformationwith a functor: (F◦α) A = F (α A) and (α◦F) A = α (F A).
(The reader should convince herself that F ◦ α and α ◦ F are again natural transformations.)

All in all, an adjunction consists of six entities: two functors, two adjuncts, and two units. Every single of those can be
defined in terms of the others:

φ◦ g = ϵ · L g
φ f = R f · η

ϵ = φ◦ id
η = φ id

L h = φ◦ (η · h)
R k = φ (k · ϵ). (17)

Now, given a base function Ψ : C(L−, A) →̇ C(L (F−), A) we have to construct a functor G, a natural transformation
α : L ◦ F →̇G ◦ L and a G-algebra a :C(G A, A). The first two pieces of data are induced by the adjunction: a canonical choice
for the control structure is G = L ◦ F ◦ R. Using this definition, the type of α expands to L ◦ F →̇ L ◦ F ◦ R ◦ L, which suggests
to define α = L ◦ F ◦ η. Finally, the G-algebra is derived from the base function: a = Ψ ϵ or, making the types explicit,
a = Ψ (R A) (ϵ A) :C(L (F (R A)), A). It remains to show that the Mendler-style adjoint fold and the derived algebraic adjoint
fold define the same arrow, which is implied by the equality of the base functions Ψ X x = a · G x · α X .

a · G x · α X
= { definition of a, G and α }

Ψ (R A) (ϵ A) · (L ◦ F ◦ R) x · (L ◦ F ◦ η) X
= { L and F functors }

Ψ (R A) (ϵ A) · L (F (R x · η X))

= { Ψ is natural: Ψ X1 f · L (F h) = Ψ X2 (f · L h) }
Ψ X (ϵ A · L (R x · η X))

= { L functor }
Ψ X (ϵ A · L (R x) · L (η X))

= { ϵ is natural: h · ϵ X1 = ϵ X2 · L (R h) }
Ψ X (x · ϵ (L X) · L (η X))

= { triangle identity (16) }
Ψ X x

It is instructive to turn stack concatenation into an algebraic adjoint fold.

Example 12. The canonical control structure for cat , introduced in Example 9, is G = L ◦ Stack ◦ R where L = − × Stack
and R = (−)Stack. The counit of L ⊣ R is function application apply : ∀X . X Stack

× Stack → X defined apply (f , s) = f s.

2122 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

The unit return : ∀X . X → (X × Stack)Stack is given by return x = λ s . (x, s).1 Consequently, the natural transformation
L ◦Stack ◦ return : L ◦Stack →̇ G ◦ L unfolds to

cat↔ : ∀x . L (Stack x) → L (Stack (R (L x)))
cat↔ (Empty, ns) = (Empty, ns)
cat↔ (Push (m,ms), ns) = (Push (m, returnms), ns).

For the algebra, we partially evaluate cat apply obtaining

cat▽
: L (Stack (R Stack))→ Stack

cat▽ (Empty, ns) = ns
cat▽ (Push (m, f), ns) = Push (m, f ns).

The algebraic adjoint fold is then

cat : (Stack, Stack)→ Stack
cat (Inms, ns) = (cat▽

· fmap cat · cat↔) (ms, ns).

Here, fmap is the action of the functorG on arrows. The functioning of cat is not entirely obvious: the natural transformation
cat↔ turns the recursive component into a function (a closure at run-time), fmap cat post-composes this function with cat ,
and cat▽ finally invokes the resulting function. �

The example demonstrates that the functor G = L ◦ F ◦ R is not necessarily the simplest or the most obvious control
structure—the parameter of cat is propagated unchanged to the recursive call, which suggests that creating a closure may
not be necessary. Indeed, often there is a simpler choice: some G′ with α′ : L ◦ F →̇ G′ ◦ L. (Can you find such a structure in
the case of cat?) This leads to a more general question: given some (simple) algebraic adjoint fold, Ψ x = a′ · G′ x · α′ X , is
there an easy way to show that it is equivalent to the canonical one given by the construction above? (Imagine embarking
on a round-trip: we turn an algebraic adjoint fold into a Mendler-style one and then convert back.) Now, the algebra of the
canonical fold is Ψ ϵ, so all we have to do is to relate Ψ ϵ to a′. Let us calculate.

Ψ (R A) (ϵ A)

= { definition of Ψ }

a′ · G′ (ϵ A) · α′ (R A)

= { horizontal and vertical composition of natural transformations }

a′ · ((G′ ◦ ϵ) · (α′ ◦ R)) A
= { define τ = (G′ ◦ ϵ) · (α′ ◦ R) }

a′ · τ A

The natural transformation τ simplifies a G to a G′ structure:

τ = (G′ ◦ ϵ) · (α′ ◦ R) : G →̇ G′.

The calculation shows thatwe can factor the algebraΨ ϵ into a (simple) algebra a′ and an application of the transformation τ .

Example 13. For stack concatenation, see Example 12, we can easily calculate a simplified ‘control functor’ (recall that
L = −× Stack).

L ◦Stack

= { definition of Stack }

L ◦ (1+−) ◦ (Nat ×−)

∼= { distributivity: (−× A) ◦ (1+−) ∼= (A+−) ◦ (−× A) }

(Stack+−) ◦ L ◦ (Nat ×−)

∼= { associativity: (−× A) ◦ (B×−) ∼= (B×−) ◦ (−× A) }

(Stack+−) ◦ (Nat ×−) ◦ L

If we define

dataStack′ stack = Empty′ Stack | Push′ (Nat, stack)

1 Readers familiar with monads will recognise return as the unit of the state monad. This is not a coincidence. Every adjunction L ⊣ R gives rise to a
monad, R ◦ L, and to a comonad, L ◦ R. For L = −× S and R = (−)S we obtain the well-known state monad and the less well-known costate comonad.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2123

Table 2
Different kinds of folds.

Adjoint functor
No Yes

Ar
gu

m
en

t

Algebra Standard fold Algebraic adjoint fold
((a)) ((λ x . a · G x · α))L

Recursive call Mendler-style fold Mendler-style adjoint fold
((Ψ)) ((Ψ))L

then the witness of the isomorphism above is given by

scat↔ : ∀x . L (Stack x) → Stack′ (L x)
scat↔ (Empty, ns) = Empty′ ns
scat↔ (Push (m,ms), ns) = Push′ (m, (ms, ns)).

Consequently, the natural transformation τ : L ◦Stack ◦ R →̇Stack′ is defined

τ : ∀x . L (Stack (R x)) → Stack′ x
τ (Empty, ns) = Empty′ ns
τ (Push (m, f), ns) = Push′ (m, f ns).

Given these prerequisites, we can simplify the algebra of Example 12.

scat▽
: Stack′ Stack → Stack

scat▽ (Empty′ ns) = ns
scat▽ (Push′ (n, ns)) = Push (n, ns)

It is not hard to see that cat▽
= scat▽

· τ Stack and consequently

((λ x . cat▽
· (L ◦Stack ◦ R) x · cat↔))L = ((λ x . scat▽

·Stack′ x · scat↔))L.

The control structure of the simplified fold is straightforward: scat↔ propagates the parameter to the tail of the stack,
Stack′ cat recursively applies cat , and scat▽ constructs the resulting stack. In essence, we have transformed an implemen-
tation of cat involving higher-order functions into a first-order one. �

Can we always simplify the control structure? This depends, of course, on the adjunction. For the left adjoint−× X the
answer is yes, if the base functor is linear like Stack. Using a similar calculation as in Example 13, we can always find a G′

such that L◦F ∼= G′◦L (Section 8.3). In this particular case, we have L (µF) ∼= µG (Section 8), so the adjoint fold is a standard
fold in disguise. The answer is no, if the base functor is non-linear as in the following example.

Example 14. The datatype Tree models binary leaf trees.

data Tree = Leaf Nat | Fork (Tree, Tree)

The function
flattenCat : (Tree, Stack) → Stack
flattenCat (Leaf n, ns) = Push (n, ns)
flattenCat (Fork (l, r), ns) = flattenCat (l, flattenCat (r, ns))

places the elements of a leaf tree onto a given stack. �

Due to the nesting of the recursive calls, there is no simple control functor, or, at least, there is no obvious one.2
To summarise, Mendler-style adjoint folds arise naturally. Given a recursive definition, the base function is obtained by

abstracting away from the recursive calls, additionally removing in—we will repeatedly illustrate this process in the next
section. Using general properties of adjunctions, the underlying control structure can be carved out, leading to the notion of
an algebraic adjoint fold. Table 2 lists the different kinds of folds.

As usual, the development nicely dualises to final coalgebras. The details are left to the reader.

5. Basic adjunctions

adjunction, n.

1. The joining on or adding of a thing or person (to another).

Oxford English Dictionary

2 I posed the problem of finding a simple control functor to a few colleagues. In response to the challenge Venanzio Capretta suggested G X =
Stack+ X × X Stack , which is a slight simplification of the canonical functor (L ◦ F ◦ R) X ∼= Stack+ X × X Stack

× X Stack
× Stack.

2124 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

5.1. Identity: Id ⊣ Id

The simplest example of an adjunction is Id ⊣ Id, which demonstrates that adjoint fixed-point equations (12) subsume
fixed-point equations (3).

C
≺

Id

⊥

Id
≻

C

5.2. Isomorphism and equivalence of categories

Identity functors are a special case of invertible functors. A functor H :C→ D is an isomorphism of categories if there is a
functor H◦ : C← D with H◦ ◦ H = Id and Id = H ◦ H◦. Then the inverse functors are adjoint, H◦ ⊣ H, with adjuncts

φ f = H f and φ◦ g = H◦ g.

By symmetry, we also have H ⊣ H◦.
The requirement that H◦ ◦ H equals Id is usually too stringent—in category theory most entities are defined only up to

isomorphism. The following notion weakens equality to isomorphism. A functor H : C→ D is an equivalence of categories if
there is a functor H′ : C← D with ϵ : H′ ◦ H ∼= Id and η : Id ∼= H ◦ H′. Then the functors are adjoint, H′ ⊣ H.

C
≺

H′

⊥

H
≻

D

The isomorphisms ϵ and η are the units of the adjunction (Section 4.3). Consequently, the adjuncts are given by

φ f = H f · η and φ◦ g = ϵ · H′ g.

As before, we also have H ⊣ H′. Isomorphism of categories is a special case of equivalence where ϵ and η are manifestly
identities.

In the following sections we explore more interesting examples. Each section is structured as follows: we introduce an
adjunction, specialise Eqs. (12) to the adjoint functors, and then provide some Haskell examples that fit the pattern.

5.3. Currying:−× X ⊣ (−)X

Perhaps the best-known example of an adjunction is currying. In Set, a function of two arguments can be treated as
a function of the first argument whose values are functions of the second argument. In general, we are seeking the right
adjoint of pairing with a fixed object X:

φ : ∀A, B . C(A× X, B) ∼= C(A, BX).

The object BX is called the exponential of X and B (also written X ⇒ B or [X → B]). In Set, BX is the set of total functions
from X to B. That this adjunction exists is one of the requirements for cartesian closure [46].

C
≺
−× X
⊥

(−)X
≻

C

In the case of Set, the isomorphisms are given by

φ f = λ a . λ x . f (a, x) and φ◦ g = λ (a, x) . g a x.

The adjuncts are also known as curry and uncurry, hence the name curry adjunction.
Let us specialise the adjoint equations to L = −× X and R = (−)X in Set.

x · L in = Ψ x
⇐⇒ { definition of L }

x · (in× id) = Ψ x
⇐⇒ { extensionality }

∀a, c . x (in a, c) = Ψ x (a, c)

R out · x = Ψ x
⇐⇒ { definition of R }

(out · −) · x = Ψ x
⇐⇒ { extensionality }

∀a, c . out (x a c) = Ψ x a c

The adjoint fold takes two arguments, an element of an initial algebra and a second argument (often an accumulator, see
Example 15), both of which are available on the right-hand side. The transposed fold (not shown) is a higher-order function
that yields a function. Dually, a curried unfold is transformed into an uncurried unfold.

We have briefly discussed concatenation in Section 4 (Examples 9 and 11). Here is another example along those lines.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2125

Example 15. The function shunt pushes the elements of the first onto the second stack.

shunt : (µStack, Stack)→ Stack
shunt (InEmpty, ns) = ns
shunt (In (Push (m,ms)), ns) = shunt (ms, Push (m, ns))

Unlike cat , the parameter of shunt is changed in the recursive call—it serves as an accumulator. Nonetheless, shunt fits into
the framework, as its base function

shunt : ∀x . (L x→ Stack)→ (L (Stack x) → Stack)
shunt shunt (Empty, ns) = ns
shunt shunt (Push (m,ms), ns) = shunt (ms, Push (m, ns))

has the required naturality property. The revised definition of shunt

shunt : L (µStack)→ Stack
shunt (Inms, ns) = shunt shunt (ms, ns)

matches exactly the scheme for adjoint initial fixed-point equations.
The transposed fold, φ shunt ,

shunt ′ : µStack → R Stack
shunt ′ (InEmpty) = λns→ ns
shunt ′ (In (Push (m,ms))) = λns→ shunt ′ms (Push (m, ns))

is simply the curried variant of shunt . �

Lists are parametric in Haskell. Can we adopt the above reasoning to parametric types and polymorphic functions?

Example 16. The type of lists is given as the initial algebra of a higher-order base functor of kind (⋆→ ⋆)→ (⋆→ ⋆).

dataList list a = Nil | Cons (a, list a)

Lists generalise stacks, sequences of natural numbers, to an arbitrary element type. Likewise, the function

append : ∀a . (µList a, List a)→ List a
append (InNil, bs) = bs
append (In (Cons (a, as)), bs) = In (Cons (a, append (as, bs)))

generalises cat (Example 4) to sequences of an arbitrary element type. �

If we lift products pointwise to functors, (F ×̇ G) A = F A× G A, we can view append as a natural transformation of type

append : List ×̇ List →̇ List.

All that is left to do is to find the right adjoint of the lifted product − ×̇ H. One could be led to think that F ×̇ H →̇ G ∼=
F→̇(H→̇G), but this does notmake any sense asH→̇G is not a functor. Also, lifting exponentials pointwiseGH A = (G A)H A

does not work, because the data does not define a functor as the exponential is contravariant in its first argument. To make
progress, let us assume that the functor category is SetC so that GH

: C → Set. (The category SetCop
of contravariant, set-

valued functors and natural transformations is known as the category of pre-sheaves.) We reason as follows:

GH A
∼= { Yoneda Lemma (7) }

C(A,−) →̇ GH

∼= { requirement:− ×̇ H ⊣ (−)H }

C(A,−) ×̇ H →̇ G

The derivation suggests that the exponential of H and G is given by GH A = C(A,−) ×̇ H →̇ G. However, the calculation
does not prove that the functor thus defined is actually right adjoint to − ×̇ H, as its existence is assumed in the last step.
We postpone a proof until Section 5.9, where we establish a more general result abstracting away from Set.

Definition 4. The definition of exponentials goes beyond Haskell 2010 [51], as it requires rank-2 types (the data constructor
Exp has a rank-2 type).

newtype Exp h g a = Exp {exp◦ : ∀x . (a→ x, h x)→ g x}
instance Functor (Exp h g)where
fmap f (Exp h) = Exp (λ(k, t)→ h (k · f , t))

2126 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Morally, h and g are functors, as well. However, their mapping functions are not needed to define the Exp h g instance of
Functor . The adjuncts are defined

φExp : (Functor f)⇒ (∀x . (f x, h x)→ g x)→ (∀x . f x→ Exp h g x)
φExp σ = λs→ Exp (λ(k, t)→ σ (fmap k s, t))
φ◦Exp : (∀x . f x→ Exp h g x)→ (∀x . (f x, h x)→ g x)
φ◦Exp τ = λ(s, t)→ exp◦ (τ s) (id, t).

The type variables f , g and h are implicitly universally quantified. Again, most of the functor instances are not needed. �

Example 17. Continuing Example 16, we may conclude that the defining equation of append has a unique solution. Its
transpose of type List →̇ ListList is interesting as it combines appendwith fmap:

append′ : ∀a . List a→ ∀x . (a→ x)→ (List x→ List x)
append′ as = λf → λbs → append (fmap f as, bs).

For clarity, we have inlined the definition of Exp List List. �

5.4. A special case: simultaneous recursion:−× µG ⊣ (−)µG

Often a function recurses on two arguments simultaneously.

Example 18. The function add

add : (µStack, µStack) → Stack
add (InEmpty, ns) = Empty
add (ms, InEmpty) = Empty
add (In (Push (m,ms)), In (Push (n, ns))) = Push (m+ n, add (ms, ns))

zips two stacks adding corresponding elements. �

The definition of add has the form of an adjoint equation: x · (×) in = Ψ x (here in is the initial algebra of the product
category C× C). Unfortunately, the product functor× is not a left adjoint—it is a right adjoint (Section 5.5). So we have to
start afresh. Abstracting away from the particulars of the motivating example, an equation for simultaneous recursion in the
unknown x : C(µF× µG, A) has the form

x · (inF × inG) = Ψ x, (18)

where the base function Ψ has type

Ψ : ∀X, Y . C(X × Y , A)→ C(F X × G Y , A).

The two arguments of x are destructed in lock-step. Now, to ensure uniqueness of solutions it should be sufficient to focus
on one argument and indeed:

x · (inF × inG) = Ψ x
⇐⇒ {× functor and inG isomorphism }

x · (inF × id) = Ψ x · (id× in◦G).

We obtain an equation of the form discussed in the previous section with the left adjoint L = −× µG. It remains to check
that the derived base function Ψ ′ X x = Ψ ⟨X, µG⟩ x · (id× in◦G) has the required naturality property:

Ψ ′ X1 f · (F h× id)
= { definition of Ψ ′ }

Ψ ⟨X1, µG⟩ f · (id× in◦G) · (F h× id)
= { × functor and identity }

Ψ ⟨X1, µG⟩ f · (F h× G id) · (id× in◦G)

= { Ψ is natural: Ψ ⟨X1, Y1⟩ f · (F h× G k) = Ψ ⟨X2, Y2⟩ (f · (h× k)) }
Ψ ⟨X2, µG⟩ (f · (h× id)) · (id× in◦G)

= { definition of Ψ ′ }

Ψ ′ X2 (f · (h× id)).

Wehave reduced the symmetric equation for simultaneous recursion (18) to an asymmetric adjoint fixed-point equation.
Consequently, the arrow given by (18) and hence add are both well-defined.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2127

5.5. Mutual value recursion: (+) ⊣ ∆ ⊣ (×)

The functions nats and squares introduced in Example 10 are defined by mutual recursion. The program is similar to
Example 4, which defines flattena and flattens, with the notable difference that only one datatype is involved, rather than a
pair of mutually recursive datatypes. Nonetheless, the correspondence suggests to view nats and squares as a single arrow
in a product category.

numbers : ⟨Nat, Nat⟩ → ∆(νSequ)

Here ∆ : C → C × C is the diagonal functor defined by ∆A = ⟨A, A⟩ and ∆f = ⟨f , f ⟩. According to the type, numbers is
an adjoint unfold, provided the diagonal functor has a left adjoint. It turns out that ∆ has both a left and a right adjoint. We
discuss the left adjoint first.

The left adjoint of the diagonal functor is the coproduct.

φ : ∀A, B . C((+) A, B) ∼= (C× C)(A, ∆B)

Note that B is an object of C and A is an object of C×C, that is, a pair of objects. Unrolling the definition of arrows in C×C
we have

φ : ∀A, B . C(A1 + A2, B) ∼= C(A1, B)× C(A2, B).

The adjunction captures the observation that we can represent a pair of arrows to the same codomain by a single arrow
from the coproduct of the domains. The adjuncts are given by (▽ is case analysis)

φ f = ⟨f · inl, f · inr⟩ and φ◦ ⟨g1, g2⟩ = g1 ▽ g2.

The reader is invited to verify that the two functions are indeed inverses.
Using a similar reasoning as in Section 3.3, we can unfold the adjoint final fixed-point equation specialised to the diagonal

functor:

∆out · x = Ψ x ⇐⇒ out · x1 = Ψ1 ⟨x1, x2⟩ and out · x2 = Ψ2 ⟨x1, x2⟩,

where x1 = Outl x, x2 = Outr x,Ψ1 = Outl◦Ψ and,Ψ2 = Outr◦Ψ . The resulting equations are similar to those of Section 3.3,
except that now the destructor out is the same in both equations.

Example 19. Continuing Example 10, the base functions of nats and squares are given by

nats : ∀x . (Nat → x,Nat → x)→ (Nat → Sequ x)
nats (nats, squares) n = Next (n, squares n)
squares : ∀x . (Nat → x,Nat → x)→ (Nat → Sequ x)
squares (nats, squares) n = Next (n ∗ n, nats (n+ 1)).

The recursion equations

nats : Nat → νSequ

nats n = Out◦ (nats (nats, squares) n)
squares : Nat → νSequ

squares n = Out◦ (squares (nats, squares) n)

exactly fit the pattern above (if we move Out◦ to the left-hand side). Hence, both functions are uniquely defined. Their
transpose, φ◦ ⟨nats, squares⟩, combines the two functions into a single one using a coproduct.

numbers : EitherNat Nat → νSequ

numbers (Left n) = Out◦ (Next (n, numbers (Right n)))
numbers (Right n) = Out◦ (Next (n ∗ n, numbers (Left (n+ 1))))

The predefined datatype Either given by data Either a b = Left a | Right b is Haskell’s coproduct. �

Let us turn to the dual case. To handle folds defined bymutual recursion,we need the right adjoint of the diagonal functor,
which is the product.

φ : ∀A, B . (C× C)(∆A, B) ∼= C(A, (×) B)

Unrolling the definition of C× C, we have

φ : ∀A, B . C(A, B1)× C(A, B2) ∼= C(A, B1 × B2).

We can represent a pair of arrows with the same domain by a single arrow to the product of the codomains. The bijection is
witnessed by (△ is pairing)

φ ⟨f1, f2⟩ = f1 △ f2 and φ◦ g = ⟨outl · g, outr · g⟩.

2128 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Specialising the adjoint initial fixed-point equation yields

⟨x1, x2⟩ ·∆in = Ψ ⟨x1, x2⟩ ⇐⇒ x1 · in = Ψ1 ⟨x1, x2⟩ and x2 · in = Ψ2 ⟨x1, x2⟩.

To dealwithmutually recursive functions Fokkinga [21] introduced the concept of amutumorphism: a pair of functions x1:
C(µF, A1) and x2 : C(µF, A2) satisfying the equations

x1 · in = a1 · F (x1 △ x2) and x2 · in = a2 · F (x1 △ x2),

where a1 : C(F (A1 × A2), A1) and a2 : C(F (A1 × A2), A2) serve as ‘algebras’. Fokkinga shows that the two equations are
equivalent to the single equation x1 △ x2 = ((a1 △ a2)). Since adjoint folds and mutumorphism both solve the problem of
giving a semantics to functions defined by mutual recursion, they are surely related. Let us calculate.

x1 · in = a1 · F (x1 △ x2) and x2 · in = a2 · F (x1 △ x2)
⇐⇒ { equality of arrows and definition of composition in C× C }

⟨x1, x2⟩ · ⟨in, in⟩ = ⟨a1, a2⟩ · ⟨F (x1 △ x2), F (x1 △ x2)⟩
⇐⇒ { definition of ∆ and definition of φ }

⟨x1, x2⟩ ·∆in = ⟨a1, a2⟩ ·∆(F (φ ⟨x1, x2⟩))
⇐⇒ { set x = ⟨x1, x2⟩ and a = ⟨a1, a2⟩ }

x ·∆in = a ·∆(F (φ x))

Voilá. We obtain an adjoint fold withΨ x = a ·∆(F (φ x)). It is actually an algebraic adjoint fold in disguise (Section 4.3)—we
only have tomassage the right-hand side. Since the steps are not specific to the adjunction at hand, we abstract away from∆

and ‘×’. Let x : C(L X, A), then

a · L (F (φ x))
= { adjunction: φ (x : C(L A, B)) = R x · η A }

a · L (F (R x · η X))

= { L and F functors and definition of horizontal composition }
a · (L ◦ F ◦ R) x · (L ◦ F ◦ η) X .

Voilá again. An algebraic fold in canonical form emerges withG = L◦F◦R and α = L◦F◦η. Note that a is indeed an algebra,
an algebra for the functor G! It is instructive to replay Fokkinga’s proof of uniqueness in the abstract setting, reducing the
algebraic adjoint fold to a standard fold.

x · L in = a · L (F (φ x))
⇐⇒ { adjunction: φ · φ◦ = id and φ◦ · φ = id }

φ (x · L in) = φ (a · L (F (φ x)))
⇐⇒ { φ is natural (14) }

φ x · in = φ a · F (φ x)
⇐⇒ { uniqueness property of standard folds (2) }

φ x = ((φ a))

We obtain an attractive formula, Fokkinga’s mutu-Charn law in the abstract.
Fokkinga also observes that paramorphisms [54] can be seen as a special case of mutumorphisms.

Example 20. We can use mutual value recursion to fit the definition of factorial (Example 3) into the framework. The
definition of fac has the form of a paramorphism, as the argument that drives the recursion is not exclusively used in the
recursive call. The idea is to ‘guard’ the other occurrence by the identity function and to pretend that both functions are
defined by mutual recursion.

fac : µNat → Nat
fac (In Z) = 1
fac (In (S n)) = In (S (id n)) ∗ fac n

id : µNat → Nat
id (In Z) = In Z

id (In (S n)) = In (S (id n))

If we abstract away from the recursive calls, we find that the two base functions have indeed the required polymorphic
types.

fac : ∀x . (x→ Nat, x→ Nat)→ (Nat x→ Nat)
fac (fac, id) (Z) = 1
fac (fac, id) (S n) = In (S (id n)) ∗ fac n
id : ∀x . (x→ Nat, x→ Nat)→ (Nat x→ Nat)
id (fac, id) (Z) = In Z

id (fac, id) (S n) = In (S (id n))

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2129

The transposed fold has type µNat→ Nat × Nat and corresponds to the usual encoding of paramorphisms as folds (using
tupling). The trick does not work for the ‘base function’ bogus, as the resulting function still lacks naturality. �

Example 21. Incidentally, we can employ a similar approach to also fit the Fibonacci function into the framework.

fib : Nat → Nat
fib (Z) = Z
fib (S Z) = S Z
fib (S (S n)) = fib n+ fib (S n)

The definition is sometimes characterised as a histomorphism [69] because in the third equation fib depends on two previous
values, rather than only one. Setting fib′ n = fib (S n), we can transform the nested recursion into amutual recursion. Indeed,
this is the usual approach taken when defining the stream of Fibonacci numbers, see, for example, [35].

fib : Nat → Nat
fib (Z) = Z
fib (S n) = fib′ n

fib′ : Nat → Nat
fib′ (Z) = S Z
fib′ (S n) = fib n+ fib′ n

We leave the details to the reader and only remark that the transposed fold corresponds to the usual linear-time
implementation of Fibonacci, called twofib in [8]. �

The diagram below illustrates the double adjunction (+) ⊣ ∆ ⊣ (×).

C
≺

+

⊥

∆
≻

C× C
≺

∆

⊥

×
≻

C

Each double adjunction gives rise to four different schemes and transformations: two for initial and two for final fixed-point
equations. We have discussed (+) ⊣ ∆ for unfolds and ∆ ⊣ (×) for folds. Their ‘inverses’ are less useful: using (+) ⊣ ∆ we
can transform an adjoint fold that works on a coproduct of mutually recursive datatypes into a standard fold over a product
category (see Section 3.3). Dually, ∆ ⊣ (×) enables us to transform an adjoint unfold that yields a product of mutually
recursive datatypes into a standard unfold over a product category.

5.6. Mutual value recursion: Σ i ∈ I ⊣ ∆ ⊣ Π i ∈ I

In the previous section we have considered two functions defined bymutual recursion. It is straightforward to generalise
the development to n mutually recursive functions (or, indeed, to an infinite number of functions). Likewise, we can
generalise the Fibonacci example to histomorphisms that depend on a fixed number of previous values. The same reasoning
applies to their duals, so-called futumorphisms [69].

Central to the previous undertaking was the notion of a product category. Now, the product category C × C can be
regarded as a simple functor category: C2, where 2 is some two-element set. To be able to deal with an arbitrary number of
functions we simply generalise from 2 to an arbitrary index set.

Recall that a set forms a discrete category (Section 3.5). The diagonal functor ∆ : C → CI now sends each index to the
same object: (∆A)i = A. Left and right adjoints of the diagonal functor generalise the constructions of the previous section.
The left adjoint of the diagonal functor is a simple form of a dependent sum (also called a dependent product).

∀A, B . C(Σ i ∈ I . Ai, B) ∼= CI(A, ∆B)

Its right adjoint is a dependent product (also called a dependent function space).

∀A, B . CI(∆A, B) ∼= C(A, Π i ∈ I . Bi)

The following diagram summarises the type information.

C
≺

Σ i ∈ I
⊥

∆
≻

CI ≺
∆

⊥

Π i ∈ I
≻

C

It is worth singling out a special case of the construction that we shall need later on. First of all, note that CI(∆X, ∆Y) ∼=
I → C(X, Y). Consequently, if the summands of the sum and the factors of the product are the same, Ai = X and Bi = Y ,
we obtain another adjoint situation:

∀X, Y . C(Σ I . X, Y) ∼= I→ C(X, Y) ∼= C(X, Π I . Y). (19)

Alternatively, we obtain the derived adjunction Σ I ⊣ Π I as the composition (Σ i ∈ I) ◦ ∆ ⊣ (Π i ∈ I) ◦ ∆ of
Σ i ∈ I ⊣ ∆ with ∆ ⊣ Π i ∈ I (Section 6.1). The degenerated sum Σ I . A is also called a copower, sometimes written
I • A. The degenerated product Π I . A is also called a power, sometimes written AI. In Set, we have Σ I . A = I × A and
Π I . A = I→ A. (Hence, Σ I ⊣ Π I is essentially a variant of currying).

2130 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

5.7. Type application: LshX ⊣ (− X) ⊣ RshX

Folds of higher-order initial algebras are necessarily natural transformations, as they live in a functor category. However,
many Haskell functions that recurse over a parametric datatype are actually monomorphic.
Example 22. The function suml defined

suml : µListNat → Nat
suml (InNil) = 0
suml (In (Cons (a, as))) = a+ suml as

sums a list of natural numbers. It is the adaptation of total (Example 1) to the type of parametric lists (we relate total and
suml in Example 33). �

The definition of suml looks suspiciously like a fold, but it is not, as it does not have the right type. The corresponding function
on perfect trees does not even resemble a fold.
Example 23. The function sump sums a perfect tree of naturals.

sump : µPerfectNat → Nat
sump (In (Zero n)) = n
sump (In (Succ p)) = sump (fmap plus p) where plus (a, b) = a+ b

The recursive call of sump is not applied to a subterm of Succ p. In fact, it cannot, as p has type Perfect (Nat,Nat), not
PerfectNat . As an aside, this definition requires the functor instance for µ (Definition 3). �

Perhaps surprisingly, the definitions above fit into the framework of adjoint fixed-point equations. We simply have
to view type application as a functor: given X : D define AppX : CD

→ C by AppX F = F X and AppX α = α X . (The
natural transformation α is applied to the object X . In Haskell this type application is invisible, which is why we cannot
see that suml is not a standard fold.) It is easy to show that this data defines a functor: AppX id = id X = idX and
AppX (α ·β) = (α ·β) X = α X ·β X = AppX α ·AppX β . Using AppX we can assign suml the type AppNat (µList)→ Nat . All
that is left to do is to check whether AppX is part of an adjunction. It turns out that under some mild conditions (existence
of copowers and powers) AppX has both a left and a right adjoint. We choose to derive the left adjoint.

C(A,AppX B)

∼= { definition of AppX }

C(A,B X)

∼= { Yoneda Lemma (10) }
∀Y : D . D(X, Y)→ C(A,B Y)

∼= { copower (19): C(Σ I . X, Y) ∼= I→ C(X, Y) }

∀Y : D . C(Σ D(X, Y) . A,B Y)

∼= { define LshX A = Λ Y : D . Σ D(X, Y) . A }
∀Y : D . C(LshX A Y ,B Y)

∼= { natural transformations }
LshX A →̇ B

Since each step is natural in A and B, the composite isomorphism is natural in A and B, as well. We call LshX the left shift of X ,
for want of a better name. Dually, the right adjoint is RshX B = Λ Y : D . Π D(Y , X) . B, the right shift of X . The following
diagram summarises the type information.

CD ≺
LshX

⊥

AppX
≻

C
≺

AppX

⊥

RshX
≻

CD

Recall that in Set, the copower Σ I . A is the cartesian product I× A and the power Π I . A is the set of functions I→ A.
This correspondence suggests the Haskell implementation below. However, it is important to keep in mind that I is a set,
not an object in the ambient category (like A).
Definition 5. The functors Lsh and Rsh can be defined as follows.

newtype Lshx a y = Lsh (x→ y, a)
instance Functor (Lshx a)where
fmap f (Lsh (k, a)) = Lsh (f · k, a)

newtypeRshx b y = Rsh {rsh◦ : (y→ x)→ b}
instance Functor (Rshx b)where
fmap f (Rsh g) = Rsh (λk→ g (k · f))

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2131

The type Lshx a y can be seen as an abstract datatype: a is the internal state and x → y is the observer function—often,
but not necessarily the types a and x are identical (Lshx x is a comonad, similar to the costate comonad). Dually, Rshx b y
implements a continuation type—again, the types x and b are likely to be identical (Rshx x is the continuation monad). The
adjuncts are defined

φLsh : ∀x a b . (∀y . Lshx a y→ b y)→ (a→ b x)
φLsh α = λs→ α (Lsh (id, s))
φ◦Lsh : ∀x a b . (Functor b)⇒ (a→ b x)→ (∀y . Lshx a y→ b y)
φ◦Lsh g = λ(Lsh (k, s))→ fmap k (g s)
φRsh : ∀x a b . (Functor a)⇒ (a x→ b)→ (∀y . a y→ Rshx b y)
φRsh f = λs→ Rsh (λk→ f (fmap k s))
φ◦Rsh : ∀x a b . (∀y . a y→ Rshx b y)→ (a x→ b)
φ◦Rsh β = λs→ rsh◦ (β s) id.

Note that the adjuncts are also natural in x, the parameter of the adjunctions. �

As usual, let us specialise the adjoint equations.
x · AppX in = Ψ x

⇐⇒ { definition of AppX }

x · in X = Ψ x

AppX out · x = Ψ x
⇐⇒ { definition of AppX }

out X · x = Ψ x
Since both type abstraction and type application are invisible in Haskell, adjoint equations are, in fact, indistinguishable
from standard fixed-point equations.
Example 24. Continuing Example 23, the base function of sump is

sump : ∀x . (Functor x)⇒ (x Nat → Nat)→ (Perfect x Nat → Nat)
sump sump (Zero n) = n
sump sump (Succ p) = sump (fmap plus p).

The definition requires the Perfect x functor instance, which in turn induces the Functor x context. The transpose of sump is
a fold that returns a higher-order function: sump′ : Perfect →̇ RshNat Nat . Let us derive its definition by simplifying the base
function φRsh · sump · φ◦Rsh. Case Zero n:

φRsh (sump (φ◦Rsh sump′)) (Zero n)
= { definition of φRsh (Definition 5) }

λ k . sump (φ◦Rsh sump′) (Perfect k (Zero n))
= { definition of Perfect (Example 7) and definition of sump }

λ k . k n

For clarity, we have omitted the constructor Rsh and the destructor rsh◦. Case Succ p:

φRsh (sump (φ◦Rsh sump′)) (Succ p)
= { definition of φRsh (Definition 5) }

λ k . sump (φ◦Rsh sump′) (Perfect k (Succ p))
= { definition of Perfect (Example 7) and definition of sump }

λ k . φ◦Rsh sump′ (Perfect plus (Perfect (k× k) p))
= { Perfect functor }

λ k . φ◦Rsh sump′ (Perfect (plus · (k× k)) p)
= { definition of φ◦Rsh (Definition 5) }

λ k . sump′ (Perfect (plus · (k× k)) p) id
= { sump′ is natural: sump′ p (k · h) = sump′ (Perfect h p) k }

λ k . sump′ p (plus · (k× k))

The only non-trivial step is the last one where we use the fact that the argument sump′ itself is natural. Inlining the base
function, we obtain

sump′ : ∀x . Perfect x→ (x→ Nat)→ Nat
sump′ (Zero n) = λk → k n
sump′ (Succ p) = λk → sump′ p (plus · (k× k)).

Quite interestingly, the transformation turns a generalised fold in the sense of Bird and Paterson [11] into an efficient
generalised fold in the sense ofHinze [30]. Both versions have a linear running time, but sump′ avoids the repeated invocations
of the mapping function (fmap plus). �

2132 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

5.8. Type composition: LanJ ⊣ (− ◦ J) ⊣ RanJ

Yes, we can.

Concession speech in the New Hampshire presidential primary—Barack Obama

Continuing the theme of the last section, functions over parametric types, consider the following example.
Example 25. The function concat defined

concat : ∀a . µList (List a) → List a
concat (InNil) = InNil

concat (In (Cons (l, ls))) = append (l, concat ls)
generalises the binary function append to a list of lists. �

The definition has the structure of a standard fold, but again the type is not quite right: we need a natural transformation of
typeµList→̇G, but concat has typeµList◦List→̇List. Canwe fit the definition into the framework of adjoint equations? The
answer is an emphatic ‘‘Yes, we Kan!’’ Similar to the development of the previous section, the first step is to identify a left
adjoint. To this end, we view pre-composition as a functor: (−◦ List) (µList)→̇ List. We interpret List◦ List as (−◦ List) List
rather than (List ◦ −) List because the outer list, written µList for emphasis, drives the recursion.

Given a functor J :C→ D, define the higher-order functor PreJ :ED
→ EC by PreJ F = F◦J and PreJ α = α◦J, where the

horizontal composition of a natural transformation and a functor is defined (α◦J) X = α (J X). (In Haskell, this composition
is invisible. Again, this is why the definition of concat looks like a fold, but it is not.) As usual, we should make sure that the
data actually defines a functor: PreJ idF = idF◦J = idF◦J and PreJ (α ·β) = (α ·β)◦J = (α◦J) ·(β ◦J) = PreJ α ·PreJ β . (The
calculations make use of Godement’s rules [6], which relate different types of composites.) Using the higher-order functor
we can assign concat the type PreList (µList) →̇ List. As a second step, we have to construct the right adjoint of the higher-
order functor. It turns out that this is a well-studied problem in category theory. Similar to the situation of the previous
section, under some conditions PreJ has both a left and a right adjoint. For variety, we derive the latter.

F ◦ J →̇ G
∼= { natural transformation as an end [49, p. 223] }
∀Y : C . E(F (J Y),G Y)

∼= { Yoneda Lemma (6) }
∀Y : C . ∀X : D . D(X, J Y)→ E(F X,G Y)

∼= { power (19): I→ C(Y , B) ∼= C(Y , Π I . B) }
∀Y : C . ∀X : D . E(F X, Π D(X, J Y) . G Y)

∼= { interchange of quantifiers [49, p. 231f] }
∀X : D . ∀Y : C . E(F X, Π D(X, J Y) . G Y)

∼= { the hom-functor E(A,−) preserves ends [49, p. 225] }
∀X : D . E(F X,∀Y : C . Π D(X, J Y) . G Y)

∼= { define RanJ G = Λ X : D . ∀Y : C . Π D(X, J Y) . G Y }
∀X : D . E(F X,RanJ G X)

∼= { natural transformation as an end [49, p. 223] }
F →̇ RanJ G

Since each step is natural in F and G, the composite isomorphism is also natural in F and G. The functor RanJ G is called the
right Kan extension of G along J. (If we view J : C → D as an inclusion functor, then RanJ G : D → E extends G : C → E
to the whole of D.) The universally quantified object in the definition of RanJ is a so-called end, which corresponds to a
polymorphic type in Haskell. An end is usually written with an integral sign; I prefer the notation above, in particular, as
it blends with the notation for natural transformations. And indeed, natural transformations are an example of an end:
DC(F,G) = ∀X : C . D(F X,G X). We refer the interested reader to [49] for further details.

Dually, the left adjoint of PreJ is called the left Kan extension and is defined LanJ F = Λ X : D . ∃Y : C . Σ D(J Y , X) . F Y .
The existentially quantified object is a coend, which corresponds to an existential type in Haskell (hence the notation). The
following diagrams summarise the type information.

C

E ≺
G

≺
LanJ F

≺

F

D

J

g

ED ≺
LanJ

⊥

− ◦ J
≻

EC ≺
− ◦ J

⊥

RanJ
≻

ED

C

D

J

g F
≻

RanJ G
≻ E

G

≻

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2133

Definition 6. Like Exp, the definition of the right Kan extension requires rank-2 types (the data constructor Ran has a rank-2
type).

newtypeRanj g x = Ran {ran◦ : ∀a . (x→ j a)→ g a}
instance Functor (Ranj g)where

fmap f (Ran h) = Ran (λk→ h (k · f))

The type Ranj g can be seen as a generalised continuation type—often, but not necessarily the type constructors j and g are
identical (RanJ J is known as the codensity monad). Morally, j and g are functors. However, their mapping functions are not
needed to define the Ranj g instance of Functor . Hence, we omit the (Functor j, Functor g) context. The adjuncts are defined

φRan : ∀j f g . (Functor f)⇒ (∀x . f (j x)→ g x)→ (∀x . f x→ Ranj g x)
φRan α = λs→ Ran (λk→ α (fmap k s))
φ◦Ran : ∀j f g . (∀x . f x→ Ranj g x)→ (∀x . f (j x)→ g x)
φ◦Ran β = λs→ ran◦ (β s) id.

Note that the adjuncts are also natural in j, the parameter of the adjunction.
Turning to the definition of the left Kan extension we require another extension of the Haskell 2010 type system [51]:

existential types.

data Lanj f x = ∀a . Lan (j a→ x, f a)
instance Functor (Lanj f)where
fmap f (Lan (k, s)) = Lan (f · k, s).

The existential quantifier is written as a universal quantifier in front of the data constructor Lan. Ideally, Lanj should be given
by a newtype declaration, but newtype constructors must not have an existential context. For similar reasons, we cannot
use a destructor, that is, a selector function lan◦. The type Lanj f can be seen as a generalised abstract datatype: f a is the
internal state and j a → x the observer function—again, the type constructors j and f are likely to be identical (LanJ J is
known as the density comonad). The adjuncts are given by

φLan : ∀j f g . (∀x . Lanj f x→ g x)→ (∀x . f x→ g (j x))
φLan α = λs→ α (Lan (id, s))
φ◦Lan : ∀j f g . (Functor g)⇒ (∀x . f x→ g (j x))→ (∀x . Lanj f x→ g x)
φ◦Lan β = λ(Lan (k, s))→ fmap k (β s).

The duality of the construction is somewhat obfuscated in Haskell. �

As usual, let us specialise the adjoint equations.

x · PreJ in = Ψ x
⇐⇒ { definition of PreJ }

x · (in ◦ J) = Ψ x
⇐⇒ { extensionality }

∀A . ∀s . x A (in (J A) s) = Ψ x A s

PreJ out · x = Ψ x
⇐⇒ { definition of PreJ }

(out ◦ J) · x = Ψ x
⇐⇒ { extensionality }

∀A . ∀s . out (J A) (x A s) = Ψ x A s

Note that ‘·’ in the original equations denotes the vertical composition of natural transformations: (α · β) X = α X · β X .
Also note that the natural transformations x and in are applied to different types. The usual caveat applies when reading the
equations as Haskell definitions: as type application is invisible, the derived equation is indistinguishable from the original
one.

Example 26. Continuing Example 25, the base function of concat is straightforward, except perhaps for the types.

concat : ∀x . (∀a . x (List a)→ List a)→ (∀a . List x (List a)→ List a)
concat concat (Nil) = InNil

concat concat (Cons (l, ls)) = append (l, concat ls)

The base function concat is a second-order natural transformation. The transpose of concat is quite revealing. First of all, its
type is

concat ′ : List →̇ RanList List ∼= ∀a . List a→ ∀b . (a→ List b)→ List b.

The type suggests that concat ′ is the bind of the list monad, written >>= in Haskell, and this is indeed the case!

concat ′ : ∀a b . µList a→ (a→ List b)→ List b
concat ′ as = λk → concat (fmap k as)

For clarity, we have inlined RanList List. �

2134 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Given some type signature, it is not always straightforward to read off the pre-composed functor J as the following
example demonstrates.

Example 27. The parametric datatype of streams

dataStream a = Link (a,Stream a)

generalises the type Sequ of infinite sequences of naturals (Example 2). The function

zip : ∀a b . (Stream a, Stream b) → Stream (a, b)
zip (Link (a, s), Link (b, t)) = Link ((a, b), zip (s, t))

makes use of the added flexibility, turning a pair of streams into a stream of pairs. Unlike the previous example, zip is
polymorphic in two type variables. Categorically speaking, it is a natural transformation between functors from a product
category to some other category:

zip : (×) ◦ (Stream× Stream) →̇ Stream ◦ (×).

The type possibly looks a bit confusing with three occurrences of×. The product in Stream× Stream is the product in Cat.
Specifically, it is the arrow part of the functor (×) : Cat× Cat→ Cat defined component-wise: (F× G) ⟨A, B⟩ = ⟨F A, G B⟩
and (F×G) ⟨f , g⟩ = ⟨F f , G g⟩. The other two occurrences of× denote the product in the ambient category (×):C×C→ C.
The signature suggests that zip is an adjoint unfold, whose transpose has type

zip′ : Lan× ((×) ◦ (Stream× Stream)) →̇ Stream.

Interestingly, if we unravel the definitions, we find that zip′ corresponds to the function zipWith defined

zipWith : ∀a b c . ((a, b)→ c,Stream a, Stream b) → Stream c
zipWith (f , Link (a, s), Link (b, t)) = Link (f (a, b), zipWith (f , s, t)).

We have turned the existential type into a universal type, as Haskell does not support ‘free-flowing’ existentials. Unfortu-
nately, we cannot use Lan to implement zip′ directly, as the kind system insists that the type index of Lan has kind ⋆→ ⋆,
but× has kind ⋆→ ⋆→ ⋆. �

Kan extensions generalise the constructions of the previous section: If the category C is non-empty (C ≠ 0), then we
have LshA B ∼= Lan(K A) (K B) and RshA B ∼= Ran(K A) (K B), where K is the constant functor. Here is the proof for the right
adjoint:

F A→ B
∼= { arrows as natural transformations: A→ B ∼= K A →̇ K B if C ≠ 0 }

K (F A) →̇ K B
= { K (F A) = F ◦ K A }

F ◦ K A →̇ K B
∼= { (− ◦ J) ⊣ RanJ }

F →̇ RanK A (K B).

Since adjoints are unique up to isomorphism, we have RanK A ◦ K ∼= RshA.

5.9. Currying continued:− ×̇ H ⊣ (−)H

The Kan extension along the identity functor is the identity:

F →̇ Id G
∼= { identity }

F ◦ Id →̇ G
∼= { right Kan extension: (− ◦ Id) ⊣ RanId }

F →̇ RanId G.

Since every step is natural in F and G, we may conclude RanId
∼= Id—this is an application of the principle of indirect proof,

see, for instance, [37]. Dually, we have LanId
∼= Id. The identities look innocent enough, but there is an interesting cross-

connection to the Yoneda Lemma. Let H : C → D be some functor. If we unfold the definitions of Ran and Lan, we obtain
the isomorphisms

H A ∼= ∀Y : C . Π C(A, Y) . H Y , (20)
H A ∼= ∃Y : C . Σ C(Y , A) . H Y , (21)

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2135

both of which are natural in H and A. The first identity can be seen as a generalisation of the Yoneda Lemma: if H : C→ Set
is set-valued, then the powers are given by function spaces and the end reduces to a set of natural transformations. (All the
necessary powers exist if C has small hom-sets.) In other words, (20) specialises to (11). The second identity dualises the
first and is known as the density formula (or as the co-Yoneda Lemma). Using the density formula we can finally derive the
right adjoint of the lifted product − ×̇ H. (In Section 5.3, we motivated the definition of the exponential GH for the special
case of set-valued functors.) We calculate

DC(F ×̇ H,G)

∼= { natural transformation as an end [49, p. 223] }

∀Y : C . D((F ×̇ H) Y ,G Y)

∼= { definition of ×̇ }
∀Y : C . D(F Y × H Y ,G Y)

∼= { assumption: D is cartesian closed−× X ⊣ (−)X }

∀Y : C . D(F Y , (G Y)H Y)

∼= { density formula (21) }

∀Y : C . D(∃X : C . Σ C (X, Y) . F X, (G Y)H Y)

∼= { the hom-functor D(−, B) reverses ends [49, p. 225] }

∀Y : C . ∀X : C . D(Σ C (X, Y) . F X, (G Y)H Y)

∼= { interchange of quantifiers [49, p. 231f] }

∀X : C . ∀Y : C . D(Σ C (X, Y) . F X, (G Y)H Y)

∼= {Σ I ⊣ Π I (19) }

∀X : C . ∀Y : C . D(F X, Π C (X, Y) . (G Y)H Y)

∼= { the hom-functor D(A,−) preserves ends [49, p. 225] }

∀X : C . D(F X,∀Y : C . Π C (X, Y) . (G Y)H Y)

∼= { define GH A = ∀X : C . Π C (A, X) . (G X)H X
}

∀X : C . D(F X,GH X)

∼= { natural transformation as an end [49, p. 223] }

DC(F,GH).

The definition of GH is interesting as it combines ends, powers and exponentials in a single formula. The calculation shows
that DC is cartesian closed if D is cartesian closed and the necessary ends and powers exist.

5.10. Swapping arguments: (X (−))op ⊣ X (−)

So far we have considered inductive and coinductive types only in isolation. The following example introduces two
functions that combine an inductive with a coinductive type.

Example 28. Infinite sequences and functions over the natural numbers are in one-to-one correspondence. The functions
tabulate and lookupwitness the isomorphism.

tabulate : (Nat → Nat)→ Sequ
tabulate f = Next (f Z, tabulate (f · S))
lookup : Sequ→ (Nat → Nat)
lookup (Next (v, vs)) (Z) = v
lookup (Next (v, vs)) (S n) = lookup vs n

The first isomorphism tabulates a given function, producing a stream of its values. Its inverse looks up a natural number at
a given position. �

Tabulation is a standard unfold, but what about lookup? Its type involves exponentials: lookup :C(Sequ,NatµNat). However,
the curry adjunction−×X ⊣ (−)X of Section 5.3 is not applicable here, as the right adjoint fixes the source object. We need
its counterpart, the functor X (−)

: Cop
→ C, which fixes the target object. Since this functor is contravariant, the type of

2136 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

lookup is actually Cop(Nat(−) (µNat), Sequ), which suggests that the arrow is an adjoint fold! The functor X (−) is interesting
as it is self-adjoint:

Cop ≺
(X (−))op

⊥

X (−)
≻

C.

Briefly, the opposite category Cop has the same objects as C; the arrows of Cop are in one-to-one correspondence to the
arrows in C, that is, f op : Cop(A, B) if and only if f : C(B, A). The operation (−)op can be extended to a covariant functor
(−)op : Cat → Cat, whose arrow part is defined Fop A = F A and Fop f op = (F f)op. The adjunction (X (−))op ⊣ X (−) is a
consequence of currying:

Cop(XA, B)
∼= { opposite category }

C(B, XA)

∼= { currying:−× X ⊣ (−)X }

C(B× A, X)

∼= { × is commutative }
C(A× B, X)

∼= { currying:−× X ⊣ (−)X }

C(A, XB).

If we specialise the adjoint equation to C = Set and L = X (−), we obtain

x · L in = Ψ x ⇐⇒ ∀s . ∀a . x a (in s) = Ψ x a s.

So x is simply a curried function that recurses over the second argument.
We have not mentioned unfolds so far. The reason is perhaps surprising. In this particular case, an adjoint unfold is the

same as an adjoint fold! Consider the type of an adjoint unfold: C(A,R (νF)). Since R = X (−) is contravariant, the final
coalgebra in Cop is the initial algebra in C. Since furthermore X (−) is self-adjoint, we obtain the type of an adjoint fold:
C(A, L (µF)) = Cop(L (µF), A).

It may seem overkill to model lookup as an adjoint fold—its transposed fold simply swaps the two arguments. However,
this approach will pay dividends later, when we show that tabulate and lookup are actually inverses (Section 8.7). Besides,
X (−) is interesting in its own right, as it is the first adjunction that involves contravariant functors.

Table 3 summarises the basic adjunctions introduced in this section.

6. Combining adjunctions

What is a combinator library? ⟨. . .⟩ the key idea is this:

a combinator library offers functions (the combinators) that combine

functions together to make bigger functions.

A History of Haskell: Being Lazy With Class—Paul Hudak et al

In the previous section we have discussed a variety of basic adjunctions. In this section we look at ways of combining
these adjunctions to form more complex ones. This will allow us to fit even more definitions under the umbrella of adjoint
equations.

6.1. Composition of adjoints

Like functors, adjunctions can be composed. Given adjunctions L1 ⊣ R1 and L2 ⊣ R2, their composition yields an
adjunction L2 ◦ L1 ⊣ R1 ◦ R2.

C
≺

L2
⊥

R2
≻

D
≺

L1
⊥

R1
≻

E then C
≺
L2 ◦ L1
⊥

R1 ◦ R2
≻

E

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2137

Table 3
Adjunctions and types of recursion.

Adjunction Initial fixed-point equation Final fixed-point equation

L ⊣ R
x · L in = Ψ x R out · x = Ψ x
φ x · in = (φ · Ψ · φ◦) (φ x) out · φ◦ x = (φ◦ · Ψ · φ) (φ◦ x)

Id ⊣ Id
Standard fold Standard unfold
Standard fold Standard unfold

−× X ⊣ (−)X
Parametrised fold Curried unfold
Fold to an exponential Unfold from a product

−× µG ⊣ (−)µG Simultaneous recursion —Fold to an exponential

(X (−))op ⊣ X (−) Swapped curried fold
Fold to an exponential

(+) ⊣ ∆

Recursion from a coproduct of Mutual value recursionmutually recursive types
Mutual value recursion on Single recursion from a
mutually recursive types coproduct domain

∆ ⊣ (×)

Mutual value recursion Recursion to a product of
mutually recursive types

Single recursion to a Mutual value recursion on
product domain mutually recursive types

LshX ⊣ (− X) — Monomorphic unfold
Unfold from a left shift

(− X) ⊣ RshX
Monomorphic fold —Fold to a right shift

LanJ ⊣ (− ◦ J) — Polymorphic unfold
Unfold from a left Kan extension

(− ◦ J) ⊣ RanJ
Polymorphic fold —Fold to a right Kan extension

Observe that the right adjoints are composed in the reverse order. To establish the bijectionC(L2 (L1 A), B) ∼= E(A,R1 (R2 B)),
we simply compose the two adjuncts.

C(L2 (L1 A), B)
∼= { assumption: L2 ⊣ R2 }

D(L1 A,R2 B)
∼= { assumption: L1 ⊣ R1 }

E(A,R1 (R2 B))

Each step is natural in A and B and consequently also the composite isomorphism. The adjuncts are defined

φ ⟨A, B⟩ = φ1 ⟨A, R2 B⟩ · φ2 ⟨L1 A, B⟩,
φ◦ ⟨A, B⟩ = φ◦2 ⟨L1 A, B⟩ · φ◦1 ⟨A, R2 B⟩.

As an example, the double adjunction (+) ⊣ ∆ ⊣ (×) implies the adjunction (+) ◦∆ ⊣ (×) ◦∆, that is, A+ A→ B ∼=
A→ B × B (see also Section 5.6). Note that L ⊣ M ⊣ R induces the adjunction L ◦ M ⊣ R ◦ M, not L ⊣ R, even though the
notation may seem to suggest this.

Many adjoint folds and unfolds arise as compositions of adjunctions. For reasons of space, we refrain from providing
detailed Haskell examples. Instead, we consider some example type signatures and show how to read them as types of
adjoint folds, L (µF)→ B. Let F be some first-order and let H be some higher-order functor. Then

(µF× A1)× A2 → B = ((−× A2) ◦ (−× A1)) (µF)→ B
µH T × A→ B = ((−× A) ◦ (− T)) (µH)→ B
∀X . µH (J1 (J2 X))→ B X = ((− ◦ J2) ◦ (− ◦ J1)) (µH) →̇ B.

Often, there is a choice as to how we view a type. In the first example, since the cartesian product is associative, we can
alternatively use

µF× (A1 × A2)→ B = (−× (A1 × A2)) (µF)→ B.

2138 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

The transpose is now a simple curried fold. Previously, it was doubly curried. Likewise, since composition is associative, we
can view the third type in a different way:

∀X . µH (J1 (J2 X))→ B X = (− ◦ (J1 ◦ J2)) (µH) →̇ B.

The original transpose uses a nested Kan extension; this one manages with a single Kan.
In fact, compositions of adjunctions can often be simplified. The adjunctions of Section 5 that have a parameter satisfy

the following identities:

(−× Y) ◦ (−× X) ∼= (−× X × Y)

(−)X ◦ (−)Y ∼= (−)X×Y

(− Y) ◦ (− X) ∼= Uncurry ◦ (−⟨X, Y ⟩)
LshX ◦ LshY ∼= Curry ◦ Lsh⟨X, Y ⟩

RshX ◦ RshY ∼= Curry ◦ Rsh⟨X, Y ⟩

(− ◦ J) ◦ (− ◦ H) ∼= (− ◦ H ◦ J)

LanJ ◦ LanH
∼= LanJ◦H

RanJ ◦ RanH
∼= RanJ◦H,

where Curry :C×D→ E ∼= C→ ED
:Uncurry is the isomorphism of the curry adjunction in Cat. We show the last property

and leave the others as exercises.

F →̇ (RanJ ◦ RanH)G

= { definition of functor composition }
F →̇ RanJ (RanH G)

∼= { right Kan extension: (− ◦ J) ⊣ RanJ }

F ◦ J →̇ RanH G
∼= { right Kan extension: (− ◦ H) ⊣ RanH }

F ◦ J ◦ H →̇ G
∼= { right Kan extension: (− ◦ J ◦ H) ⊣ RanJ◦H }

F →̇ RanJ◦H G

Since every step is natural in F and G, the claim follows.

6.2. Product of adjoints

In Section 3.3 we have seen that we can view arrows over datatypes defined by mutual recursion as a fold in a product
category. Now assume that the defining equations already involve adjoint functors:

x1 · L1 in1 = Ψ1 ⟨x1, x2⟩ and x2 · L2 in2 = Ψ2 ⟨x1, x2⟩.
To model this situation, we define the product of adjunctions.

Given adjunctions L1 ⊣ R1 and L2 ⊣ R2, the product3 L1 × L2 ⊣ R1 × R2 is an adjunction between product categories.

C1
≺

L1
⊥

R1
≻

D1 and C2
≺

L2
⊥

R2
≻

D2 then C1 × C2
≺
L1 × L2
⊥

R1 × R2
≻

D1 × D2

Recall that the product (− × =) : Cat × Cat → Cat is itself a functor whose action on arrows, that is, functors is defined
(F× G) ⟨A, B⟩ = ⟨F A, G B⟩ and (F× G) ⟨f , g⟩ = ⟨F f , G g⟩.

The bijection is easy to establish:

(C1 × C2)((L1 × L2) ⟨A1, A2⟩, ⟨B1, B2⟩)

∼= { definition of F× G and definition of C× D }
C1(L1 A1, B1)× C2(L2 A2, B2)

∼= { assumptions: L1 ⊣ R1 and L2 ⊣ R2 }

D1(A1,R1 B1)× D2(A2,R2 B2)

∼= { definition of C× D and definition of F× G }

(D1 × D2)(⟨A1, A2⟩, (R1 × R2) ⟨B1, B2⟩).

3 Small categories and adjunctions form a category called Adj. The product of adjunctions is, however, not a categorical product in Adj, since in general
the projection functors Outl and Outr are not part of an adjoint situation.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2139

Each isomorphism is natural in ⟨A1, A2⟩ and ⟨B1, B2⟩ and hence also their composition. The adjuncts are given by

φ ⟨f , g⟩ = ⟨φ1 f , φ2 g⟩ and φ◦ ⟨f , g⟩ = ⟨φ◦1 f , φ◦2 g⟩.

Returning to the original problem, the required adjunction is simply L1 × L2. Assuming the usual abbreviations (see
Section 3.3), the adjoint fixed-point equation unfolds to

x · (L1 × L2) in = Ψ x ⇐⇒ x1 · L1 in1 = Ψ1 ⟨x1, x2⟩
x2 · L2 in2 = Ψ2 ⟨x1, x2⟩.

As a slight variation consider two arrows that recurse over one datatype, rather than over a pair of mutually recursive
datatypes:

x · ((L1 × L2) ◦∆) in = Ψ x ⇐⇒ x1 · L1 in = Ψ1 ⟨x1, x2⟩
x2 · L2 in = Ψ2 ⟨x1, x2⟩.

The adjunction is now given as the composition of ∆ ⊣ (×) with a product of adjunctions: (L1× L2) ◦∆ ⊣ (×) ◦ (R1× R2).
Note that L1 and L2 need not be the same functor—more often than not one of the functors is Id.

6.3. Post-composition

In Section 5.3 we have discussed adjoint folds of type µF× A→ B and µH ×̇A →̇ B. In Section 6.1 we have considered a
variation of the theme: an arrow of type µH T × A→ B. Here is another twist: a polymorphic function whose accumulating
argument is monomorphic, ∀X . µH X × A → B X . One way to deal with this example is to lift the ‘curry adjunction’
−× X ⊣ (−)X into a higher realm, to a functor category.

Let F :C→ D be some functor. We have alluded on various occasions to the fact that post-composition F ◦− :CE
→ DE

is itself functorial: the action on arrows, that is, natural transformations is defined (F ◦ α) A = F (α A).
Now, if L ⊣ R is an adjunction then L ◦ − ⊣ R ◦ − is an adjunction, as well.

C
≺

L

⊥

R
≻

D then CE ≺
L ◦ −

⊥

R ◦ −
≻

DE

(The implication can, in fact, be strengthened to an equivalence. We leave the details to the reader.) The proof proceeds as
follows.

CE(L ◦ A,B)

∼= { natural transformation as an end [49, p. 223] }
∀X : E . C(L (A X),B X)

∼= { assumption: L ⊣ R }

∀X : E . D(A X,R (B X))

∼= { natural transformation as an end [49, p. 223] }

DE(A,R ◦ B)

The resulting adjuncts can be best expressed in terms of the units of the underlying adjunction L ⊣ R—note the similarity
to Eqs. (17).

φ (α : L ◦ A →̇ B) = (R ◦ α) · (η ◦ A)

φ◦ (β : A →̇ R ◦ B) = (ϵ ◦ B) · (L ◦ β)

(As an aside, the units of L ◦ − ⊣ R ◦ − are simply ϵ ◦ − and η ◦ −.)
Using lifting we can solve the problem stated in the introduction to this section. To model polymorphic folds that have a

monomorphic accumulating argument, we lift currying:

∀X . µH X × A→ B X ∼= ((−× A) ◦ −) (µH) →̇ B.

Alternatively, we can replace A by K A X and then lift the product.

∀X . µH X × K A X → B X ∼= (− ×̇ K Y) (µH) →̇ B

The latter construction is, however, more involved as it builds on exponentials in functor categories.

2140 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Table 4
Combining adjunctions.

L1 ⊣ R1 and L2 ⊣ R2

Composition L2 ◦ L1 ⊣ R1 ◦ R2
Product L1 × L2 ⊣ R1 × R2
Post-composition L1 ◦ − ⊣ R1 ◦ −

Pre-composition − ◦ R1 ⊣ − ◦ L1

6.4. Pre-composition

The development of the previous section nicely dualises: post-composition is pre-composition in the opposite category.
For reasons to be become clear in a moment, let us spell out the details.

Let F : C → D be some functor. Pre-composition − ◦ F : ED
→ EC is itself functorial: the action on arrows is defined

(α ◦ F) A = α (F A).
Now, if L ⊣ R is an adjunction then− ◦ R ⊣ − ◦ L is an adjunction, as well.

C
≺

L

⊥

R
≻

D then ED ≺
− ◦ R

⊥

− ◦ L
≻

EC

The adjuncts are defined

φ (α : A ◦ R →̇ B) = (α ◦ L) · (A ◦ η),

φ◦ (β : A →̇ B ◦ L) = (B ◦ ϵ) · (β ◦ R).

Observe that in the lifted adjunction the left and the right adjoint are swapped. For instance, we have−◦ (×) ⊣ −◦∆ since
∆ ⊣ (×). The lifted adjunction is useful for massaging polymorphic folds whose type involves two type variables (see also
Example 27).

∀X1, X2 . µH (X1 × X2)→ X1 = (− ◦ (×)) (µH) →̇ Outl

The transpose is a fold of type µH →̇ (− ◦∆)Outl = µH →̇ Id.
Something interesting has happened. If L has a right adjoint R, then the higher-order functor−◦ L has two left adjoints:

−◦R and the left Kan extension along L (Section 5.8). Since left adjoints are unique up to isomorphism, we can immediately
conclude that

− ◦ R ∼= LanL. (22)

Two consequences of this fact are worth recording.

LanL Id ∼= R

LanL (G ◦ F) ∼= G ◦ LanL F

The right adjoint itself can be expressed as a Kan extension. Furthermore, the left Kan extension along L is preserved by any
functor. Turning to the proofs, the first law is a direct consequence of (22). For the second, we apply (22) twice.

LanL (G ◦ F) ∼= (G ◦ F) ◦ R ∼= G ◦ (F ◦ R) ∼= G ◦ LanL F.

As an example, for L = −× X we obtain a characterisation of the exponential:

AX
= (−)X A ∼= Lan−×X Id A = ∃Y : C . Σ C(Y × X, A) . Y .

Using coends and copowers, the internal hom-functor (=)(−) can be expressed in terms of the external hom-functor
C(−,=).

To summarise, adjunctions and Kan extensions are intimately linked. In fact, one can show that L has a right adjoint if
and only if the left Kan extension LanL Id exists and is preserved by L [49, Theorem X.7.2].

Table 4 summarises the constructions introduced in this section.

7. Calculational properties

Calculemus Igitur

Lambert Meertens

In this section we develop the calculational properties of adjoint (un)folds. We shall concentrate on initial algebras and
folds in the main thrust of the section. For reference, Table 5 lists the dual laws for final coalgebras and unfolds.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2141

7.1. Uniqueness property

The fact that an adjoint initial fixed-point equation has a unique solution can be captured by the following equivalence,
the uniqueness property.

x = ((Ψ))L ⇐⇒ x · L in = Ψ x (23)

The uniqueness property has two simple consequences. First, substituting the left-hand side into the right-hand side gives
the computation law.

((Ψ))L · L in = Ψ ((Ψ))L (24)

The law has a straightforward operational reading: an application of an adjoint fold is replaced by the body of the fold.
Second, instantiating x to id, we obtain the reflection law.

((Ψ))L = id ⇐⇒ Ψ id = L in (25)

As an application of these identities, let us prove the banana-split law [9], a simple optimisation which replaces a double
tree traversal by a single one. The law is traditionally given in terms of standard folds. However, it can be readily ported to
adjoint folds.

((Φ))L △ ((Ψ))L = ((Φ ⊗ Ψ))L (26)
where (Φ ⊗ Ψ) x = Φ (outl · x) △ Ψ (outr · x) (27)

The double traversal on the left is optimised into the single traversal on the right. (The law is called ‘banana-split’, because the
fold brackets are like bananas and △ is pronounced ‘split’.) It is worth pointing out that the definition of⊗ neither mentions
the base functor F nor the adjoint functor L—in a sense, the base functions are hiding unnecessary details. Indeed, the proof
of (26) is shorter than the one for folds given in the aforementioned textbook. We appeal to the uniqueness property (23);
the obligation is discharged as follows.

(((Φ))L △ ((Ψ))L) · L in
= { split-fusion: (f △ g) · h = f · h △ g · h }

((Φ))L · L in △ ((Ψ))L · L in
= { fold-computation (24) }

Φ ((Φ))L △ Ψ ((Ψ))L

= { split-computation: outl · (f △ g) = f and outr · (f △ g) = g }
Φ (outl · (((Φ))L △ ((Ψ))L)) △ Ψ (outr · (((Φ))L △ ((Ψ))L))

= { definition of⊗ (27) }
(Φ ⊗ Ψ) (((Φ))L △ ((Ψ))L)

The type of an adjoint fold C(L (µF), A) involves three ingredients: the result type A, the adjoint functor L and the base
functor F. Correspondingly, there are three fusion laws that allow us to fuse a context with a fold to form another fold:
vanilla fusion for a context that manipulates A (Section 7.2), conjugate fusion for a context that modifies L (Section 7.3) and
finally base functor fusion for a context that changes F (Section 7.5). In fact, there is a fourth law that generalises the first two
(Section 7.4), but we are skipping ahead.

7.2. Fusion

The fusion law states a condition for fusing an arrow h : C(A, B) with an adjoint fold ((Φ))L : C(L (µF), A) to form another
adjoint fold ((Ψ))L : C(L (µF), B). The condition can be easily calculated.

h · ((Φ))L = ((Ψ))L

⇐⇒ { uniqueness property (23) }
h · ((Φ))L · L in = Ψ (h · ((Φ))L)

⇐⇒ { computation (24) }
h · Φ ((Φ))L = Ψ (h · ((Φ))L)

⇐= { abstracting away from ((Φ))L }

∀f . h · Φ f = Ψ (h · f)

Consequently,

h · ((Φ))L = ((Ψ))L ⇐= ∀f . h · Φ f = Ψ (h · f). (28)

2142 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Like for banana-split, the fusion condition h ·Φ f = Ψ (h · f) neither mentions the base functor F nor the adjoint functor L,
whichmakes the law easy to use. Let us illustrate fusion by giving a second proof of the banana-split law (26). The first proof
invoked the uniqueness property of folds and then the fusion law for split. Alternatively, we can first invoke the uniqueness
property of split

g = f1 △ f2 ⇐⇒ outl · g = f1 ∧ outr · g = f2,

and then discharge the obligation using the fusion law for folds. (We only prove the first conjunct, the proof of the second
proceeds analogously.)

outl · ((Φ ⊗ Ψ))L = ((Φ))L

⇐= { fold-fusion (28) }
∀f . outl · (Φ ⊗ Ψ) f = Φ (outl · f)

⇐⇒ { definition of⊗ (27) }
∀f . outl · (Φ (outl · f) △ Ψ (outr · f)) = Φ (outl · f)

⇐⇒ { split-computation: outl · (f △ g) = f }
∀f . Φ (outl · f) = Φ (outl · f)

Example 29. The function height determines the height of a stack.

height : Stack → Nat
height (Empty) = 0
height (Push (n, s)) = 1+ height s

Let us show that height is a monoid homomorphism from the stackmonoid to themonoid of natural numbers with addition,
height : (Stack, Empty,�)→ (Nat, 0,+):

height (Empty) = 0,
height (x � y) = height x+ height y,

or, written in a point-free style,

height · empty = zero, (29)
height · cat = plus · (height × height). (30)

Here zero is the constant arrow that yields 0, empty is the constant arrow that yields Empty, and, finally, � and+ are cat and
pluswritten infix. (Example 30 demonstrates that stacks with concatenation indeed form amonoid.) The first condition (29)
is an immediate consequence of height ’s definition. Regarding the second condition (30), there is no obvious attacking zone,
as neither the left- nor the right-hand side is an adjoint fold. Consequently, we proceed in two steps: we first demonstrate
that the left-hand side can be fused to an adjoint fold, and then we show that the right-hand side satisfies its adjoint fixed-
point equation.

For the first step, we are seeking a base function height2 so that

height · ((cat))L = ((height2))L,

where L = −× Stack. The base function cat is defined in Example 11. Fusion (28) immediately gives us

∀cat . height · cat cat = height2 (height · cat), (31)

from which we can easily synthesise a definition of height2:

height2 : ∀x . (L x→ Nat)→ (L (Stack x) → Nat)
height2 height2 (Empty, y) = height y
height2 height2 (Push (a, x), y) = 1+ height2 (x, y).

For the second step, we have to show

plus · (height × height) = ((height2))L.

Appealing to uniqueness (23), we are left with the proof obligation

plus · (height × height) · L in = height2 (plus · (height × height)),

which is straightforward to discharge. �

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2143

7.3. Conjugate fusion

Turning to the second fusion law, conjugate fusion allows us to fuse an adjoint fold ((Ψ))L : C(L (µF), A) with a natural
transformation σ :L′ →̇L to form another adjoint fold ((Ψ ′))L′ :C(L′ (µF), A). Why the name ‘conjugate fusion’? Like a natural
transformation relates two functors, a conjugate pair of natural transformations relates two adjunctions. Very briefly, given
two adjunctions L ⊣ R and L′ ⊣ R′, the natural transformations σ : L′ →̇ L and τ : R →̇ R′ are said to be conjugate, when the
diagram

C(L A, B) ∼= D(A,R B)

C(L′ A, B)

C(σ A, B)
g

∼= D(A,R′ B)

D(A, τ B)
g

commutes for all objects A : D and B : C. One component of a conjugate pair uniquely determines the other: given a natural
transformation σ : L′ →̇ L, there is a unique τ : R →̇ R′ so that σ and τ are conjugate, and vice versa.

Like fusion, conjugate fusion is subject to a condition:

((Ψ))L · σ = ((Ψ ′))L′

⇐⇒ { uniqueness property (23) }

((Ψ))L · σ · L
′ in = Ψ ′ (((Ψ))L · σ)

⇐⇒ { σ is natural: L h · σ = σ · L′ h }

((Ψ))L · L in · σ = Ψ ′ (((Ψ))L · σ)

⇐⇒ { computation (24) }

Ψ ((Ψ))L · σ = Ψ ′ (((Ψ))L · σ)

⇐= { abstracting away from ((Ψ))L }

∀f . Ψ f · σ = Ψ ′ (f · σ).

Consequently,

((Ψ))L · σ = ((Ψ ′))L′ ⇐= ∀f . Ψ f · σ = Ψ ′ (f · σ). (32)

Example 30. Conjugate fusion is more widely applicable than one might initially think. Let us demonstrate that (Stack,
Empty,�) is a monoid:

Empty � s = s = s � Empty,
(s � t) � u = s � (t � u),

or, written in a point-free style,

cat · (empty △ id) = id = cat · (id △ empty),
cat · (cat × id) = cat · (id× cat) · assocr. (33)

Here assocr : (A× B)× C ∼= A× (B× C) is the standard isomorphism between nested products. That Empty is left-neutral
is a direct consequence of cat ’s definition. Regarding right-neutrality, the crucial observation is that id △ empty is a natural
transformation of type Id →̇ L where L = −× Stack. We reason

cat · (id △ empty) = id
⇐⇒ { definition of cat and reflection (25) }

((cat))L · (id △ empty) = ((λ x . in ·Stack x))Id

⇐⇒ { conjugate fusion (32): id △ empty : Id →̇ L }

∀cat . cat cat · (id △ empty) = in ·Stack (cat · (id △ empty)).

The final obligation is straightforward to discharge.
To establish the associativity of cat , we adopt the same strategy as in Example 29: we show that both sides of (33) are

equal to an adjoint fold. Starting with the right-hand side, we aim to derive a base function cat3 satisfying

((cat))L · σ = ((cat3))L◦L where σ = (id× cat) · assocr. (34)

Again, conjugate fusion is applicable: σ is a natural transformation of type L◦ L→̇ L—the nesting of products translates into
a composition of functors. Applying (32), we obtain

∀cat . cat cat · σ = cat3 (cat · σ), (35)

2144 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

from which we can synthesise the following definition of cat3:

cat3 : ∀x . (L (L x)→ Stack)→ (L (L (Stack x)) → Stack)
cat3 cat3 ((Empty, y), z) = cat (y, z)
cat3 cat3 ((Push (a, x), y), z) = Push (a, cat3 ((x, y), z)).

It remains to show that

cat · (cat × id) = ((cat3))L◦L,

which is left as an exercise to the reader. �

7.4. General fusion

The two previous laws are instances of a more general identity that manipulates arrows of type C(L X, Y). Specifically,
let α : ∀X : D . C(L X, A)→ C′(L′ X, A′) be a natural transformation. Then

α ((Ψ))L = ((Ψ ′))L′ ⇐= α · Ψ = Ψ ′ · α. (36)

The correctness of the general fusion law rests on the naturality of α, that is, C′(L′ h, A′) ·α = α ·C(L h, A), which unfolds to

α f · L′ h = α (f · L h). (37)

The straightforward proof of (36) follows the structure of the previous two, albeit on a higher level of abstraction.

α ((Ψ))L = ((Ψ ′))L′

⇐⇒ { uniqueness property (23) }

α ((Ψ))L · L
′ in = Ψ ′ (α ((Ψ))L)

⇐⇒ { naturality of α (37) }

α (((Ψ))L · L in) = Ψ ′ (α ((Ψ))L)

⇐⇒ { computation (24) }

α (Ψ ((Ψ))L) = Ψ ′ (α ((Ψ))L)

⇐= { abstracting away from ((Ψ))L }

α · Ψ = Ψ ′ · α

To see that fusion is an instance of (36), recall that C(L X, h), that is, post-composing the arrow h : C(A, A′), is a
transformation of type C(L X, A)→ C(L X, A′) natural in X (Remark 1). The antecedent of (36) then specialises to the fusion
condition:

α · Ψ = Ψ ′ · α

⇐⇒ { set α A = C(L A, h) }

C(L (F X), h) · Ψ = Ψ ′ · C(L X, h)
⇐⇒ { definition of the hom-functor (1) }

(h · −) · Ψ = Ψ ′ · (h · −)

⇐⇒ { extensionality }

∀f . h · Ψ f = Ψ ′ (h · f).

Likewise, pre-composing a natural transformation L′ →̇L is a transformation of type C(L X, A)→ C(L′ X, A) natural in X .
Consequently, conjugate fusion is an instance of (36), as well.

The antecedent of (36) is easy to satisfy if α has a left-inverse. In this case α · Ψ = Ψ ′ · α ⇐= α · Ψ · α◦ = Ψ ′ and
consequently α ((Ψ))L = ((α ·Ψ ·α◦))L′ . Now, a prominent example of a natural isomorphism between hom-sets is an adjunct,
and indeed, the main result of Section 4.1, that an adjoint fold can be reduced to a standard fold φ ((Ψ))L = ((φ · Ψ · φ◦))Id, is
an instance of (36). In fact, we can generalise the identity slightly: let φ1 : L1 ⊣ R1 and φ2 : L2 ⊣ R2 be two adjunctions, then

φ1 ((Ψ))L1◦L2 = ((φ1 · Ψ · φ
◦

1))L2 .

Here φ1 is used as a transformation of type C(L1 (L2 A), B)→ D(L2 A,R1 B) that is natural in A.

7.5. Base functor fusion

In order to formulate the last fusion law, base functor fusion, we have to turn µ into a higher-order functor of type
CC
→ C. The object part of this functor maps a functor to its initial algebra. (This is a bit loose as this is only well defined for

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2145

functors that have an initial algebra.) The arrow part maps a natural transformation α : F →̇G to an arrow µα :C(µF, µG).
It is defined as

µα = ((in · α (µG))). (38)

Definition 7. In Haskell, the functorial action of µ on arrows can be programmed using explicit recursion.

µ : (Functor f)⇒ (∀x . f x→ g x)→ (µf → µg)
µ α = In · α · fmap (µ α) · in◦

Asα is natural, it can be invoked either after or before the recursive call ofµ, resulting in different type constraints (Functor f
or Functor g). Quite arbitrarily, we have picked the first choice. �

Using µ we can express the base functor fusion law: let α : F →̇ G be a natural transformation – we might call α a ‘base
changer’ – then

((Ψ))L · L (µα) = ((λ x . Ψ x · Lα))L. (39)

The law states that an adjoint fold ((Ψ))L :C(L (µG), A) can be fusedwith an arrow L (µα) :C(L (µF), L (µG)) to form another
adjoint fold ((λ x . Ψ x · Lα))L : C(L (µF), A).

The proof of the fusion law relies on the fact that the initial algebra in :C(F (µF), µF) is natural in the base functor F—the
algebra in is an example of a so-called higher-order natural transformation [26].

µα · inF = inG · α (µG) · F (µα). (40)

Here λ α . α (µG) · F (µα) = λ α . G (µα) · α (µF) is the arrow part of the higher-order functor Λ F . F (µF). The naturality
property of in (40) is an immediate consequence of the computation law for standard folds.

µα · inF

= { definition of µ (38) }
((inG · α (µG))) · inF

= { computation law for standard folds: ((f)) · in = f · F ((f)) }

inG · α (µG) · F ((inG · α (µG)))

= { definition of µ (38) }
inG · α (µG) · F (µα)

For the proof of base functor fusion (39), we appeal to the uniqueness property (23) and reason

((Ψ))L · L (µα) · L inF

= { L functor }
((Ψ))L · L (µα · inF)

= { in is natural (40) }
((Ψ))L · L (inG · α (µG) · F (µα))

= { α is natural: G h · α A = α B · F h }
((Ψ))L · L (inG · G (µα) · α (µF))

= { L functor }
((Ψ))L · L inG · L (G (µα)) · L (α (µF))

= { computation (24) }
Ψ ((Ψ))L · L (G (µα)) · L (α (µF))

= { Ψ is natural: Ψ f · L (G h) = Ψ (f · L h) }
Ψ (((Ψ))L · L (µα)) · L (α (µF)).

Example 31. The applicability of base functor fusion very much depends on the shape of the base functor, as it determines
which functions can be expressed as arrows of the form µα. In the case of stacks, we can essentially express map-like
functions.

map : (Nat → Nat)→ (µStack→ µStack)
map f = µ (map f)
map : ∀x . (Nat → Nat)→ (Stack x → Stack x)
map f (Empty) = Empty

map f (Push (n, s)) = Push (f n, s)

2146 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Table 5
Calculational properties of unfolds.
Uniqueness property:

x = [(Ψ)]R ⇐⇒ R out · x = Ψ x.

Computation rule:

R out · [(Ψ)]R = Ψ [(Ψ)]R.

Reflection:

[(Ψ)]R = id ⇐⇒ Ψ id = R out.

Fusion: Let h : D(B, A), then

[(Φ)]R · h = [(Ψ)]R ⇐= ∀x . Φ x · h = Ψ (x · h).

Conjugate fusion: Let τ : R →̇ R′ , then

τ · [(Ψ)]R = [(Ψ
′)]R′ ⇐= ∀x . τ · Ψ x = Ψ ′ (τ · x).

General fusion: Let α : ∀X : C . D(A,R X)→ D′(A′,R′ X), then

α [(Ψ)]R = [(Ψ
′)]R′ ⇐= α · Ψ = Ψ ′ · α.

Base functor fusion: Let α : G →̇ F, then

R (να) · [(Ψ)]R = [(λ x . Rα · Ψ x)]R,

where να = [(α (νG) · out)] .

Note that map f : Stack →̇ Stack has the required naturality property. Since µ is a functor and since map id = id and
map (f · g) = map f · map g , we can immediately conclude that

map id = id,
map (f · g) = map f ·map g.

(If we generalise Stack to List, then map generalises to the arrow part of List and map to the arrow part of List.) Using base
functor fusion we can shift an application ofmap f into an adjoint fold, for example

((cat))L · L (map f) = ((λ cat . cat cat · L (map f)))L.

Now, if we augment Stack by a Skip constructor (we are drawing inspiration from stream fusion [17] here)

dataStack stack = Empty | Skip stack | Push (Nat, stack),

then we can also express filter-like functions as arrows of the form µα.

filter : (Nat → Bool)→ (µStack→ µStack)
filter p = µ (filter p)
filter : ∀x . (Nat → Bool)→ (Stack x → Stack x)
filter p (Empty) = Empty

filter p (Skip s) = Skip s
filter p (Push (n, s)) = if p n thenPush (n, s) elseSkip s

Let true x = True and (p ∧ q) x = p x ∧ q x. Since filter true = id and filter (p ∧ q) = filter p · filter q, we can immediately
conclude that

filter true = id,
filter (p ∧ q) = filter p · filter q.

Filtering distributes over concatenation:

filter p (s � t) = filter p s � filter p t.

The proof, left as an exercise to the reader, involves all three types of fusion: vanilla, conjugate and base functor fusion. �

So far we have been occupied with folds. Table 5 lists the dual laws for unfolds.

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2147

8. Type fusion

In the previous section we have discussed a variety of laws for fusing an adjoint (un)fold with a context. In this section
we climb up one step on the abstraction ladder and lift fusion to the realm of objects and functors. Type fusion allows us to
fuse an application of a functor with an initial algebra to form another initial algebra: L (µF) ∼= µG. Like general fusion (36),
type fusion is subject to a condition: L ◦ F ∼= G ◦ L. The isomorphism allows us to push the functor L into the fixed point:
L (µF) ∼= L (F (µF)) ∼= G (L (µF)). This simple calculation shows that L (µF) is a fixed point of G. If L is furthermore a left
adjoint, then L (µF) is even the least fixed point:

Let C and D be categories, let L ⊣ R be an adjoint pair of functors L : C ← D and R : C → D, and let F : D → D and
G : C→ C be two endofunctors. Then

L (µF) ∼= µG ⇐= L ◦ F ∼= G ◦ L, (41)
νF ∼= R (νG) ⇐= F ◦ R ∼= R ◦ G. (42)

We show type fusion for initial algebras (41), the corresponding statement for final coalgebras follows by duality. Assuming
s : L ◦ F ∼= G ◦ L : s◦, the witnesses of the isomorphism f : L (µF) ∼= µG : f◦ are given as solutions of (adjoint) fixed point
equations:

f · L in = in · G f · s and f◦ · in = L in · s◦ · G f◦. (43)
Note that f is an algebraic adjoint fold, f = ((λ x . in·G x·s))L (Section 4.3),while f◦ is a standard fold, f◦ = ((λ x . L in·s◦·G x))Id =
((L in · s◦)). The diagram below summarises the type information.

G (L (µF))

L (F (µF))
≺

s

s
◦

≻

G (µG)

≺
G f

G f ◦
≻

L (µF)

L in L in
g
≺

f◦

f
≻ µG

in in
g

The identities f · f◦ = id and f◦ · f = id are instances of a more general result which we state first.
Now that we have related fixed-points of functors, the next step is to relate the corresponding (adjoint) (un)folds. The

isomorphisms f and f◦ can be seen as representation changers: the nested type L (µF) is represented by the initial algebraµG.
The following identities capture the effect of the representation change on arrows: algebraic adjoint folds become standard
folds!

((λ x . a · G x · s))L = ((a)) · f and ((λ x . a · G x · s))L · f
◦
= ((a)), (44)

[(λ x . s · F x · c)]R = f · [(c)] and [(λ x . s · F x · c)]R · f
◦
= [(c)].

Again, we show the statement only for initial algebras (44). Since f changes both the adjoint functor and the base functor,
neither conjugate nor base functor fusion is applicable. Instead, we appeal to the uniqueness property (23).

((a)) · f = ((λ x . a · G x · s))L

⇐⇒ { uniqueness property (23) }
((a)) · f · L in = a · G (((a)) · f) · s

We argue

((a)) · f · L in
= { definition of f (43) }

((a)) · in · G f · s

= { computation law for standard folds: ((a)) · in = a · G ((a)) }

a · G ((a)) · G f · s

= { G functor }
a · G (((a)) · f) · s.

The proof of the second part is nicely symmetric.

((λ x . a · G x · s))L · f
◦
= ((a))

⇐⇒ { uniqueness property of standard folds (2) }
((λ x . a · G x · s))L · f

◦
· in = a · G (((λ x . a · G x · s))L · f

◦)

2148 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

The proof is

((λ x . a · G x · s))L · f
◦
· in

= { definition of f◦ (43) }
((λ x . a · G x · s))L · L in · s

◦
· G f◦

= { computation (24) }
a · G ((λ x . a · G x · s))L · s · s

◦
· G f◦

= { assumption: s · s◦ = id }
a · G ((λ x . a · G x · s))L · G f◦

= { G functor }
a · G (((λ x . a · G x · s))L · f

◦).

Interestingly, to convert back and fro we only need one direction of the assumption L ◦ F ∼= G ◦ L.
We are now in a position to show that f and f◦ are actually inverses. f · f◦ = idµG: We reason as follows.

((λ x . in · G x · s))L · f
◦

= { representation change (44) }
((in))

= { reflection for standard folds: ((in)) = id }
id

f◦ · f = idL (µF): For the reverse direction, we argue

((L in · s◦)) · f

= { representation change (44) }
((λ x . L in · s◦ · G x · s))L

= { claim: see below }
id.

The claim amounts to a special reflection lawwhich is worth making explicit:

((λ x . L in · s◦ · G x · s))L = id. (45)

For the proof we invoke reflection (25) and discharge the obligation using the assumption s◦ · s = id.
In Section 5we have introduced a smörgåsbord of adjunctions. In the remainder of this sectionwe instantiate type fusion

to the various adjunctions—sometimes with surprising results.

8.1. Identity: Id ⊣ Id

For the identity adjunction Id ⊣ Id type fusion simplifies to µF ∼= µG ⇐= F ∼= G and νF ∼= νG ⇐= F ∼= G. In words,
the functors µ, ν :CC

→ C preserve isomorphisms. This is, in fact, true of every functor. The representation changers f and
f◦ simplify to functor applications, f = µs and f◦ = µs◦, and likewise for ν. We can use this instance of type fusion to show,
for example, that cons and snoc lists are isomorphic [5].

8.2. Isomorphism and equivalence of categories

If the functor R is an equivalence of categories with unit η : Id ∼= R ◦ L, then L ◦ F ◦ η : L ◦ F ∼= L ◦ F ◦ R ◦ L. Consequently,
type fusion implies

L (µF) ∼= µ(L ◦ F ◦ R), and dually ν(R ◦ G ◦ L) ∼= R (νG).

Instead of forming the initial algebra in D and mapping the result to C, we can form the initial algebra in C by ‘going round
in a circle’. The functor L ◦ F ◦ R was called the canonical control functor in Section 4.3.

8.3. Currying:−× X ⊣ (−)X

Example 32. Concatenation was one of our motivating examples for adjoint folds. Somewhat ironically, using the
representation changers of type fusion we can implement stack concatenation in terms of a standard fold. We have laid the

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2149

groundwork in Example 13,wherewe calculated a functorStack′ satisfying L◦Stack ∼= Stack′◦L (the natural transformation
s was called scat↔ there). For this isomorphism the representation changer f = ((λ x . in ·Stack′ x · scat↔))L unfolds to

f : L (µStack) → µStack′

f (InEmpty, t) = In (Empty′ t)
f (In (Push (n, s)), t) = In (Push′ (n, f (s, t))).

In Example 13 we also formulated stack concatenation as an algebraic adjoint fold: cat = ((λ x . scat▽
· Stack′ x · scat↔))L.

Relation (44) immediately gives us cat = ((scat▽)) · f. �

Let L = − × X . Using similar calculations as in Example 13 we can fuse all linear datatypes, whose base functors are
polynomials of degree at most 1. The reasoning is based on basic properties of+ and×:

(A+ B)× X ∼= A× X + B× X
(A× B)× X ∼= A× (B× X)
(A× B)× X ∼= (A× X)× B

L (A+ B) ∼= L A+ L B
L (A× B) ∼= A× L B
L (A× B) ∼= L A× B.

The following table relates base functors:
F Y = Y
F Y = C
F Y = F1 Y + F2 Y
F Y = C × F1 Y
F Y = F1 Y × C

G Z = Z
G Z = L C
G Z = G1 Z + G2 Z
G Z = C × G1 Z
G Z = G1 Z × C .

Each row in the table satisfies L ◦ F ∼= G ◦ L if L ◦ Fi ∼= Gi ◦ L. Note that the F functors are necessarily polynomials of degree
at most 1, as the combining forms for products ensure that one component is a constant type.

8.4. Mutual value recursion: (+) ⊣ ∆ ⊣ (×)

The unit of the adjunction ∆ ⊣ (×) is the so-called diagonal arrow δ = id △ id. Recall that the unit is a natural
transformation δ : Id →̇ (×) ◦ ∆. In this particular case the naturality property unfolds to δ · h = (h × h) · δ. Now, the
product of categories is itself a categorical product. Its unit is the diagonal functor, which consequently satisfies

∆ ◦ H = (H× H) ◦∆. (46)
Thus, the precondition of type fusion is trivially satisfied and we may immediately conclude that

∆(µF) ∼= µ(F× F), and dually ν(G× G) ∼= ∆(νG).

In fact, the statement can be strengthened: ⟨µF, µG⟩ ∼= µ(F × G) and likewise for final coalgebras. So a pair of two
independent recursive datatypes is an extreme case of a pair of datatypes defined bymutual recursion. Consequently, adjoint
folds of type ∆(µF) → A are really standard folds of type µ(F × F) → A in disguise! Since the natural transformations s

and s◦ are identities – the naturality property (46) is an equality, not an isomorphism – the conversion functions simplify
somewhat: f = ((λ x . in · (F × F) x))∆ and f◦ = ((λ x . ∆in · (F × F) x))Id = ((∆in)). The special reflection law (45) can be
simplified accordingly:

((λ ⟨x1, x2⟩ . ⟨in · F x1, in · F x2⟩))∆ = id.
We obtain the mutu-Id law of [21].

8.5. Type firstification: LshX ⊣ (− X) ⊣ RshX

We have encountered two ways of defining sequences of natural numbers: Stack (Example 1) and ListNat (Example 16).
We can use type fusion to show that these types are actually isomorphic. The transformation of ListNat into Stack can be
seen as an instance of λ-dropping [18] or firstification [39] on the type level: a fixed point of a higher-order functor is reduced
to a fixed-point of a first-order functor.
Example 33. Let us show that ListNat ∼= Stack. The underlying adjunction is type application AppNat ⊣ RshNat . Type fusion
is directly applicable and we are left with showing the precondition AppNat ◦ List ∼= Stack ◦ AppNat .

(−Nat) ◦ List

= { composition of functors }
Λ X . List X Nat

= { definition of List }

Λ X . 1+ Nat × X Nat
= { definition of Stack }

Λ X . Stack (X Nat)
= { composition of functors }

Stack ◦ (−Nat)

2150 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Since every step is an equality, the isomorphisms are actually identities. (However, in Haskell a data declaration introduces
a new type distinct from any other type, so the isomorphisms have to rename Nil to Empty, Cons to Push and vice versa.)

Next, consider the functions total (Example 1) and suml (Example 22). To relate the two variants of computing the total,
we first reformulate relation (44) for Mendler-style folds:

((λ x . Ψ x · s))L = ((λ x . Ψ id · G x · s))L = ((Ψ id)) · f = ((Ψ)) · f.

Thus, suml = total · f if the base functions are related by suml x = total x · s. In words, we can transform one base function
into the other just by renaming the constructors. The proof is entirely straightforward. �

Transforming ahigher-order fixedpoint into a first-order fixedpointworks for so-called regular datatypes. The type of lists
(Example 16) is regular; the type of perfect trees (Example 6) is not because the recursive call of Perfect involves a change of
argument. Firstification is not applicable, as there is no first-order base functor Base such that AppX ·Perfect = Base ·AppX .
The class of regular datatypes is usually defined syntactically. Drawing from the development above, we can provide an
alternative semantic characterisation.

Definition 8. Let H :CD
→ CD be a higher-order functor. The parametric datatypeµH :D→ C is regular if and only if there

exists a functor G : D→ CC such that AppA ◦ H ∼= G A ◦ AppA for all objects A : D. Then (µH) A ∼= µ(G A). �

The regularity condition unfolds to H F A ∼= G A (F A), which makes explicit that all occurrences of ‘the recursive call’ F are
applied to the same argument A. For lists, the required functor G is Λ A . Λ B . 1+ A× B.

8.6. Type specialisation: LanJ ⊣ (− ◦ J) ⊣ RanJ

Type application is a special case of functor composition (cf Section 5.8). Likewise, firstification can be seen as an instance
of type specialisation, where a nesting of types is fused to a single type that allows for a more compact and space-efficient
representation.

Example 34. Lists of optional values, List ◦Maybe, where Maybe is given by

dataMaybe a = Nothing | Just a,

can be represented more compactly using

dataMaybes a = Done | Skip (Maybes a) | Yield (a,Maybes a).

Assuming that the constructor application C (v1, . . . , vi) requires i + 1 cells of storage, the compact representation saves
2n cells for a list of length n.

Let us show that List ◦ Maybe ∼= Maybes. The underlying adjunction is pre-composition PreMaybe ⊣ RanMaybe. Applying
type fusion we have to demonstrate that PreMaybe ◦ List ∼=Maybes ◦ PreMaybe.

List X ◦Maybe

= { composition of functors and definition of List }

Λ A . 1+Maybe A× X (Maybe A)

= { definition of Maybe }

Λ A . 1+ (1+ A)× X (Maybe A)

∼= { × distributes over+ and 1× B ∼= B }
Λ A . 1+ X (Maybe A)+ A× X (Maybe A)

= { composition of functors and definition of Maybes }

Maybes (X ◦Maybe)

The central step is the application of distributivity, (A + B) × C ∼= A × C + B × C , which turns the nested type on the left
into a ‘flat’ sum, which can be represented space-efficiently in Haskell—s’s definition makes this explicit.

s : ∀x . ∀a . List x (Maybe a) →Maybes (x ◦Maybe) a
s (Nil) = Done

s (Cons (Nothing, x)) = Skip x
s (Cons (Just a, x)) = Yield (a, x)

The function s is a natural transformation, whose components are again natural transformations, hence the nesting of
universal quantifiers. �

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2151

8.7. Tabulation: (X (−))op ⊣ X (−)

We have noted in Example 28 that functions over the natural numbers and infinite sequences are in one-to-one
correspondence.

NatµNat ∼= νSequ (47)

A sequence can be seen as a tabulation of a function over the naturals. In general, a type T is said to tabulate functions
from a type K if V K ∼= T for some type V—a Table represents a function mapping Keys to Values. Perhaps surprisingly,
the isomorphism above is an instance of type fusion, as well. The left adjoint is exponentiation ExpV : Cop

→ C defined
ExpV = V (−) (Section 5.10). This instance is quite intriguing as the adjoint functors (ExpV)op ⊣ ExpV are contravariant.
Consequently, f and s live in the opposite category Cop. Moreover, ExpV maps an initial algebra to a final coalgebra!
Formulated in terms of arrows in C rather than in Cop, type fusion takes the form

f : νG ∼= ExpV (µF) ⇐= s : G ◦ ExpV
∼= ExpV ◦ F,

and the isomorphisms f and f◦ are defined

ExpV in · f = s · G f · out and out · f◦ = G f◦ · s◦ · ExpV in.

The arrow f : νG → ExpV (µF) is a curried look-up function that maps a table to an exponential, which in turn maps a
key, an element of µF, to the corresponding value recorded in the table. The arrow f◦ : ExpV (µF) →̇ νG tabulates a given
exponential. Tabulation is a standard unfold, whereas look-up is an adjoint fold. Let us specialise the defining equations of f

and f◦ to the category Set. For f alias lookup, we obtain

lookup (out◦ t) (in i) = s (G lookup t) i. (48)

Both the table and the index are destructed, the look-up function is recursively applied, and the transformation s then takes
care of the non-recursive look-up. For f◦ alias tabulate, we obtain

tabulate f = out◦ (G tabulate (s◦ (f · in))). (49)

The to-be-tabulated function f is pre-composed with in, s◦ then arranges the non-recursive tabulation, and finally tabulate
is recursively applied.

Example 35. If we instantiate F and G to Nat and Sequ, we obtain the functions given in Example 28. It is instructive to go
through the exercise of deriving the isomorphisms in the framework of type fusion. The base isomorphism Sequ ◦ ExpNat

∼=

ExpNat ◦Nat is a simple consequence of the laws of exponentials.

Sequ ◦ ExpNat

= { definition of Sequ and definition of ExpNat }

Λ X . Nat × NatX

∼= { laws of exponentials }

Λ X . Nat1+X

= { definition of Nat and definition of ExpNat }

ExpNat ◦Nat

The natural isomorphism is witnessed by

s : ∀x . Sequ (ExpNat x)→ ExpNat (Nat x)
s (Next (v, t)) (Z) = v
s (Next (v, t)) (S n) = t n.

Inlining s into Eq. (48) yields the look-up function:

lookup : νSequ→ ExpNat (µNat)
lookup (Out◦ (Next (v, t))) (In Z) = v
lookup (Out◦ (Next (v, t))) (In (S n)) = lookup t n.

The inverse of s is defined
s◦ : ∀x . ExpNat (Nat x)→ Sequ (ExpNat x)
s◦ f = Next (f Z, f ·S).

If we inline s◦ into Eq. (49), we obtain

tabulate : ExpNat (µNat)→ νSequ

tabulate f = Out◦ (Next (f (In Z), tabulate (f · In ·S))).

Voilá. We have derived the definitions of Example 28 written in terms of two-level types. Moreover, lookup and tabulate are
inverses by construction. �

2152 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

8.8. Tabulation revisited: Exp ⊣ Sel

The relation between natural numbers and infinite sequences (47) can be lifted to streams:

VµNat ∼= νStream V .

The isomorphism is, in fact, natural in V , so it is an isomorphism between functors:

(−)µNat ∼= νStream. (50)

We obtain another adjoint situation. The left adjoint is now a curried version of exponentiation: Exp : C → (CC)op with
Exp K = Λ V . V K . Wow! Using the functor Exp, Eq. (50) can be rephrased as Exp (µNat) ∼= νStream. The right adjoint of
Exp exists, if the underlying category has ends.

(CC)op(Exp A,B)

∼= { opposite category }

CC(B, Exp A)

∼= { natural transformation as an end [49, p. 223] }
∀X : C . C(B X, Exp A X)

= { definition of Exp }

∀X : C . C(B X, XA)

∼= { (X (−))op ⊣ X (−)
}

∀X : C . C(A, XB X)

∼= { the hom-functor C(A,−) preserves ends [49, p. 225] }

C(A,∀X : C . XB X)

∼= { define Sel B = ∀X : C . XB X
}

C(A,Sel B)

The derivation shows that the right adjoint of Exp is a higher-order functor that maps a functor B, a type of tables, to the
type of selectors ∀X : C . XB X , polymorphic functions that select some entry from a given table.

Example 36. The witnesses of (50) are lifted variants of look-up and tabulation defined in Example 35.

lookup : ∀v . νStream v→ Exp (µNat) v
lookup (Out◦ (Link (v, t))) (In Z) = v
lookup (Out◦ (Link (v, t))) (In (S n)) = lookup t n
tabulate : ∀v . Exp (µNat) v→ νStream v
tabulate f = Out◦ (Link (f (In Z), tabulate (f · In ·S)))

Modulo the constructor names the definitions are, in fact, identical to those of Example 35. The important observation is
that the laws of exponentials are natural in all the variables involved. In particular, s :Sequ ◦ ExpV →̇ ExpV ◦Nat is natural
in the type of elements V . �

Generalising the definition of Section 8.7, the functor T is said to tabulate functions from the type K if Exp K ∼= T. Type
fusion implies that the final coalgebra νG tabulates functions from the initial algebraµF if Exp◦F ∼= G◦Exp. Can we always
find a G for a given base functor F? Yes, if the base functor is a polynomial—this statement can be generalised [36] but the
details are beyond the scope of this article. The functor G is induced by the laws of exponentials.

X0 ∼= 1
X1 ∼= X

XA+B ∼= XA
× XB

XA×B ∼= (XB)A

Exp 0 ∼= K 1
Exp 1 ∼= Id

Exp (A+ B) ∼= Exp A ×̇ Exp B
Exp (A× B) ∼= Exp A ◦ Exp B

Since the laws of exponentials are natural in the base type X , they can be re-formulated as isomorphisms between functors
(laws on the right). Note that the tabulation of a product is given by a composition of functors. This shows that the
generalisation of tabulation from objects (Section 8.7) to functors (this section) is needed to tabulate types that involve
products! The following table extends the relation between key types and table types to polynomial base functors.

F X = X
F X = 0
F X = 1
F X = F1 X + F2 X
F X = F1 X × F2 X

G Y = Y
G Y = K 1
G Y = Id
G Y = G1 Y ×̇ G2 Y
G Y = G1 Y ◦ G2 Y

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2153

For each row in the table we have Exp ◦ F ∼= G ◦ Exp if Exp ◦ Fi ∼= Gi ◦ Exp. The following Haskell code provides an example
where the extra generality is needed.

Example 37. An alternative representation of the natural numbers, Knuth’s humongous numbers [43], is given by the
datatype of binary trees.

data Tree = Leaf | Fork (Tree, Tree)

The empty tree represents 0; if l represents a and r represents b, then Fork (l, r) represents 2a
+b. Functions from this funny

number type are tabulated by the nested datatype
data Trie v = Map (v, Trie (Trie v)).

The type is sometimes characterised as a truly nested datatype [1] as the recursive calls are nested. This is a consequence of
the fourth law of exponentials: the base functor F X = 1+ (X × X) of Tree induces the base functor G Y = Id ×̇ (Y ◦ Y) of
Trie. Look-up and tabulation are then defined

lookup : ∀v . Trie v→ Exp Tree v
lookup (Map (v, t)) Leaf = v
lookup (Map (v, t)) (Fork (l, r)) = lookup (lookup t l) r
tabulate : ∀v . Exp Tree v→ Trie v
tabulate f = Map (f Leaf , tabulate (λl→ tabulate (λr → f (Fork (l, r))))).

Even though the recursive calls are strangely nested, lookup is an adjoint fold and tabulate is a standard unfold. Furthermore,
they are inverses by construction. �

The development generalises the results of the previous section. The left adjoint ExpV can, in fact, be seen as the result
of composing exponentiation with type application: ExpV = AppV ◦ Exp. Then ExpNat (µNat) ∼= νSequ is given by applying
type fusion twice:

ExpNat (µNat)

= { ExpV = AppV ◦ Exp }

AppNat (Exp (µNat))

∼= { type fusion: Exp (µNat) ∼= νStream }

AppNat (νStream)

∼= { type fusion: AppNat (νStream) ∼= νSequ }

νSequ.

9. Recursive coalgebras and corecursive algebras

We have noted in Section 3 that initial algebras and final coalgebras are different entities. For instance, in Set the initial
algebra of Stack comprises only finite stacks, whereas the final coalgebra also contains infinite ones. The initial algebra can
always be embedded in the final coalgebra, using either a fold or an unfold: ((out◦)) = [(in◦)] : µF → νF. The other way
round has to be programmed explicitly, which typically involves imposing some depth bound to ensure termination (cf
Example 28). [14] provides further instructive examples along those lines.

The fact that µF and νF are not compatible has the unfortunate consequence that we cannot freely combine folds
(consumers) and unfolds (producers). There are at least two ways out of this dilemma: (1) we can work in a setting where
the two fixed points coincide µF ∼= νF, a so-called algebraically compact category [23]—Haskell’s ambient category SCpo
provides an example of such a setting; or (2) we can restrict unfolds to coalgebras which only produce values in µF. An
attractive way to achieve the latter is to use hylomorphisms based on recursive coalgebras as a structured recursion scheme
[12]. Hylomorphisms are, in fact, interesting in their own right as they provide an alternative framework for the algebra of
programming. We introduce the notion below and then relate hylomorphisms to adjoint folds.

A coalgebra ⟨C, c⟩ is called recursive if for every algebra ⟨A, a⟩ the equation in the unknown x : C(C, A),

x = a · G x · c, (51)

has a unique solution. The equation captures the divide-and-conquer pattern of computation: a problem is divided into sub-
problems (c), the sub-problems are solved recursively (G x), and finally the sub-solutions are combined into a single solution
(a). The uniquely defined arrow x is called a hylomorphism or hylo for short and is written ((a | c))G.

The functor G captures the control structure as the examples below demonstrate. However, the definition of a
hylomorphism does not assume that the initial G-algebra exists. The powerset functor, for instance, admits no fixed points,
yet we may want to divide a problem into a set of sub-problems. If the initial algebra ⟨µF, in⟩ exists, then ⟨µF, in◦⟩ is
isomorphic to the final recursive coalgebra and, furthermore, folds and ‘recursive unfolds’ emerge as special cases of hylos:
((a)) = ((a | in◦)) and [(c)] = ((in | c)). It is important to note that here [(c)] is the unique coalgebra homomorphism to the final
recursive coalgebra, that is, the final object in the full subcategory of recursive coalgebras and coalgebra homomorphisms.

2154 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Example 38. The functor Taila

data Taila b = Stop a | Loop b

captures tail recursion: a loop either terminates producing an a value, or it goes through another iteration. Tail-recursive
programs share the algebra

continue : ∀a . Taila a → a
continue (Stop a) = a
continue (Loop b) = b,

which simply removes the constructors. The algebra is also known as the codiagonal, the counit of the adjunction (+) ⊣ ∆.
As a simple application, here is a tail-recursive variant of total,

total' : (Stack, Nat)→ TailNat (Stack,Nat)
total' (Empty, e) = Stop e
total' (Push (n, s), e) = Loop (s, e+ n)
total : (Stack,Nat)→ Nat
total = continue · fmap total · total'

which adds the elements of a stack using an accumulating parameter. �

Example 39. The function cat for appending two stacks (Example 9) has a simple control structure: if the first stack is empty,
we stop; otherwise, we recurse memorising its topmost element. This motivates the ‘control functor’

dataReca b = Stop a | Recurse (Nat, b).

The functor is similar to Taila, except that nowwe also keep track of the stack elements. (They are pushed onto the recursion
stack modelled by Reca.)

The coalgebra

cat'
: (Stack, Stack)→ RecStack (Stack, Stack)

cat' (Empty, ns) = Stop ns
cat' (Push (m,ms), ns) = Recurse (m, (ms, ns))

models the divide step of cat and the algebra

cat.
: RecStack Stack → Stack

cat. (Stop ns) = ns
cat. (Recurse (n, ns)) = Push (n, ns)

captures its conquer step. Finally, cat

cat : (Stack, Stack)→ Stack
cat = cat.

· fmap cat · cat'

is given by a hylo equation. �

Turning to the relationship between adjoint folds and hylos, we have seen in Section 4.3 that Mendler-style adjoint folds
are equivalent to algebraic adjoint folds. The latter scheme is already very close to the hylo form:

x · L in = a · G x · α
⇐⇒ { in isomorphism and L functor }

x = a · G x · α · L in◦.

The equivalence shows that α · L in◦ is a recursive coalgebra. Thus, adjoint folds are a special case of hylomorphisms:

((λ x . a · G x · α))L = ((a |α · L in◦))G.

In fact, one can show amore general result: theG-coalgebraα C ·L c :L C → G (L C) is recursive if the F-coalgebra c :C → F C
is recursive [12, Proposition 12].

Example 40. In Example 13 we defined list concatenation as an algebraic adjoint fold, in Example 39 as a hylomorphism.
Though we have approached the problem from different angles, the final result is the same: modulo constructor names
Stack′ = RecStack, scat▽

= cat. and scat↔ · L in◦ = cat'. �

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2155

Whenwe introduced initial fixed-point equationswe argued that the naturality of the base function ensures termination.
We do not have the same guarantees for hylomorphisms, as the following example demonstrates [2]. (We use Pseudo-
Haskell code below, since the example is not expressible in Haskell). Define the Set functor

data Square x = Nothing | Just {(a1, a2) | a1 ∈ x, a2 ∈ x, a1 ̸ a2 }
instance Functor Squarewhere

fmap f Nothing = Nothing
fmap f (Just (x1, x2))
| f x1 ̸ f x2 = Just (f x1, f x2)
| otherwise = Nothing,

which gives the square of x with the diagonal removed. The action of Square on arrows preserves the invariant, possibly
changing Just toNothing . Now, define the constant coalgebra c :Bool→ Square Bool by c b = Just (False, True). The coalgebra
c is recursive as the equation x = a · fmap x · c has the unique solution x b = a Nothing . (Since c is constant, x has to be
constant, as well. For a constant x, the call fmap x always yields Nothing . Consequently, x b equals a Nothing .) If executed,
however, fmap xwill issue two recursive calls, x False and x True. Adámek et al. [2] have shown that this problem disappears
if one imposes additional restrictions on the category and on the control functor: for finitary Set-functors that preserve
inverse images, termination is guaranteed. Polynomial functors satisfy these conditions.

While hylos are more expressive, they sometimes suffer from the practical problem that a suitable control functor is
hard to find. For instance, the function flattenCat (Example 14) is obviously an adjoint fold; the underlying control functor
is, however, less obvious.

To summarise, the hylo schememakes the control structure explicit; the data structure is hidden in the coalgebra (input)
or in the algebra (output). By contrast, adjoint folds are explicit about the (input) data structure; the control structure is
induced by the adjunction.

As to be expected, the construction dualises. An algebra is called corecursive if the hylo equation (51) has a unique solution
for every coalgebra. The uniquely defined arrow is called a cohylomorphism. If the final coalgebra ⟨νF, out⟩ exists, then
⟨νF, out◦⟩ is isomorphic to the initial corecursive algebra. In otherwords, cohylomorphisms offer an alternative approach for
structured corecursion [13]. Like adjoint folds are related to hylomorphisms, adjoint unfolds are related to cohylomorphisms.
The investigation of the latter species is, however, still in its infancy.

10. Related work

Author’s Prayer:

Copy from one, it’s plagiarism;

copy from two, it’s research.

Wilson Mizner

Adjoint folds. Building on the work of Hagino [29], Malcolm [50] and many others, Bird and de Moor gave a comprehensive
account of the ‘‘Algebra of Programming’’ in their seminal textbook [9]. While the work was well received and highly
appraised in general, it also received some criticism. Poll and Thompson [61] write in an otherwise positive review:

The disadvantage is that even simple programs like factorial require some manipulation to be given a catamorphic
form, and a two-argument function like concat requires substantial machinery to put it in catamorphic form, and thus
make it amenable to manipulation.

The term ‘substantial machinery’ refers to Section 3.5 of the textbook where Bird and de Moor address the problem of
assigning a unique meaning to the defining equation of append (called cat in the textbook). In fact, they generalise the
problem slightly, considering equations of the form

x · (in× id) = a · G x · α,

which we recognise as the definition of an algebraic adjoint fold. Clearly, their approach is subsumed by the framework of
adjoint folds.

The seed for this framework was laid in Section 6 of the paper ‘‘Generalised folds for nested datatypes’’ by Bird and
Paterson [11]. In order to show that generalised folds are uniquely defined, they discuss conditions to ensure that the more
general equation x · L in = Ψ x, our adjoint initial fixed-point equation, uniquely defines x. Two solutions are provided to
this problem, the second of which requires L to have a right adjoint. They also show that the right Kan extension is the right
adjoint of pre-composition. Somewhat ironically, the rest of the paper, which is concerned with folds for nested datatypes,
does not build upon this elegant approach. Also, they do not consider adjoint unfolds. Nonetheless, Bird and Paterson deserve
most of the credit for their fundamental insight, so three cheers to them! (As an aside, the first proof method uses colimits
and is strictly more powerful. It can be used, for instance, to give a semantics to functions such as add that are defined
by simultaneous recursion over a pair of datatypes: ×(µF) → A. Since the product is not a left adjoint, the framework
developed in this article is not directly applicable, but see Section 5.4.) Algebraic adjoint folds were introduced by Matthes
and Uustalu [53] under the name generalised iteration (cf Section 4.3).

2156 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

Mendler-style folds. An alternative, type-theoretic approach to (co)inductive types was proposed by Mendler [56]. His
induction combinators Rµ and Sν map a base function to its unique fixed point. Strong normalisation is guaranteed by the
polymorphic type of the base function. The first categorical justification of Mendler-style recursion was given by de Bruin
[19]. Interestingly, in contrast to traditional category-theoretic treatments of (co)inductive types there is no requirement
that the underlying type constructor is a covariant functor. Indeed, Uustalu and Vene [70] have shown that Mendler-style
folds can be based on difunctors. It remains to be seen whether adjoint folds can also be generalised in this direction. Abel
et al. [1] extended Mendler-style folds to higher kinds in the setting of typed term rewriting. Among other things, they
demonstrate that suitable extensions of Girard’s system Fω retain the strong normalisation property and they show how to
transform generalised Mendler-style folds into standard ones.

Recursion schemes. There is a large body of work on ‘morphisms’. Building on the notions of functors and natural transfor-
mations Malcolm [50] generalised the Bird–Meertens formalism to arbitrary datatypes. Incidentally, he also discussed how
to model mutually recursive types, albeit in an ad-hoc manner. His work assumed Set as the underlying category and was
adapted by Meijer et al. [55] to the category Cpo. The latter paper also popularised the now famous terms catamorphism
and anamorphism (for folds and unfolds), along with the banana and lens brackets (((−)) and [(−)]). The term catamorphism
was actually coined by Meertens, the notation ((−)) is due to Malcolm, and the name banana bracket is attributed to van der
Woude.

The notion of a paramorphismwas introduced by Meertens [54]. Roughly speaking, paramorphisms generalise primitive
recursion to arbitrary datatypes. Their duals, apomorphisms, were only studied later by Vene and Uustalu [72]. While initial
algebras have been the subject of intensive research, final coalgebras have received less attention—they are certainly under-
appreciated [25].

Fokkinga [21] captured mutually recursive functions by mutumorphisms, see Section 5.5. He also observed that
Malcolm’s zygomorphisms arise as a special case, where one function depends on the other, but not the other way round.
(Paramorphisms further specialise zygomorphisms in that the independent function is the identity.) An alternative solution
to the ‘append-problem’was proposed by Pardo [59]: he introduces foldswith parameters anduses them to implement generic
accumulations. His accumulations subsume Gibbons’ downwards accumulations [24].

The discovery of nested datatypes and their expressive power [10,16,58] led to a flurry of research. Standard folds on
nested datatypes, which are natural transformations by construction, were perceived as not being expressive enough. The
aforementioned paper by Bird and Paterson [11] addressed the problem by adding extra parameters to folds leading to
the notion of a generalised fold. The author identified a potential source of inefficiency – generalised folds make heavy use
of mapping functions – and proposed efficient generalised folds as a cure [30]. The approach being governed by pragmatic
concerns was put on a firm theoretical footing by Martin et al. [52] – rather imaginatively the resulting folds were called
disciplined, efficient, generalised folds. The fact that standard folds are actually sufficient for practical purposes – every adjoint
fold can be transformed into a standard fold – was later re-discovered by Johann and Ghani [41].

The insight that generalised algebraic datatypes can be modelled by initial algebras in categories of indexed objects and
arrows is also due to Johann and Ghani [42].

We have shown that all of these different morphisms and (un)folds fall under the umbrella of adjoint (un)folds.
(Paramorphisms and apomorphisms require a slight tweak though: the argument or resultmust be guarded by an invocation
of the identity.) However, we cannot reasonably expect that adjoint (un)folds subsume all existing species of morphisms.
For instance, a largely orthogonal extension of standard folds are recursion schemes from comonads [71,7]. Very briefly, given
a comonad N and a distributive law α : F ◦ N →̇ N ◦ F, we can define an arrow f = ((N in · α)) : µF→ N (µF) that fans out a
data structure. Then the equation in the unknown x : µF→ A,

x · in = a · F (N x · f),

has a unique solution for every algebra a :F (N A)→ A. This scheme includes zygomorphisms and histomorphisms as special
cases. While adjoint folds subsume zygomorphisms, they only capture histomorphisms that depend on a fixed number of
previous values (Section 5.6).

Just in case you were wondering, we have not discussed monadic folds [20], because they can be defined in terms of
standard folds. Interestingly though, the general construction involves an adjunction between the category of algebras over
the ambient category and the category of algebras over the Kleisli category. One of the referees of MPC 2010 suggested to
add the worker/wrapper transformation [40] to our catalogue of techniques. We have resisted the temptation to do so, as
the transformation deals with the orthogonal problem of changing the result type of a fold to improve performance. Finally,
we have left the exploration of relational adjoint (un)folds to future work.

Type fusion. The initial algebra approach to the semantics of datatypes originates in thework of Lambek [45] on fixed points
in categories. Lambek suggests that lattice theory provides a fruitful source of inspiration for results in category theory. This
viewpoint was taken up by Backhouse et al. [5], who generalised a number of lattice-theoretic fixed point rules to category
theory, type fusion being one of them. (The paper contains no proofs; these are provided in an unpublishedmanuscript [4].)
The rules are illustrated by deriving isomorphisms between list types (cons and snoc lists)—currying is the only adjunction
considered.

Finite versions of memo tables are known as tries or digital search trees. Knuth [44] attributes the idea of a trie to Thue
[67]. Connelly andMorris [16] formalised the concept of a trie in a categorical setting: they showed that a trie is a functor and

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2157

that the corresponding look-up function is a natural transformation. The author gave a polytypic definition of memo tables
using type-indexed datatypes [32,33], which Section 8.8 puts on a sound theoretical footing. The insight that a function from
an inductive type is tabulated by a coinductive type is due to Altenkirch [3]. He alsomentions type fusion as away of proving
tabulation correct, but does not spell out the details. (Altenkirch attributes the idea to Backhouse.)

11. Conclusion

I had the idea for this article when I re-read ‘‘Generalised folds for nested datatypes’’ by Bird and Paterson [11]. I needed
to prove the uniqueness of a certain function and I recalled that the paper offered a general approach for doing this. After a
while I began to realise that the approach was far more general than I and possibly also the authors initially realised.

Adjoint folds and unfolds strike a fine balance between expressiveness and ease of use. We have shown that many
if not most Haskell functions fit under this umbrella. The mechanics are straightforward: given a (co)recursive function,
we abstract away from the recursive calls, additionally removing occurrences of in and out that guard those calls. In Set
termination and productivity are ensured by a naturality condition on the resulting base function.

The categorical concept of an adjunction plays a central role in this development. In a sense, each adjunction captures a
different recursion scheme – accumulating parameters, mutual recursion, polymorphic recursion on nested datatypes and
so forth – and allows the scheme to be viewed as an instance of an adjoint (un)fold.

A final thought: most if not all constructions in category theory are parametric in the underlying category, resulting
in a remarkable economy of expression. Perhaps, we should spend more time and effort into utilising this economy for
programming. This possibly leads to a new style of programming, which could be loosely dubbed as category-parametric
programming.

Acknowledgements

Thanks are due to Tom Harper and Daniel James for carefully proof-reading a draft of this article and for suggesting
numerous improvements. I owe a particular debt of gratitude to Thorsten Altenkirch for showing me how to derive the
right adjoint of − ×̇ H in SetC (at that time, I could not imagine that I would ever find an application for the construction)
and to Roland Backhouse for introducingme to type fusion (at that time, I failed to see the beauty of adjunctions). Thanks are
furthermore due to the anonymous referees of MPC 2010 who provided several references and some historical perspective.
One referee pointed out that adjoint folds can also be introduced via a distributive law, which led me to include Section 4.3.
The anonymous referees of this special issue deserve a big thank you for carefully and patiently proof-reading the long
submission and for numerous suggestions for improvement. Finally, I would like to thank Richard Bird for general advice
and for encouraging (even pushing me) to write things up.

References

[1] A. Abel, R. Matthes, T. Uustalu, Iteration and coiteration schemes for higher-order and nested datatypes, Theoret. Comput. Sci. 333 (1-2) (2005) 3–66.
[2] J. Adámek, D. Lücke, S. Milius, Recursive coalgebras of finitary functors, Theor. Inform. Appl. 41 (4) (2007) 447–462. URL: http://dx.doi.org/10.1051/

ita:2007028.
[3] T. Altenkirch, Representations of first order function types as terminal coalgebras, in: Typed Lambda Calculi and Applications, TLCA 2001, in: Lecture

Notes in Computer Science, vol. 2044, Springer, Berlin, Heidelberg, 2001, pp. 62–78.
[4] R. Backhouse, M. Bijsterveld, R. van Geldrop, J. van der Woude, Category theory as coherently constructive lattice theory, 1994. Available from

http://www.cs.nott.ac.uk/~rcb/MPC/CatTheory.ps.gz.
[5] R. Backhouse, M. Bijsterveld, R. van Geldrop, J. van der Woude, Categorical fixed point calculus, in: D. Pitt, D.E. Rydeheard, P. Johnstone (Eds.),

Proceedings of the 6th International Conference on Category Theory and Computer Science, CTCS’95, Cambridge, UK, in: Lecture Notes in Computer
Science, vol. 953, Springer-Verlag, 1995, pp. 159–179.

[6] M. Barr, C. Wells, Category Theory for Computing Science, 3rd ed., Les Publications, CRM, Montréal, 1999, the book is available from Centre de
recherches mathématiques http://crm.umontreal.ca/.

[7] F. Bartels, Generalised coinduction, Math. Structures Comput. Sci. 13 (2003) 321–348.
[8] R. Bird, Introduction to Functional Programming using Haskell, 2nd ed., Prentice Hall Europe, London, 1998.
[9] R. Bird, O. de Moor, Algebra of Programming, Prentice Hall Europe, London, 1997.

[10] R. Bird, L. Meertens, Nested datatypes, in: J. Jeuring (Ed.), Fourth International Conference on Mathematics of Program Construction, MPC’98,
Marstrand, Sweden, in: Lecture Notes in Computer Science, vol. 1422, Springer, Berlin, Heidelberg, 1998, pp. 52–67.

[11] R. Bird, R. Paterson, Generalised folds for nested datatypes, Form. Asp. Comput. 11 (2) (1999) 200–222.
[12] V. Capretta, T. Uustalu, V. Vene, Recursive coalgebras from comonads, Inform. Comput. 204 (4) (2006) 437–468.
[13] V. Capretta, T. Uustalu, V. Vene, Corecursive algebras: A study of general structured corecursion, in: M. Oliveira, J. Woodcock (Eds.), Formal

Methods: Foundations and Applications, in: Lecture Notes in Computer Science, vol. 5902, Springer, Berlin / Heidelberg, 2009, pp. 84–100. URL:
http://dx.doi.org/10.1007/978-3-642-10452-7_7.

[14] R. Cockett, Draft: Charitable thoughts (class notes), 1996. Available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/
charitable.ps.

[15] R. Cockett, T. Fukushima, About Charity, Yellow Series Report 92/480/18, Dept. of Computer Science, Univ. of Calgary, June 1992.
[16] R.H. Connelly, F.L. Morris, A generalization of the trie data structure, Math. Structures Comput. Sci. 5 (3) (1995) 381–418. URL: http://dx.doi.org/10.

1017/S0960129500000803.
[17] D. Coutts, R. Leshchinskiy, D. Stewart, Stream fusion: from lists to streams to nothing at all, in: N. Ramsey (Ed.), Proceedings of the 12th ACM

SIGPLAN International Conference on Functional programming, ICFP’07, ACM, New York, NY, USA, 2007, pp. 315–326. URL: http://doi.acm.org/10.
1145/1291151.1291199.

http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://www.cs.nott.ac.uk/~rcb/MPC/CatTheory.ps.gz
http://crm.umontreal.ca/
http://dx.doi.org/10.1007/978-3-642-10452-7_7
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
ftp://ftp.cpsc.ucalgary.ca/pub/projects/charity/literature/papers_and_reports/charitable.ps
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://dx.doi.org/10.1017/S0960129500000803
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199

2158 R. Hinze / Science of Computer Programming 78 (2013) 2108–2159

[18] O. Danvy, An extensional characterization of lambda-lifting and lambda-dropping, in: A. Middeldorp, T. Sato (Eds.), 4th Fuji International Symposium
on Functional and Logic Programming, FLOPS’99, Tsukuba, Japan, in: Lecture Notes in Computer Science, vol. 1722, Springer, Berlin, Heidelberg, 1999,
pp. 241–250.

[19] P.J. de Bruin, Inductive types in constructive languages, Ph.D. Thesis, University of Groningen. 1995.
[20] M. Fokkinga, Monadic maps and folds for arbitrary datatypes. Tech. Rep. Memoranda Informatica 94–28, University of Twente, June 1994.
[21] M.M. Fokkinga, Law and order in algorithmics, Ph.D. Thesis, University of Twente, February 1992.
[22] M.M. Fokkinga, L. Meertens, Adjunctions, Tech. Rep, Memoranda Inf 94-31, University of Twente, Enschede, Netherlands, June 1994.
[23] P. Freyd, Algebraically complete categories, in: A. Carboni, M. Pedicchio, G. Rosolini (Eds.), Category Theory, in: Lecture Notes in Mathematics,

vol. 1488, Springer, Berlin, Heidelberg, 1991, pp. 95–104.
[24] J. Gibbons, Generic downwards accumulations, Sci. Comput. Program. 37 (1–3) (2000) 37–65.
[25] J. Gibbons, G. Jones, The under-appreciated unfold, in: M. Felleisen, P. Hudak, C. Queinnec (Eds.), Proceedings of the Third ACM SIGPLAN International

Conference on Functional Programming, ACM Press, 1998, pp. 273–279.
[26] J. Gibbons, R. Paterson, Parametric datatype-genericity, in: P. Jansson (Ed.), Proceedings of the 2009ACMSIGPLANWorkshop onGeneric Programming,

ACM Press, 2009, pp. 85–93.
[27] E. Giménez, Codifying guarded definitions with recursive schemes, in: P. Dybjer, B. Nordström, J.M. Smith (Eds.), Types for Proofs and Programs,

InternationalWorkshop TYPES’94, Båstad, Sweden, June 6–10, 1994, Selected Papers, in: Lecture Notes in Computer Science, vol. 996, Springer-Verlag,
1995, pp. 39–59.

[28] J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial algebra semantics and continuous algebras, J. ACM 24 (1) (1977) 68–95.
[29] T. Hagino, A typed lambda calculus with categorical type constructors, in: D. Pitt, A. Poigne, D. Rydeheard (Eds.), Category Theory and Computer

Science, in: Lecture Notes in Computer Science, vol. 283, 1987.
[30] R. Hinze, Efficient generalized folds, in: J. Jeuring (Ed.), Proceedings of the secondWorkshop onGeneric Programming, 2000, pp. 1–16. The proceedings

appeared as a technical report of Universiteit Utrecht, UU-CS-2000-19.
[31] R. Hinze, Functional Pearl: perfect trees and bit-reversal permutations, J. Funct. Programming 10 (3) (2000) 305–317.
[32] R. Hinze, Generalizing generalized tries, J. Funct. Programming 10 (4) (2000) 327–351.
[33] R. Hinze, Memo functions, polytypically! in: J. Jeuring (Ed.), Proceedings of the second Workshop on Generic Programming, 2000, pp. 17–32. The

proceedings appeared as a technical report of Universiteit Utrecht, UU-CS-2000-19.
[34] R. Hinze, Fun with phantom types, in: J. Gibbons, O. de Moor (Eds.), The Fun of Programming. Cornerstones of Computing, Palgrave Macmillan, 2003,

pp. 245–262.
[35] R. Hinze, Concrete stream calculus—an extended study, J. Funct. Programming 20 (5–6) (2011) 463–535.
[36] R. Hinze, Type fusion, in: D. Pavlovic, M. Johnson (Eds.), Thirteenth International Conference on Algebraic Methodology And Software Technology,

AMAST 2010, in: Lecture Notes in Computer Science, vol. 6486, Springer, Berlin, Heidelberg, 2011, pp. 92–110.
[37] R. Hinze, D.W.H. James, Reason isomorphically!, in: B.C. Oliveira, M. Zalewski (Eds.), Proceedings of the 6th ACM SIGPLAN Workshop on Generic

Programming, WGP’10, ACM, New York, NY, USA, 2010, pp. 85–96.
[38] R. Hinze, S. Peyton Jones, Derivable type classes, in: G. Hutton (Ed.), Proceedings of the 2000 ACM SIGPLAN Haskell Workshop, in: Electronic Notes

in Theoretical Computer Science, vol. 41(1), Elsevier Science, 2001, pp. 5–35. The preliminary proceedings appeared as a University of Nottingham
technical report.

[39] J. Hughes, Type specialisation for the λ-calculus; or, A new paradigm for partial evaluation based on type inference, in: O. Danvy, R. Glück,
P. Thiemann (Eds.), Partial Evaluation. Dagstuhl Castle, Germany, February 1996, in: Lecture Notes in Computer Science, vol. 1110, Springer-Verlag,
1996, pp. 183–215.

[40] G. Hutton, M. Jaskelioff, A. Gill, Factorising folds for faster functions, J. Funct. Programming 20 (2010) 353–373 (special issue 3–4) URL: http://dx.doi.
org/10.1017/S0956796810000122.

[41] P. Johann, N. Ghani, Initial algebra semantics is enough!, in: S. Ronchi Della Rocca (Ed.), Typed Lambda Calculi and Applications, 8th International
Conference, TLCA 2007, Paris, France, June 26–28, 2007, Proceedings, in: Lecture Notes in Computer Science, vol. 4583, Springer, Berlin, Heidelberg,
2007, pp. 207–222.

[42] P. Johann, N. Ghani, Foundations for structured programming with gadts, in: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’08, ACM, New York, NY, USA, 2008, pp. 297–308. URL: http://doi.acm.org/10.1145/1328438.1328475.

[43] D.E. Knuth, TCALC, 1994. http://www-cs-faculty.stanford.edu/~knuth/programs/tcalc.w.gz.
[44] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed., Addison-Wesley Publishing Company, 1998.
[45] J. Lambek, A fixpoint theorem for complete categories, Math. Zeitschr. 103 (1968) 151–161.
[46] J. Lambek, From lambda-calculus to cartesian closed categories, in: J. Seldin, J. Hindley (Eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, Academic Press, 1980, pp. 376–402.
[47] R. Lämmel, S. Peyton Jones, Scrap your boilerplate with class: extensible generic functions. In: Pierce, B. (Ed.), Proceedings of the 2005 International

Conference on Functional Programming, Tallinn, Estonia, September 26–28, 2005, 2005.
[48] D.J. Lehmann, M.B. Smyth, Algebraic specification of data types: a synthetic approach, Math. Syst. Theory 14 (1981) 97–139.
[49] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., in: Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1998.
[50] G. Malcolm, Data structures and program transformation, Sci. Comput. Program. 14 (2–3) (1990) 255–280.
[51] Simon Marlow, Haskell 2010—Language Report, 2010. http://www.haskell.org/onlinereport/haskell2010.
[52] C. Martin, J. Gibbons, I. Bayley, Disciplined, efficient, generalised folds for nested datatypes, Form. Asp. Comput. 16 (1) (2004) 19–35.
[53] R. Matthes, T. Uustalu, Substitution in non-wellfounded syntax with variable binding, Theoret. Comput. Sci. 327 (1–2) (2004) 155–174.
[54] L. Meertens, Paramorphisms, Form. Asp. Comput. 4 (1992) 413–424.
[55] E. Meijer, M. Fokkinga, R. Paterson, Functional programmingwith bananas, lenses, envelopes and barbedwire, in: J. Hughes (Ed.), 5th ACM Conference

on Functional Programming Languages and Computer Architecture, FPCA’91, Cambridge, MA, USA, in: Lecture Notes in Computer Science, vol. 523,
Springer, Berlin, Heidelberg, 1991, pp. 124–144.

[56] N.P. Mendler, Inductive types and type constraints in the second-order lambda calculus, Ann. Pure Appl. Logic 51 (1–2) (1991) 159–172.
[57] A. Mycroft, Polymorphic type schemes and recursive definitions, in: M. Paul, B. Robinet (Eds.), Proceedings of the International Symposium on

Programming, 6th Colloquium, Toulouse, France, in: Lecture Notes in Computer Science, vol. 167, 1984, pp. 217–228.
[58] C. Okasaki, Catenable double-ended queues. In: Proceedings of the 1997 ACM SIGPLAN International Conference on Functional Programming.

Amsterdam, The Netherlands, pp. 66–74, ACM SIGPLAN Notices, 32(8), August 1997, June 1997.
[59] A. Pardo, Generic accumulations, in: J. Gibbons, J. Jeuring (Eds.), Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss

Dagstuhl, vol. 243, Kluwer Academic Publishers, 2002, pp. 49–78.
[60] S. Peyton Jones, Haskell 98 Language and Libraries, Cambridge University Press, 2003.
[61] E. Poll, S. Thompson, Book review: the algebra of programming, J. Funct. Programming 9 (3) (1999) 347–354.
[62] T. Schrijvers, S. Peyton Jones, M. Sulzmann, D. Vytiniotis, Complete and decidable type inference for gadts, in: Proceedings of the 14th ACM SIGPLAN

International Conference on Functional Programming, ICFP’09, ACM, New York, NY, USA, 2009, pp. 341–352. http://doi.acm.org/10.1145/1596550.
1596599.

[63] T. Sheard, N. Linger, Programming in ωmega, in: Z. Horváth, R. Plasmeijer, A. Soós, V. Zsók (Eds.), Central European Functional Programming School,
in: Lecture Notes in Computer Science, vol. 5161, Springer, Berlin, Heidelberg, 2008, pp. 158–227. http://dx.doi.org/10.1007/978-3-540-88059-2_5.

[64] T. Sheard, T. Pasalic, Two-level types and parameterized modules, J. Funct. Programming 14 (5) (2004) 547–587.
[65] M.B. Smyth, G.D. Plotkin, The category-theoretic solution of recursive domain equations, SIAM J. Comput. 11 (4) (1982) 761–783.
[66] The Coq Development Team, 2010. The Coq proof assistant reference manual. http://coq.inria.fr.

http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://dx.doi.org/10.1017/S0956796810000122
http://doi.acm.org/10.1145/1328438.1328475
http://www-cs-faculty.stanford.edu/~knuth/programs/tcalc.w.gz
http://www.haskell.org/onlinereport/haskell2010
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://dx.doi.org/10.1007/978-3-540-88059-2_5
http://coq.inria.fr

R. Hinze / Science of Computer Programming 78 (2013) 2108–2159 2159

[67] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Skrifter udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-
Naturvidenskabelig Klasse 1, 1–67, 1912, reprinted in Thue’s Selected Mathematical Papers (Oslo: Universitetsforlaget, 1977), 413–477.

[68] V. Trifonov, Simulating quantified class constraints, in: Haskell’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, ACM, New York, NY,
USA, 2003, pp. 98–102.

[69] T. Uustalu, V. Vene, Primitive (co)recursion and course-of-value (co)iteration, categorically, Informatica, Lith. Acad. Sci. 10 (1) (1999) 5–26.
[70] T. Uustalu, V. Vene, Coding recursion a laMendler (extended abstract). In: Jeuring, J. (Ed.), Proceedings of the 2ndWorkshop on Generic Programming,

Ponte de Lima, Portugal, pp. 69–85, The proceedings appeared as a technical report of Universiteit Utrecht, UU-CS-2000-19, 2000.
[71] T. Uustalu, V. Vene, A. Pardo, Recursion schemes from comonads, Nordic J. Comput. 8 (2001) 366–390.
[72] V. Vene, T. Uustalu, Functional programming with apomorphisms (corecursion), Proceedings of the Estonian Academy of Sciences: Physics,

Mathematics 47 (3) (1998) 147–161.

	Adjoint folds and unfolds---An extended study
	Introduction
	Notation
	Fixed-point equations
	Initial fixed-point equations
	Final fixed-point equations
	Mutual type recursion: C ×D
	Type functors: DC
	A special case: generalised algebraic datatypes: CI

	Adjoint fixed-point equations
	Adjoint initial fixed-point equations
	Adjoint final fixed-point equations
	Algebraic adjoint folds

	Basic adjunctions
	Identity: IdId
	Isomorphism and equivalence of categories
	Currying: -×X(-)X
	A special case: simultaneous recursion: -×μG(-)μG
	Mutual value recursion: (+)Δ (×)
	Mutual value recursion: Σiin I Δ Πiin I
	Type application: LshX(-X)RshX
	Type composition: LanJ(-oJ)RanJ
	Currying continued: -
	Swapping arguments: (X(-))opX(-)

	Combining adjunctions
	Composition of adjoints
	Product of adjoints
	Post-composition
	Pre-composition

	Calculational properties
	Uniqueness property
	Fusion
	Conjugate fusion
	General fusion
	Base functor fusion

	Type fusion
	Identity: IdId
	Isomorphism and equivalence of categories
	Currying: -×X(-)X
	Mutual value recursion: (+)Δ (×)
	Type firstification: LshX(-X)RshX
	Type specialisation: LanJ(-oJ)RanJ
	Tabulation: (X(-))opX(-)
	Tabulation revisited: ExpSel

	Recursive coalgebras and corecursive algebras
	Related work
	Conclusion
	Acknowledgements
	References

