
Ralf Hinze

Generic Programs and Proofs

Bonn, 2000

Für Anja, Lisa und Florian

Brief contents

1 Introduction 1

2 Background 15

3 Generic programs 53

4 Generic proofs 87

5 Examples 107

6 Generic Haskell 147

References 159

Summary 167

Curriculum Vitæ 169

iv

Contents

1 Introduction 1
1.1 Generic programming in a nutshell 3
1.2 Overview . 13

2 Background 15
2.1 The type system of Haskell . 15
2.2 The class system of Haskell . 21
2.3 Category theory . 24
2.4 The simply typed λ-calculus . 31
2.5 The polymorphic λ-calculus . 41

3 Generic programs 53
3.1 Type-indexed values . 53
3.2 Generalizing to first- and second-order kinds 68
3.3 Type-indexed values with kind-indexed types 75
3.4 Related work . 84

4 Generic proofs 87
4.1 Fixed point induction . 87
4.2 Deriving generic programs . 92
4.3 Generic logical relations . 96

5 Examples 107
5.1 Comparison functions . 107
5.2 Mapping functions . 108
5.3 Zipping functions . 115
5.4 Reductions . 119
5.5 Generic dictionaries . 125
5.6 Generic memo tables . 136

6 Generic Haskell 147
6.1 Implementation . 147
6.2 Extensions . 156

References 159

Summary 167

Curriculum Vitæ 169

vi

Detailed contents

1 Introduction 1
1.1 Generic programming in a nutshell 3

1.1.1 Binary encoding . 3
1.1.2 Size functions . 10

1.2 Overview . 13

2 Background 15
2.1 The type system of Haskell . 15

2.1.1 Finite types . 16
2.1.2 Regular types . 16
2.1.3 Nested types . 18
2.1.4 Functional types . 20

2.2 The class system of Haskell . 21
2.2.1 Type classes . 21
2.2.2 Constructor classes . 22

2.3 Category theory . 24
2.3.1 Categories, functors and natural transformations 24
2.3.2 Initial objects . 25
2.3.3 Terminal objects . 25
2.3.4 Products . 26
2.3.5 Coproducts . 26
2.3.6 Exponentials . 27
2.3.7 Isomorphisms . 28
2.3.8 Fixed points . 29
2.3.9 A semantics for data declarations 30

2.4 The simply typed λ-calculus . 31
2.4.1 Syntax . 32
2.4.2 Semantics . 33
2.4.3 Böhm trees . 36
2.4.4 Logical relations . 37

2.5 The polymorphic λ-calculus . 41
2.5.1 Syntax . 42
2.5.2 Semantics . 48

3 Generic programs 53
3.1 Type-indexed values . 53

3.1.1 Normal forms of types . 54
3.1.2 Defining generic values . 55
3.1.3 Specializing generic values 59

viii

3.2 Generalizing to first- and second-order kinds 68
3.2.1 Type indices of kind ?→ ? 68
3.2.2 Type indices of kind (?→ ?)→ ?→ ? 69
3.2.3 Normal forms of types . 71
3.2.4 Defining generic values . 73
3.2.5 Specializing generic values 73
3.2.6 Limitations of the approach 75

3.3 Type-indexed values with kind-indexed types 75
3.3.1 Defining generic values . 78
3.3.2 Specializing generic values 79
3.3.3 Examples . 82

3.4 Related work . 84

4 Generic proofs 87
4.1 Fixed point induction . 87

4.1.1 Type-indexed values . 87
4.1.2 Generalizing to first- and second-order kinds 88

4.2 Deriving generic programs . 92
4.3 Generic logical relations . 96

4.3.1 Soundness . 98
4.3.2 Examples . 102

5 Examples 107
5.1 Comparison functions . 107
5.2 Mapping functions . 108

5.2.1 Embedding-projection maps 108
5.2.2 Monadic maps . 111

5.3 Zipping functions . 115
5.4 Reductions . 119

5.4.1 POPL-style reductions . 119
5.4.2 MPC-style reductions . 120
5.4.3 Properties . 122
5.4.4 Right and left reductions 123

5.5 Generic dictionaries . 125
5.5.1 Introduction . 125
5.5.2 Signature . 128
5.5.3 Type-indexed tries . 128
5.5.4 Empty tries . 131
5.5.5 Singleton tries . 133
5.5.6 Look up . 133
5.5.7 Inserting and merging . 134
5.5.8 Properties . 136
5.5.9 Related work . 136

5.6 Generic memo tables . 136
5.6.1 Introduction . 137
5.6.2 Signature . 137
5.6.3 Memo tables . 137
5.6.4 Table look-up . 138
5.6.5 Tabulation . 139
5.6.6 Properties . 143

ix

6 Generic Haskell 147
6.1 Implementation . 147

6.1.1 Generic representation types 148
6.1.2 Specializing generic values 149
6.1.3 Generating embedding-projection maps 153
6.1.4 Encoding rank-n types . 154

6.2 Extensions . 156
6.2.1 Ad-hoc definitions . 156
6.2.2 Constructor names and record labels 157

References 159

Summary 167

Curriculum Vitæ 169

x

Chapter 1

Introduction

A generic program is one that the programmer writes once, but which works over
many different data types. A generic proof is one that the programmer shows
once, but which holds for many different data types. This thesis describes a novel
approach to functional generic programming and reasoning that is both simpler
and more general than previous approaches.

It is widely accepted that type systems are indispensable for building large
and reliable software systems. Types provide machine checkable documentation
and are often helpful in finding programming errors at an early stage. Polymor-
phism complements type security by flexibility. Polymorphic type systems like
the Hindley-Milner system (Milner 1978) allow the definition of functions that
behave uniformly over all types. However, polymorphic type systems are some-
times less flexible that one would wish. For instance, it is not possible to define
a polymorphic equality function that works for all types.1 As a consequence, the
programmer is forced to program a separate equality function for each data type
from scratch.

Generic, or polytypic, programming (Bird, de Moor, and Hoogendijk 1996;
Backhouse, Jansson, Jeuring, and Meertens 1999) addresses this problem. Actu-
ally, equality serves as a standard example of a generic function. Further examples
are parsing and pretty printing, serialising, ordering, hashing, and so on. Broadly
speaking, generic programming aims at relieving the programmer from repeat-
edly writing functions of similar functionality for different user-defined data types.
A generic function such as a pretty printer or a parser is written once and for
all times; its specialization to different instances of data types happens without
further effort from the user. This way generic programming greatly simplifies
the construction and maintenance of software systems as it automatically adapts
functions to changes in the representation of data.

The basic idea of generic programming is to define a function such as taking
equality by induction on the structure of types. Thus, generic equality takes three

kinds

types

values

arguments, a type and two values of that type, and proceeds
by case analysis on the type argument. In other words, generic
equality is a function that depends on a type. To put this
statement into a broader perspective let us take a look at the
structure of a modern functional programming language such
as Haskell 98 (Peyton Jones and Hughes 1999). If we ignore
the module system, Haskell 98 has the three level structure
depicted on the right. The lowest level, that is, the level where
the computations take place, consists of values. The second
level, which imposes structure on the value level, is inhabited by types. Finally,
on the third level, which imposes structure on the type level, we have so-called
kinds. Why is there a third level? Now, Haskell allows the programmer to define

1The parametricity theorem (Wadler 1989) implies that a function of type ∀A .A→ A→ Bool
must necessarily be constant.

2 Introduction

parametric types such as the popular data type of lists. The list type constructor
can be seen as a function on types and the kind system allows to specify this in a
precise way. Thus, a kind is simply the ‘type’ of a type constructor.

In ordinary programming we routinely define values that depend on values, that
is, functions and types that depend on types, that is, type constructors. However,
we can also imagine to have dependencies between adjacent levels. For instance,
a type might depend on a value or a type might depend on a kind. The following
table lists the possible combinations:

kinds depending on kinds parametric and kind-indexed kinds
kinds depending on types dependent kinds
types depending on kinds polymorphic and kind-indexed types
types depending on types parametric and type-indexed types
types depending on values dependent types
values depending on types polymorphic and type-indexed functions
values depending on values ordinary functions .

If a higher level depends on a lower level we have so-called dependent types or
dependent kinds. Programming languages with dependent types are the subject
of intensive research, see, for instance, (Augustsson 1999). Dependent types will,
however, play little rôle in this thesis as generic programming is concerned with
the opposite direction, where a lower level depends on the same or a higher level.
For instance, if a value depends on a type we either have a polymorphic or a
type-indexed function. In both cases the function takes a type as an argument.
What is the difference between the two? Now, a polymorphic function stands for an
algorithm that happens to be insensitive to what type the values in some structure
are. Take, for example, the length function that calculates the length of a list. Since
it need not inspect the elements of a given list, it has type ∀A .List A→ Int . By
contrast, a type-indexed function is defined by induction on the structure of its
type argument. In some sense, the type argument guides the computation which
is performed on the value arguments.

A similar distinction applies to the type and to the kind level: a parametric
type does not inspect its type argument whereas a type-indexed type is defined
by induction on the structure of its type argument and similarly for kinds. The
following table summarizes the interesting cases.

kinds defined by induction on the structure of kinds kind-indexed kinds
kinds defined by induction on the structure of types —
types defined by induction on the structure of kinds kind-indexed types
types defined by induction on the structure of types type-indexed types
types defined by induction on the structure of values —
values defined by induction on the structure of types type-indexed values
values defined by induction on the structure of values —

We will encounter examples of all sorts of parameterization in this thesis. Of
course, the main bulk of the text is concerned with type-indexed functions. Sec-
tions 3.1 and 3.2 cover this topic in considerable depth. Perhaps surprisingly,
kind-indexed types will also play a prominent rôle since they allow for a more flex-
ible definition of type-indexed functions. This is detailed in Section 3.3. Polytypic
types and kind-indexed kinds are less frequent (and also more exotic). They will
be dealt with in later sections (Sections 5.5 and 5.6).

1.1 Generic programming in a nutshell 3

The rest of this introduction is structured as follows. Section 1.1 introduces
generic functional programming from the programmer’s perspective. We will get
to know several type-indexed functions and we will see an example of a generic
proof. Section 1.2 gives an overview of the remaining chapters.

1.1 Generic programming in a nutshell

Defining a function by induction on the structure of types sounds like a hard nut to
crack. We are trained to define functions by induction on the structure of values.
Types are used to guide this process, but we typically think of them as separate
entities. So, at first sight, generic programming appears to add an extra level
of complication and abstraction to programming. However, I claim that generic
programming is in many cases actually simpler than conventional programming.
The fundamental reason is that genericity gives you ‘a lot of things for free’—we
will make this statement more precise in the course of this thesis. For the moment,
let me support the claim by defining two simple algorithms both in a conventional
and in a generic style. Of course, we will consider algorithms that make sense for
a large class of data types. Consequently, in the conventional style we have to
provide an algorithm for each instance of the class.

Remark 1.1 The examples in this section and indeed most of the examples in this
thesis are given in the functional programming language Haskell 98 (Peyton Jones
and Hughes 1999). However, for reasons of coherence we will slightly deviate from
Haskell’s lexical syntax: both type constructors and type variables are written
with an initial upper-case letter (in Haskell type variables begin with a lower-case
letter) and both value constructors and value variables are written with an initial
lower-case letter (in Haskell value constructors begin with an upper-case letter).
This convention helps to easily identify values and types. Furthermore, we write
polymorphic types such as ∀A .List A→ Int using an explicit universal quantifier.
Unfortunately, in Haskell there is no syntax for universal quantification. ut

1.1.1 Binary encoding

The first problem we look at is to encode elements of a given data type as bit
streams implementing a simple form of data compression (Jansson and Jeuring
1999). For concreteness, we assume that bit streams are given by the following
data type:

type Bin = [Bit]
data Bit = 0 | 1.

Thus, a bit stream is simply a list of bits (see Section 2.1.2 for a short review
of Haskell’s list syntax). A real implementation might have a more sophisticated
representation for Bin but that is a separate matter.

Ad-hoc programs We will implement binary encoders and decoders for three
different data types. We consider the types in increasing level of difficulty. The
first type defines character strings:

data String = nilS | consS Char String .

The data type declaration introduces a new type, String , and two new value
constructors, nilS and consS . Here is an example element of String :

4 Introduction

consS ’F’ (consS ’l’ (consS ’o’ (consS ’r’ (consS ’i’ (consS ’a’ (consS ’n’ nilS)))))).

Supposing that encodeChar :: Char → Bin is an encoder for characters provided
from somewhere, we can encode an element of type String as follows:

encodeString :: String → Bin
encodeString nilS = 0 : []
encodeString (consS c s) = 1 : encodeChar c ++ encodeString s.

We emit one bit to distinguish between the two constructors nilS and consS . If
the argument is a non-empty string of the form consS c s, we (recursively) encode
the components c and s and finally concatenate the resulting bit streams.

Given this scheme it is relatively simple to decode a bit stream produced by
encodeString . Again, we assume that a decoder for characters is provided exter-
nally.

decodesString :: Bin → (String ,Bin)
decodesString [] = error "decodesString"
decodesString (0 : bin) = (nilS , bin)
decodesString (1 : bin) = let (c, bin1) = decodesChar bin

(s, bin2) = decodesString bin1

in (consS c s, bin2)

The decoder has type Bin → (String ,Bin) rather than Bin → String to be able
to compose decoders in a modular fashion: decodesChar :: Bin → (Char ,Bin), for
instance, consumes an initial part of the input bit stream and returns the decoded
character together with the rest of the input stream. Here are some applications
(we assume that characters are encoded in 8 bits).

encodeString (consS ’L’ (consS ’i’ (consS ’s’ (consS ’a’ nilS))))
=⇒ 1001100101100101101110011101100001100
decodesChar (tail 1001100101100101101110011101100001100)
=⇒ (’L’, 1100101101110011101100001100)
decodesString 1001100101100101101110011101100001100
=⇒ (consS ’L’ (consS ’i’ (consS ’s’ (consS ’a’ nilS))), [])

Note that a string of length n is encoded using n + 1 + 8 × n bits.
A string is a list of characters. Abstracting over the type of list elements we

obtain a more general list type:

data List A = nil | cons A (List A).

This parametric type embraces lists of characters of type List Char

cons ’F’ (cons ’l’ (cons ’o’ (cons ’r’ (cons ’i’ (cons ’a’ (cons ’n’ nil)))))),

lists of integers of type List Int

cons 2 (cons 3 (cons 5 (cons 7 (cons 11 (cons 13 nil))))),

and so on. Now, how can we encode a list of something? We could insist that
the elements of the input list have already been encoded as bit streams. Then
encodeListBin completes the task:

encodeListBin :: List Bin → Bin
encodeListBin nil = 0 : []
encodeListBin (cons bin bins) = 1 : bin ++ encodeListBin bins.

1.1 Generic programming in a nutshell 5

For encoding the elements of a list the following function proves to be useful:

mapList :: ∀A1 A2 . (A1 → A2)→ (List A1 → List A2)
mapList mapA nil = nil
mapList mapA (cons a as) = cons (mapA a) (mapList mapA as).

The function mapList is a so-called mapping function that applies a given function
to each element of a given list (we will say a lot more about mapping functions
in this thesis). Combining encodeListBin and mapList we can encode a variety of
lists:

encodeListBin (mapList encodeChar (cons ’A’ (cons ’n’ (cons ’j’ (cons ’a’ nil)))))
=⇒ 1100000101011101101010101101100001100
encodeListBin (mapList encodeInt (cons 11 (cons 13 nil)))
=⇒ 1110100000000000000000000000000001101100000000000000000000000000000
(encodeListBin ·mapList (encodeListBin ·mapList encodeBool))

(cons (cons True (cons False (cons True nil)))
(cons (cons False (cons True (cons False nil)))
(nil)))

=⇒ 11110110110111000.

Here, encodeInt and encodeBool are primitive encoders for integers and Boolean
values respectively (an integer occupies 32 bits whereas a Boolean value makes do
with one bit).

The million-dollar question is, of course, how do we decode the bit streams thus
produced? The first bit tells whether the original list was empty or not, but then
we are stuck: we simply do not know how many bits were spent on the first list
element. The only way out of this dilemma is to use a decoder function, supplied
as an additional argument, that decodes the elements of the original list.

decodesList :: ∀A . (Bin → (A,Bin))→ (Bin → (List A,Bin))
decodesList decodesA [] = error "decodesList"
decodesList decodesA (0 : bin) = (nil , bin)
decodesList decodesA (1 : bin) = let (a, bin1) = decodesA bin

(as, bin2) = decodesList decodesA bin1

in (cons a as, bin2)

This definition generalizes decodeString defined above; we have decodeString ∼=
decodesList decodesChar (corresponding to String ∼= List Char). In some sense,
the abstraction step that led from String to List is here repeated on the value
level. Of course, we can also generalize encodeString :

encodeList :: ∀A . (A→ Bin)→ (List A→ Bin)
encodeList encodeA nil = 0 : []
encodeList encodeA (cons a as) = 1 : encodeA a ++ encodeList encodeA as.

It is not hard to see that encodeList encodeA = encodeListBin ·mapList encodeA.
Encoding and decoding lists is now fairly simple:

6 Introduction

encodeList encodeChar (cons ’A’ (cons ’n’ (cons ’j’ (cons ’a’ nil))))
=⇒ 1100000101011101101010101101100001100
encodeList encodeInt (cons 47 (cons 11 nil))
=⇒ 1110100000000000000000000000000001101100000000000000000000000000000
encodeList (encodeList encodeBool)

(cons (cons True (cons False (cons True nil)))
(cons (cons False (cons True (cons False nil)))
(nil)))

=⇒ 11110110110111000.

The third data type we look at provides an alternative to the ubiquitous list
type if an efficient indexing operation is required: Okasaki’s binary random-access
lists (1998) support logarithmic access to the elements of a list.

data Fork A = fork A A
data Sequ A = endS | zeroS (Sequ (Fork A)) | oneS A (Sequ (Fork A))

Since the type argument of Sequ is changed in the recursive calls, Sequ is termed
a nested or non-regular data type (Bird and Meertens 1998). Nested data types
are practically important since they can capture data-structural invariants in a
way that regular data types cannot. For instance, Sequ captures the invariant
that binary random-access lists are sequences of perfect binary leaf trees stored
in increasing order of height. The following element of type Sequ Char illustrates
this property:

oneS ’F’ (oneS (fork ’l’ ’o’) (oneS (fork (fork ’r’ ’i’) (fork ’a’ ’n’)) endS)).

The first argument of the i -th oneS constructor has type Fork i Char (F n A means
F applied n times to A), which we may view as the type of perfect binary leaf trees
of height i . The sequence above has length 7. Here is a slightly shorter sequence
of type Sequ Int :

zeroS (oneS (fork 2 3) (oneS (fork (fork 5 7) (fork 11 13)) endS)).

Note that the constructors zeroS and oneS encode the length of the list. In other
words, the binary representation of the number of elements determines the layout
of the binary random-access list. The intimate relationship between the binary
number system and this data structure is explained in more detail in (Okasaki
1998; Hinze 2000c), see also Remark 2.2.

Now, using the recursion scheme of encodeList we can also program an encoder
for binary random-access lists.

encodeFork :: ∀A . (A→ Bin)→ (Fork A→ Bin)
encodeFork encodeA (fork a1 a2) = encodeA a1 ++ encodeA a2

encodeSequ :: ∀A . (A→ Bin)→ (Sequ A→ Bin)
encodeSequ encodeA endS = 0 : []
encodeSequ encodeA (zeroS s) = 1 : 0 : encodeSequ (encodeFork encodeA) s
encodeSequ encodeA (oneS a s) = 1 : 1 : encodeA a ++ encodeSequ (encodeFork encodeA) s

Consider the last equation which deals with arguments of the form oneS a s. We
emit two bits for the constructor and then (recursively) encode its components.
Since a has type A, we apply encodeA. Similarly, since s has type Sequ (Fork A),
we call encodeSequ (encodeFork encodeA). The type of the component determines
the calls in a straightforward manner. As an aside, note that encodeSequ requires a

1.1 Generic programming in a nutshell 7

non-schematic form of recursion known as polymorphic recursion (Mycroft 1984).
The recursive calls are at type (Fork A→ Bin)→ (Sequ (Fork A)→ Bin) which is
a substitution instance of the declared type. Functions operating on nested types
are in general polymorphically recursive. Haskell 98 allows polymorphic recursion
only if an explicit type signature is provided for the function. The rationale behind
this restriction is that type inference in the presence of polymorphic recursion is
undecidable (Henglein 1993).

decodesFork :: ∀A . (Bin → (A,Bin))→ (Bin → (Fork A,Bin))
decodesFork decodesA bin = let (a1, bin1) = decodesA bin

(a2, bin2) = decodesA bin1

in (fork a1 a2, bin2)
decodesSequ :: ∀A . (Bin → (A,Bin))→ (Bin → (Sequ A,Bin))
decodesSequ decodesA [] = error "decodes"
decodesSequ decodesA (0 : bin) = (endS , bin)
decodesSequ decodesA (1 : 0 : bin) = let (s, bin ′) = decodesSequ (decodesFork decodesA) bin

in (zeroS s, bin ′)
decodesSequ decodesA (1 : 1 : bin) = let (a, bin1) = decodesA bin

(s, bin2) = decodesSequ (decodesFork decodesA) bin1

in (oneS a s, bin2)

Perhaps surprisingly, encoding a binary random-access list requires less bits than
encoding the corresponding list.

encodeSequ encodeChar (zeroS (zeroS (oneS (fork (fork ’L’ ’i’) (fork ’s’ ’a’)) endS)))
=⇒ 101011001100101001011011001110100001100
encodeSequ encodeInt (zeroS (oneS (fork 47 11) endS))
=⇒ 101111110100000000000000000000000000110100000000000000000000000000000

In general, a string of length n requires 2 × dlg (n + 1)e+ 1 + 8 × n bits.

Generic programs Before explaining how to define generic versions of encode
and decodes let us first take a closer look at Haskell’s data type definitions. The
data construct combines several features in a single coherent form: type abstrac-
tion, type recursion, n-ary sums and n-ary products. The following rewritings of
String , List , Fork and Sequ make the structure of the data type definitions more
explicit.

String = 1 + Char × String
List A = 1 + A × List A
Fork A = A × A
Sequ A = 1 + Sequ (Fork A) + A × Sequ (Fork A)

Here, ‘1’ denotes the unit type, and ‘+’ and ‘×’ are more conventional notation
for binary sums and binary products. For simplicity, we assume that n-ary sums
are reduced to binary sums and n-ary products to binary products, that is, read
T1 + T2 + T3 as T1 + (T2 + T3). In the sequel we treat ‘1’, ‘+’, and ‘×’ as if they
were given by the following data type declarations.

data 1 = ()
data A + B = inl A | inr B
data A × B = (A,B)

8 Introduction

Now, to define a generic version of encode it suffices to specify cases for the
primitive types, that is, ‘1’, Char and Int , and for the primitive type constructors,
that is, ‘+’ and ‘×’. The type argument of encode is written in angle brackets to
distinguish it from the value argument.

encode〈T 〉 :: T → Bin
encode〈1〉 () = []
encode〈Char〉 c = encodeChar c
encode〈Int〉 i = encodeInt i
encode〈A + B〉 (inl a) = 0 : encode〈A〉 a
encode〈A + B〉 (inr b) = 1 : encode〈B〉 b
encode〈A × B〉 (a, b) = encode〈A〉 a ++ encode〈B〉 b

The type signature of encode, which is mandatory, makes explicit that the type
of encode〈T 〉 depends on the type argument or type index T . Interestingly, each
equation is more or less inevitable. To encode the single element of the unit type
no bits are required. Integers and characters are encoded using the primitive
functions encodeChar and encodeInt . To encode an element of a sum we emit
one bit for the constructor followed by the encoding of its argument. Finally, the
encoding of a pair is given by the concatenation of the component’s encodings.

This simple definition contains all ingredients needed to compress elements
of arbitrary data types. For instance, encode〈Sequ Int〉 of type Sequ Int → Bin
compresses random-access lists with integer elements and encode〈List (List Bool)〉
compresses Boolean matrices. We will see in later chapters that it is possible to
specialize encode〈T 〉 for a given T obtaining essentially the definitions one would
have written by hand.

The generic definition of decodes follows the same definitional pattern as encode.

decodes〈T 〉 :: Bin → (T ,Bin)
decodes〈1〉 bin = ((), bin)
decodes〈Char〉 bin = decodesChar bin
decodes〈Int〉 bin = decodesInt bin
decodes〈A + B〉 [] = error "decodes"
decodes〈A + B〉 (0 : bin) = let (a, bin ′) = decodes〈A〉 bin in (inl a, bin ′)
decodes〈A + B〉 (1 : bin) = let (b, bin ′) = decodes〈B〉 bin in (inr b, bin ′)
decodes〈A × B〉 bin = let (a, bin1) = decodes〈A〉 bin

(b, bin2) = decodes〈B〉 bin1

in ((a, b), bin2)

The pair of functions, encode and decodes, allows to encode and to decode elements
of arbitrary user-defined data types.

Generic proofs A generic program enjoys generic properties. Here is a (very
desirable) property of the two functions introduced above:

decodes〈T 〉 (encode〈T 〉 t) = (t , [])

for all types T and for all elements t of T . In other words, the implementation is
correct: decoding an encoded value yields the original value.

Like the definition of encode and decodes the proof of this property proceeds by
induction on the structure data types. In fact, we have to prove a slightly stronger
statement to push the induction through:

decodes〈T 〉 (encode〈T 〉 t ++ bin) = (t , bin).

1.1 Generic programming in a nutshell 9

For simplicity, we assume that we are working in a strict setting (so that the
property trivially holds for t = ⊥).

• Case T = 1 and t = ():

decodes〈1〉 (encode〈1〉 () ++ bin)
= { definition of encode }

decodes〈1〉 ([] ++ bin)
= { definition of (++): [] ++ y = y }

decodes〈1〉 bin
= { definition of decodes }

((), bin)

• Case T = A + B and t = inl a:

decodes〈A + B〉 (encode〈A + B〉 (inl a) ++ bin)
= { definition of encode }

decodes〈A + B〉 ((0 : encode〈A〉 a) ++ bin)
= { definition of (++): (a : x) ++ y = a : (x ++ y) }

decodes〈A + B〉 (0 : (encode〈A〉 a ++ bin))
= { definition of decodes }

let (a ′, bin ′) = decodes〈A〉 (encode〈A〉 a ++ bin) in (inl a ′, bin ′)
= { ex hypothesi }

(inl a, bin).

• Case T = A + B and t = inr a: analogous.

• Case T = A × B and t = (a, b):

decodes〈A × B〉 (encode〈A × B〉 (a, b) ++ bin)
= { definition of encode }

decodes〈A × B〉 ((encode〈A〉 a ++ encode〈B〉 b) ++ bin)
= { (++) is associative: (x ++ y) ++ z = x ++ (y ++ z) }

decodes〈A × B〉 (encode〈A〉 a ++ (encode〈B〉 b ++ bin))
= { definition of decodes }

let (a ′, bin1) = decodes〈A〉 (encode〈A〉 a ++ (encode〈B〉 b ++ bin))
(b′, bin2) = decodes〈B〉 bin1

in ((a ′, b′), bin2)
= { ex hypothesi }

let (b′, bin2) = decodes〈B〉 (encode〈B〉 b ++ bin)
in ((a, b′), bin2)

= { ex hypothesi }
((a, b), bin)

Generic reasoning complements generic programming in a useful way. The straight-
forward proof above establishes the correctness of the implementation for all types

10 Introduction

T . In fact, conducting a generic proof is often genuinely simpler than conducting
a ‘monotypic’ proof for a particular instance of T . (If you are not convinced, try
to prove the above property for T = Sequ Char by structural induction.)

1.1.2 Size functions

Many list processing functions can be generalized to arbitrary data types. Con-
sider, for instance, the polymorphic function length :: ∀A .List A → Int , which
computes the length of a list. A length or rather a size function can also be de-
fined for binary random-access lists and, in fact, for every so-called container type
(Hoogendijk and de Moor 2000). In general, a size function of type ∀A .T A→ Int
counts the number of values of type A in a given container of type T A.

Ad-hoc programs Calculating the size of a list is easy:

sizeList :: ∀A .List A→ Int
sizeList nil = 0
sizeList (cons a as) = 1 + sizeList as.

Interestingly, we will see later that this definition contains all the information
necessary to turn sizeList into a generic function.

Binary random-access lists are modelled after the binary natural numbers.
Therefore, calculating the length of a random-access list corresponds to converting
a binary number into an integer.

sizeSequ :: ∀A .Sequ A→ Int
sizeSequ endS = 0
sizeSequ (zeroS s) = 2 × sizeSequ s
sizeSequ (oneS a s) = 1 + 2 × sizeSequ s

Since the binary representation of n is dlg (n + 1)e bits long, sizeSequ runs in
logarithmic time. So it is fast, but unfortunately it fails to be modular. Assume,
for the sake of example, that we want to determine the number of characters in
an element of type Sequ (List Char). Using sizeSequ we can count the number
of strings but that does not help. How do we proceed? Now, we could first map
sizeList on Sequ to obtain a sequence of type Sequ Int , which we then sum up. So
for a start we require a mapping function for Sequ:

mapFork :: ∀A1 A2 . (A1 → A2)→ (Fork A1 → Fork A2)
mapFork mapA (fork a1 a2) = fork (mapA a1) (mapA a2)
mapSequ :: ∀A1 A2 . (A1 → A2)→ (Sequ A1 → Sequ A2)
mapSequ mapA endS = endS
mapSequ mapA (zeroS s) = zeroS (mapSequ (mapFork mapA) s)
mapSequ mapA (oneS a s) = oneS (mapA a) (mapSequ (mapFork mapA) s).

Note that both mapFork and mapSequ follow closely the structure of the corre-
sponding type definitions. In fact, we will see later that mapping functions also
enjoy a generic definition (Section 3.2.1).

1.1 Generic programming in a nutshell 11

Summing up a sequence of integers is quite tricky:

sumFork :: Fork Int → Int
sumFork (fork a1 a2) = a1 + a2

sumSequ :: Sequ Int → Int
sumSequ endS = 0
sumSequ (zeroS s) = sumSequ (mapSequ sumFork s)
sumSequ (oneS a s) = a + sumSequ (mapSequ sumFork s).

Consider the last equation of sumSequ where we have to sum up the sequence s
of type Sequ (Fork Int). We proceed roughly as before: first we map sumFork
on Sequ to obtain an element of type Sequ Int which we then recursively sum up.
We can now solve the original problem: sumSequ · mapSequ sizeList counts the
number of characters in an element of type Sequ (List Char).

The above solution is quite involved. Let us pursue an alternative approach.
The recursion scheme of encodeSequ and decodeSequ suggests to parameterize
sizeSequ by a function that calculates the ‘size’ of an element.

countFork :: ∀A . (A→ Int)→ (Fork A→ Int)
countFork countA (fork a1 a2) = countA a1 + countA a2

countSequ :: ∀A . (A→ Int)→ (Sequ A→ Int)
countSequ countA endS = 0
countSequ countA (zeroS s) = countSequ (countFork countA) s
countSequ countA (oneS a s) = countA a + countSequ (countFork countA) s

This style probably looks familiar by now. Consider again the last equation: to sum
up the sequence s of type Sequ (Fork A) we call countSequ (countFork countA).
Note that sizeSequ and countSequ are related by countSequ countA = sumSequ ·
mapSequ countA.

The parameterized version of sizeSequ is quite versatile. If we pass the constant
function k 1 to countSequ we obtain (a linear-time variant of) sizeSequ. Passing
the identity function yields sumSequ:

sizeSequ ′ :: ∀A .Sequ A→ Int
sizeSequ ′ = countSequ (k 1)
sumSequ ′ :: Sequ Int → Int
sumSequ ′ = countSequ id
sizeSequList :: ∀A .Sequ (List A)→ Int
sizeSequList = countSequ sizeList .

It is interesting if not revealing to compare sumSequ and sumSequ ′. Recall that an
element of type Sequ is a sequence of perfect binary leaf trees. The first function
processes the trees bottom-up: in each recursive step the nodes on the lowest level
are summed up (using mapSequ sumFork). By contrast, sumSequ ′ operates in
two stages: while recursing countSequ constructs a tailor-made function of type
Fork i A → Int , which when applied reduces a perfect binary leaf tree in a single
top-down pass. Clearly, the latter algorithm is more efficient than the former.

A generic program The semantics of the size function for a container type T
is crystal clear: it counts the number of elements of type A in a given value of
type T A. This suggests that we should be able to program a generic function
size〈T 〉 :: ∀A .T A→ Int , which works for all T . Note that the type signature of

12 Introduction

size is more involved than the signature of encode since size is indexed by a type
constructor rather than by a type. The type of size ensures that we can determine
the size of a list or a binary random-access list but not the size of a character or
an integer. Now, in order to define size〈T 〉 generically for all T we must explicate
the structure of type constructors such as List , Fork and Sequ.

It turns out that we have to consider only one additional case, the identity
type given by ΛX .X . Here the upper-case lambda denotes abstraction on the
type level. Consequently, the generic size function is uniquely determined by the
following equations.

size〈T 〉 :: ∀A .T A→ Int
size〈ΛX .X 〉 a = 1
size〈ΛX . 1〉 u = 0
size〈ΛX .Char〉 c = 0
size〈ΛX . Int〉 i = 0
size〈ΛX .F X + G X 〉 (inl f) = size〈F 〉 f
size〈ΛX .F X + G X 〉 (inr g) = size〈G〉 g
size〈ΛX .F X × G X 〉 (f , g) = size〈F 〉 f + size〈G〉 g

The type patterns on the left-hand side involve type abstractions since size is
parameterized by a type constructor. Consider, for example, the type pattern
ΛX .F X × G X . The type variables F and G range over type constructors.
The corresponding instance size〈ΛX .F X × G X 〉 :: ∀A .F A × G A → Int can
then be inductively defined in terms of size〈F 〉 :: ∀A .F A → Int and size〈G〉 ::
∀A .G A → Int . Let us consider each equation in turn. A container of type
(ΛX .X) A = A includes exactly only one element of type A; a container of type
(ΛX . 1) A = 1, (ΛX .Char) A = Char or (ΛX . Int) A = Int includes no elements
of type A. To determine the size of a container of type (ΛX .F X + G X) A =
F A + G A we must either calculate the size of a container of type F A or that of
a container of type G A depending on which component of the sum the argument
comes from. Finally, the size of a container of type (ΛX .F X × G X) A = F A ×
G A is given by the sum of the size of the two components.

Note that the sizeList instance provides all the necessary information for defin-
ing the generic size function, since the definition of the list data type, List =
ΛX . 1 + X × List X , involves the identity type, the unit type, a sum and a
product.

The generic definition allows us to determine the size of containers of arbi-
trary types. For instance, size〈ΛA .Sequ (List A)〉 calculates the number of ele-
ments in a sequence of lists. If we specialize this instance we obtain a definition
similar to sizeSequList . Unfortunately, specializing size〈Sequ〉 yields the linear-
time sizeSequ ′ and not the logarithmic sizeSequ. In general, a ‘structure-strict’,
generic function has at least a linear running time. So we cannot reasonably
expect to achieve the efficiency of a handcrafted implementation that exploits
data-structural invariants. However, we will see later that we can derive sizeSequ
from the generic definition in a systematic way (Section 4.1.2).

Ad-hoc versus generic programs Giving ad-hoc definitions of functions like
encode, decodes and size is sometimes simple and sometimes involving. While the
generic definition is slightly more abstract, it is also to a high degree inevitable.
It is this feature that makes generic programming light and sweet. Further still,
the generic programmer need not deal with type abstraction and type recursion.
Genericity provides these cases ‘for free’.

1.2 Overview 13

1.2 Overview

This thesis shows how to program and reason generically. We look at several
examples of generic programs and proofs and describe an extension to Haskell
that supports generic programming.

Chapter 2 provides the necessary background for reading this thesis. We sketch
Haskell’s type and class system and introduce the simply typed and the polymor-
phic λ-calculus. The polymorphic λ-calculus is used as the formal basis for the
generic programming extension.

Chapter 3 shows how to define generic values and explains how to specialize a
generic value to concrete instances of data types. We consider in increasing level
of difficulty: values such as encode that are indexed by types, values such as size
that are indexed by type constructors and finally values that are indexed by type
constructors of arbitrary kinds. The specialization is such that neither run-time
passing of types nor case analysis on types is required. This chapter is based on
the papers “A new approach to generic functional programming” (Hinze 2000e)
and “Polytypic values possess polykinded types” (Hinze 2000g).

Chapter 4 which is concerned with generic reasoning introduces two generic
proof methods. The first method is a variant of fixed point induction. It can
also be used constructively to derive a generic program from its specification. The
second method builds on so-called logical relations. This chapter is based on the
papers “Polytypic programming with ease” (Hinze 2000f) and “Polytypic values
possess polykinded types” (Hinze 2000g).

Chapter 5 presents several examples of generic functions and associated generic
properties. In particular, we discuss generic implementations of dictionaries and
memo tables based on generalized tries. Generalized tries make a particularly
interesting application of generic programming since they can be modelled as a
type-indexed data type. This chapter is based on the papers “Generalizing gener-
alized tries” (Hinze 2000b) and “Memo functions, polytypically!” (Hinze 2000d).

Chapter 6 describes an extension to Haskell that supports generic program-
ming. We discuss the implementation and identify several extensions that are
useful in a practical setting. This chapter is based on the papers “A generic pro-
gramming extension for Haskell” (Hinze 1999) and “Derivable type classes” (Hinze
and Peyton Jones 2000).

14 Introduction

Chapter 2

Background

This chapter reviews background material that is needed in subsequent chapters.
All of the example programs in this thesis will be given in the functional pro-

gramming language Haskell 98 (Peyton Jones and Hughes 1999). I generally as-
sume a passing familiarity with Haskell, its syntax and semantics. There are
several excellent textbooks on Haskell, which the reader may wish to consult. I
heartily recommend (Bird 1998), (Thompson 1999) and (Hudak 2000). However,
since types play a central rôle in this thesis, I will discuss Haskell’s type system
(Section 2.1) and its class system (Section 2.2) in some detail.

In the introduction we have already seen that generic programs are defined
by giving cases for the primitive type constructors ‘1’, ‘+’, ‘×’ etc. Section 2.3
provides a more abstract view of these type constructors and introduces a set of
combinators that we will often use to define generic programs in a point-free style.

While we employ Haskell for the practical part, the language of choice for the
theoretical part is the polymorphic λ-calculus. To prepare the ground we first
introduce the simply typed λ-calculus in Section 2.4 and then the polymorphic
λ-calculus in Section 2.5.

2.1 The type system of Haskell

Haskell offers one basic construct for defining new types: a so-called data type
declaration. In general, a data declaration has the following form:

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn .

This definition simultaneously introduces a new type constructor B and n value
constructors k1, . . . , kn , whose types are given by

kj :: ∀A1 . . . Am .Tj1 → · · · → Tjmj
→ B A1 . . . Am .

The type parameters A1, . . . , Am must be distinct and may appear on the right-
hand side of the declaration. If m>0, then B is called a parameterized type. Data
type declarations can be recursive, that is, D may also appear on the right-hand
side. In general, data types are defined by a system of mutually recursive data
type declarations.

The following sections provide numerous examples of data type declarations
organized in increasing order of difficulty.

Remark 2.1 Haskell also offers type synonym declarations of the form

type B A1 . . . Am = T

and data type renamings of the form

newtype B A1 . . . Am = k T .

16 Background

A type synonym introduces a type that is equivalent to the type on the right-hand
side, that is, B A1 . . . Am merely serves as an abbreviation for T . A data type
renaming introduces a new distinct type whose representation is the same as the
type on the right-hand side. The constructor k is used to coerce between the new
and the old type. ut

2.1.1 Finite types

Data type declarations subsume enumerated types. In this special case, we only
have nullary value constructors, that is, m1 = · · · = mn = 0. The following
declaration defines a simple enumerated type, the type of truth values.

data Bool = false | true

Data type declarations also subsume record types. In this case, we have only
one value constructor, that is, n = 1.

data Fork A = fork A A

An element of Fork A is a pair whose two components both have type A. Haskell
assigns a kind to each type constructor. One can think of a kind as the ‘type’ of a
type constructor. The type constructor Fork defined above has kind ? → ?. The
‘?’ kind represents nullary constructors like Char , Int or Bool . The kind T → U
represents type constructors that map type constructors of kind T to those of kind
U. Note that the term ‘type’ is sometimes used for nullary type constructors.

The following types can be used to represent ‘optional values’.

data Maybe A = nothing | just A
data A ×• B = null | pair A B

An element of type Maybe A is an ‘optional A’: it is either of the form nothing
or of the form just a where a is of type A. Elements of type A ×• B are called
optional pairs. The type constructor Maybe has kind ? → ? and (×•) has kind
?→ (?→ ?). Perhaps surprisingly, binary type constructors like (×•) are, in fact,
curried in Haskell.

2.1.2 Regular types

A simple recursive data type is the type of natural numbers.

data Nat = zero | succ Nat

The number 6, for instance, is given by

succ (succ (succ (succ (succ (succ zero))))).

The following alternative definition of the natural numbers is based on the
binary number system.

data BNat = endB | zeroB BNat | oneB BNat

Using this representation the number 6 = (011)2 reads (the bits are written from
least significant to most significant):

zeroB (oneB (oneB endB)).

2.1 The type system of Haskell 17

The most popular data type is without doubt the type of parametric lists:

data List A = nil | cons A (List A).

The empty list is denoted nil ; cons a x denotes the list whose first element is
a and whose remaining elements are those of x . The list of the first six prime
numbers, for instance, is given by

cons 2 (cons 3 (cons 5 (cons 7 (cons 11 (cons 13 nil))))).

Haskell provides special syntax for lists: List A is written [A] (the type constructor
List in isolation is written ‘[]’), nil and cons a x are written [] and a : x , respec-
tively. We already made use of this notation in the introduction. The operator for
list concatenation, also employed in the introduction, is defined

(++) :: ∀A . [A]→ [A]→ [A]
[] ++ y = y
(a : x) ++ y = a : (x ++ y).

The function (++) has a polymorphic type: [A] → [A] → [A] is a legal type
for all instances of the type variable A. Recall that we write polymorphic types
using explicit universal quantifiers, though this is not legal Haskell 98 syntax.
In Haskell 98 type variables are implicitly quantified: the type signature of list
concatenation is just (++) :: [A]→ [A]→ [A].

In the sequel we require the function wrap that turns an element into a singleton
list:

wrap :: ∀A .A→ [A]
wrap a = [a].

The following definition introduces binary external search trees.

data Tree A B = leaf A | node (Tree A B) B (Tree A B)

We distinguish between external nodes of the form leaf a and internal nodes of
the form node l b r . The former are labelled with elements of type A while the
latter are labelled with elements of type B . Here is an example element of type
Tree Bool Int :

node (leaf true) 7 (node (leaf true) 9 (leaf false)).

The following data type declaration captures multiway branching trees, also
known as rose trees (Bird 1998).

data Rose A = branch A (List (Rose A))

A node is labelled with an element of type A and has a list of subtrees. An example
element of type Rose Int is:

branch 2 (cons (branch 3 nil)
(cons (branch 5 nil)
(cons (branch 7 (cons (branch 11 nil)

(cons (branch 13 nil) nil))) nil))).

The type Rose falls back on the type List . Instead, we may introduce Rose using
two mutually recursive data type declarations:

data Rose ′ A = branch ′ A (Forest A)
data Forest A = nilF | consF (Rose ′ A) (Forest A).

18 Background

Now Rose ′ depends on Forest and vice versa.
The type parameters of a data type may range over type constructors of ar-

bitrary kinds.1 The following generalization of rose trees, that abstracts over the
List data type, illustrates this feature.

data GRose F A = gbranch A (F (GRose F A))

A slight variant of this definition has been used by Okasaki (1998) to extend an
implementation of priority queues with an efficient merge operation. The type
constructor GRose has kind (? → ?) → (? → ?), that is, GRose has a so-called
second-order kind where the order of a kind is given by

order(?) = 0
order(T→ U) = max{1 + order(T), order(U)}.

Applying GRose to List yields the type of rose trees.
The following data type declaration introduces a fixed point operator on the

level of types. This definition appears, for instance, in (Meijer and Hutton 1995)
where it is employed to give a generic definition of so-called cata- and anamor-
phisms.

newtype Fix F = in (F (Fix F))
data ListBase A B = nilL | consL A B

The kinds of these type constructors are Fix :: (? → ?) → ? and ListBase :: ? →
(?→ ?). Using Fix and ListBase the data type of parametric lists can alternatively
be defined by

type List A = Fix (ListBase A).

Here is the list of the first six prime numbers written as an element of type
Fix (ListBase Int):

in (consL 2 (in (consL 3 (in (consL 5
(in (consL 7 (in (consL 11 (in (consL 13 (in nilL)))))))))))).

2.1.3 Nested types

A regular or uniform data type is a parameterized type whose definition does
not involve a change of the type parameter(s). The data types of the previous
section are without exception regular types. This section is concerned with non-
regular or nested types (Bird and Meertens 1998). We have already remarked
that nested data types are practically important since they can capture data-
structural invariants in a way that regular data types cannot. The following data
type declaration, for instance, defines perfectly balanced, binary leaf trees (Hinze
2000a)—perfect trees for short.

data Perfect A = zeroP A | succP (Perfect (Fork A))

This equation can be seen as a bottom-up definition of perfect trees: a perfect tree
is either a singleton tree or a perfect tree that contains pairs of elements. Here is
a perfect tree of type Perfect Int :

succP (succP (succP (zeroP (fork (fork (fork 2 3)
(fork 5 7))

(fork (fork 11 13)
(fork 17 19)))))).

1Note that Miranda (trademark of Research Software Ltd), Standard ML, and previous ver-
sions of Haskell (1.2 and before) only have first-order kinded data types.

2.1 The type system of Haskell 19

Note that the height of the perfect tree is encoded in the prefix of succP and zeroP
constructors.

In the introduction we have already encountered Okasaki’s type of binary
random-access lists (1998).

data Sequ A = endS
| zeroS (Sequ (Fork A))
| oneS A (Sequ (Fork A))

Recall that this definition captures the invariant that binary random-access lists
are sequences of perfect trees stored in increasing order of height. Using this
representation the sequence of the first six prime numbers reads:

zeroS (oneS (fork 2 3) (oneS (fork (fork 5 7) (fork 11 13)) endS)).

Remark 2.2 Binary random-access lists are modelled after the binary number
system (while ordinary lists are modelled after the unary representation of the
natural numbers). For instance, ‘consing’ an element to a random-access list cor-
responds to incrementing a binary number:

incB :: BNat → BNat
incB endB = oneB endB
incB (zeroB b) = oneB b
incB (oneB b) = zeroB (incB b)
consS :: ∀A .A→ Sequ A→ Sequ A
consS a endS = oneS a endS
consS a (zeroS s) = oneS a s
consS a (oneS a ′ s) = zeroS (consS (fork a a ′) s).

For a more in-depth treatment of the correspondence between number systems
and container types the reader is referred to (Okasaki 1998; Hinze 2000c). ut

The types Perfect and Sequ are examples of so-called linear nests: the param-
eters of the recursive calls do not themselves contain occurrences of the defined
type. A non-linear nest is the following type taken from (Bird and Meertens 1998):

data Bush A = nilB | consB A (Bush (Bush A)).

An element of type Bush A resembles an ordinary list except that the i -th element
hast type Bushi A rather than A. Here is an example element of type Bush Int :

consB 1 (consB (consB 2 nilB)
(consB (consB (consB 3 nilB) nilB) nilB)).

Perhaps surprisingly, we will get to know a practical application of this data type
in Section 5.5, which deals with so-called generalized tries.

Finally, let us take a look at some higher-order nests where the type parameter
that is instantiated in a recursive call ranges over type constructors rather than
types.

data FMapFork FA V = trieFork (FA (FA V))
data FMapSequ FA V = nullSequ

| trieSequ (Maybe V)
(FMapSequ (FMapFork FA) V)
(FA (FMapSequ (FMapFork FA) V))

20 Background

The types FMapFork ,FMapSequ :: (? → ?) → (? → ?) represent the generalized
tries for Fork and Sequ. These types will be explained in Section 5.5. Note
that the type constructor FMapFork is the type-level counterpart of the function
twice f x = f (f x), which applies a given function twice to a given value.

Here is another example of a nested data type of second-order kind:

type Square A = Square ′ Nil A
data Square ′ F A = zeroM (F (F A)) | succM (Square ′ (Cons F) A)
data Nil A = nilN
data Cons F A = consC A (F A).

The type constructors have kinds Square,Nil :: ? → ? and Square ′,Cons :: (? →
?) → (? → ?). The type Square implements square n × n matrices (Okasaki
1999; Hinze 2000c). In contrast to common representations, such as lists of lists,
the ‘squareness’ constraint is automatically enforced by the type system. As an
example, here is a square matrix of size 3:

succM (succM (succM (zeroM
(consC (consC a11 (consC a12 (consC a13 nilN)))
(consC (consC a21 (consC a22 (consC a23 nilN)))
(consC (consC a31 (consC a32 (consC a33 nilN)))
(nilN))))))).

Note that the dimension of the matrix is encoded in the prefix of succM and zeroM
constructors.

2.1.4 Functional types

Data types may also contain functional types as the following declaration taken
from (Hallgren and Carlsson 1995) illustrates.

data SP A B = put B (SP A B) | get (A→ SP A B)

The name SP stands for ‘stream processor’. Think of an element of type SP A B
as a process that receives messages of type A and sends messages of type B . Here
is a simple stream processor that resends each ingoing message twice.

double :: ∀A .SP A A
double = get (λa → put a (put a double))

As another example, consider the operator (≫) that serially composes two stream
processors.

(≫) :: ∀A B C .SP A B → SP B C → SP A C
sp1 ≫ put c sp2 = put c (sp1 ≫ sp2)
put b sp1 ≫ get fsp2 = sp1 ≫ fsp2 b
get fsp1 ≫ sp2 = get (λa → fsp1 a ≫ sp2)

For instance, double ≫ double is a stream processor that resends each ingoing
message four times.

2.2 The class system of Haskell 21

2.2 The class system of Haskell

2.2.1 Type classes

The major innovation of Haskell is its support for overloading, based on type
classes. For example, the Haskell Prelude defines the class Eq :

class Eq A where
(), (6) :: A→ A→ Bool
a1 6 a2 = not (a1 a2)
a1 a2 = not (a1 6 a2).

This class declaration defines two overloaded top-level functions, called methods,
whose types are

(), (6) :: ∀A . (Eq A)⇒ A→ A→ Bool .

Before we can use () on values of, say Int , we must explain how to take equality
over Int values:

instance Eq Int where
() = equalInt .

Here we suppose that equalInt :: Int → Int → Bool is provided from somewhere.
The instance declaration makes Int an element of the type class Eq and says ‘the
() function at type Int is implemented by equalInt ’. The (6) method need not
be explicitly defined since the class definition provides a default declaration for
(6): it is simply the negation of the code for (). In fact, the class declaration
specifies default methods for both () and (6). So you can either give a definition
for (), or a definition for (6), or both. However, if you specify neither, then you
will get an infinite loop.

How can we take equality of lists of values? Two lists are equal if they have
the same length and corresponding elements are equal. Hence, we require equality
over the element type:

instance (Eq A)⇒ Eq (List A) where
nil nil = true
nil cons a2 x2 = false
cons a1 x1 nil = false
cons a1 x1 cons a2 x2 = a1 a2 ∧ x1 x2.

This instance declaration says ‘if A is an instance of Eq , then List A is an instance
of Eq , as well’.

Though type classes bear a strong resemblance to generic definitions, they do
not support generic programming. A type class declaration corresponds roughly
to the type signature of a generic definition—or rather, to a collection of type sig-
natures. Instance declarations are related to the type cases of a generic definition.
The crucial difference is that a generic definition works for all types, whereas in-
stance declarations must be explicitly provided by the programmer for each newly
defined data type. There is, however, one exception to this rule. For a hand-
ful of built-in classes Haskell provides special support, the so-called ‘deriving’
mechanism. For instance, if you define

data List A = nil | cons A (List A) deriving (Eq)

22 Background

then Haskell generates the ‘obvious’ code for equality. What ‘obvious’ means is
specified informally in an Appendix of the language definition (Peyton Jones and
Hughes 1999).

Remark 2.3 The idea suggests itself to use generic definitions for specifying de-
fault methods so that the programmer can define her own derivable classes. This
idea is pursued further in Hinze and Peyton Jones (2000). ut

2.2.2 Constructor classes

Type classes may also abstract over type constructors, in which case they are
called constructor classes (Jones 1995). For instance, the Haskell Prelude defines
the class Functor :

class Functor F where
fmap :: ∀A B . (A→ B)→ (F A→ F B).

The method fmap is the so-called mapping function for the data type F . The
mapping function applies a given function to each element of type A in a given
container of type F A. We have already encountered the mapping functions of the
data types List , Fork and Sequ in the introduction. Here is the mapping function
of List rephrased as an instance of Functor :

instance Functor List where
fmap f nil = nil
fmap f (cons a as) = cons (f a) (fmap f as).

The term ‘functor’ stems from a branch of mathematics called category theory,
which is concerned with the study of algebraic structure. I will say more about
category theory in Section 2.3. For the moment let me only remark that every
instance of Functor should satisfy the so-called functor laws:

fmap id = id (functor law)
fmap (f · g) = fmap f · fmap g . ()

That is, fmap respects identity and composition.
Another important example of a constructor class is the Monad class. Again,

monads have their roots in category theory. In the early nineties Moggi proposed
them as a means to structure denotational semantics (1990, 1991). Wadler popu-
larized Moggi’s idea in the functional programming community by using monads to
structure functional programs (1990, 1992, 1995). In Haskell monads are captured
by the following class definition.

class Monad M where
return :: ∀A .A→ M A
(>>=) :: ∀A B .M A→ (A→ M B)→ M B
(>>) :: ∀A B .M A→ M B → M B
fail :: ∀A .String → M A
m >> n = m >>= k n
fail s = error s

The essential idea of monads is to distinguish between computations and values.
This distinction is reflected on the type level: an element of M A represents

2.2 The class system of Haskell 23

a computation that yields a value of type A. A computation may involve, for
instance, state, exceptions, or nondeterminism.

The trivial computation that immediately returns the value a is denoted by
return a. The operator (>>=), commonly called ‘bind’, combines two computations:
m >>= k applies k to the result of the computation m. The derived operation
(>>) provides a handy shortcut if one is not interested in the result of the first
computation. The operation fail is used for signaling error conditions. Note that
fail does not stem from the mathematical concept of a monad, but has been
added to the monad class for pragmatic reasons, see (Peyton Jones and Hughes
1999, Section 3.14).

The operations are required to satisfy the following so-called monad laws.

return a >>= k = k a (monad law)
m >>= return = m ()
(m >>= k1)>>= k2 = m >>= (λa → k1 a >>= k2) ()

Roughly speaking, return is the unit of (>>=) and (>>=) is associative. The
monoidal structure becomes more apparent if the laws are rephrased in terms
of the monadic composition, see below.

Several data types have a computational content. For instance, the type Maybe
can be used to model exceptions: just a represents a ‘normal’ or successful com-
putation yielding the value a while nothing represents an exceptional or failing
computation. The following instance declaration shows how to define return and
(>>=) for Maybe.

instance Monad Maybe where
return = just
nothing >>= k = nothing
just a >>= k = k a
fail s = nothing

Thus, m >>= k can be seen as a strict postfix application: if m is an exception, the
exception is propagated; if m succeeds, then k is applied to the resulting value.

Another well-known application of monads is to model programs that use an
internal state. Stateful computations can be represented by functions, so-called
state transformers, that map an initial state to some value paired with the final
state.

newtype StateT S A = StateT (S → (A,S))
applyST :: ∀S A .StateT S A→ S → (A,S)
applyST (StateT st) s = st s
instance Monad (StateT S) where

return a = StateT (λs → (a, s))
m >>= k = StateT (λs → let (a, s ′) = applyST m s in applyST (k a) s ′)

We will apply state monads in Section 5.2.2.
Despite appearances, Functor and Monad are closely related. Though this is

not reflected in the class declarations, every monad is also a functor. The following
definition shows how to define the mapping function in terms of bind and return.

mmap :: ∀M A B . (Monad M)⇒ (A→ B)→ (M A→ M B)
mmap f m = m >>= (return · f)

So, mmap f m applies f to the result of the computation m.

24 Background

A procedure is a function of type A→ M B that maps values to computations.
The following operator, called monadic composition, composes two procedures.
Contrary to the usual composition it also takes care of computational effects.

(3) :: ∀M A B C . (Monad M)⇒ (A→ M B)→ (B → M C)→ (A→ M C)
m1 3 m2 = λa → m1 a >>= m2

The monad laws are easier to remember if we rephrase them in terms of the
monadic composition:

return 3 k = k (monad law)
k 3 return = k ()
(k1 3 k1) 3 k2 = k1 3 (k1 3 k2). ()

2.3 Category theory

We have seen in the introduction that generic programs are defined by giving
cases for the unit type ‘1’, for sums ‘+’ and for products ‘×’ (and possibly for
additional type constructors such as Char or Int). This section provides a more
abstract account of these type constructors. In particular, we will introduce a
set of combinators and associated laws that has proven its worth in functional
programming, reasoning and program derivation.

The structuring principles underlying the combinators are taken from a branch
of mathematics known as category theory. Broadly speaking, category theory is
concerned with the study of algebraic structure. The following overview, which
summarizes the main definitions, has been compiled from a number of sources,
most notably, (Poigné 1992; Bird and de Moor 1997; Backhouse, Jansson, Jeuring,
and Meertens 1999; Taylor 1999). The following treatment is rather dense. For
a more leisurely exposition the reader is referred to the textbook by Bird and de
Moor (1997) or to the excellent tutorial on generic programming by Backhouse,
Jansson, Jeuring, and Meertens (1999).

2.3.1 Categories, functors and natural transformations

A category C consists of a class of objects and a class of arrows. Every arrow f
is assigned two objects, a source and a target, written f : A→ B . For each object
A there is an identity arrow idA : A → A and for each pair of arrows f : A → B
and g : B → C there is a composed arrow g · f : A→ C . Identity and composition
must satisfy f · idA = f = idA · f and (f · g) · h = f · (g · h). The opposite category
of C, denoted Cop , has the same objects and arrows as C , but the source and the
target of each arrow are interchanged.

The syntax of a functional programming language such as Haskell can be seen
as a category where the objects are types (or rather, equivalence classes of types)
and the arrows are terms of the appropriate types (or rather, equivalence classes
of terms). Identity and composition are then given by

id :: ∀A .A→ A
id a = a
(·) :: ∀A B C . (B → C)→ (A→ B)→ (A→ C)
(f · g) a = f (g a).

2.3 Category theory 25

Other examples of categories are Set, the category of sets and total functions, or
Cpo, the category of complete partial orders and continuous functions, see Sec-
tion 2.3.8.

A functor F :C→ D is a structure-preserving mapping between categories. It
consists of an object part that maps objects of C to objects of D and an arrow
part that maps arrows of C to arrows of D such that F id = id and F (f · g) =
F f · F g . A functor F : Cop → D or F : C → D

op is called a contravariant
functor from C to D (the usual case being styled covariant). In Haskell, a functor
is given by a unary type constructor F ::?→ ? and an associated mapping function
mapF :: ∀A B . (A→ B)→ (F A→ F B).

A natural transformation α : F → G : C → D is a mapping between functors
F ,G : C→ D. It assigns an arrow αA :: F A→ G A, called a component, to each
object A of C such that

G h · αA = αB · F h,

for all h : A → B . This property is called the naturality condition. In Haskell, a
natural transformation is a polymorphic function. For instance, the polymorphic
function wrap :: ∀A .A → [A] can be seen as a natural transformation between
Id and [] (Haskell’s notation for List). The associated naturality condition is
map h · wrap = wrap · h (where map is the mapping function of []).

2.3.2 Initial objects

An object ‘0’ is called initial if for each object A there is exactly one arrow,
written ¡A, of type 0→ A. The uniqueness of ¡A can be expressed as the following
equivalence

h = ¡A ≡ h : 0→ A,

which is known as the universal property of ‘0’. In Set the initial object is the
empty set. In Haskell ‘0’ can be defined using a nullary sum (at least this was
possible in Haskell 1.4; Haskell 98 abolished nullary sums):

data 0 =
¡ :: ∀A . 0→ A
¡ n = case n of { }.

Remark 2.4 Let us assume for the moment that the denotations of Haskell types
and Haskell functions live in Set so that the above declaration defines the empty
set. Section 2.3.8 is devoted to finding a suitable category for Haskell. ut

2.3.3 Terminal objects

An object ‘1’ is called terminal if for each object A there is exactly one arrow,
written !A, of type A→ 1:

h = !A ≡ h : A→ 1.

In Set every one-element set is terminal (as for all universal constructions terminal
objects are unique up to unique isomorphism). In Haskell ‘1’ can be defined by

data 1 = ()
! :: ∀A .A→ 1
! a = ().

26 Background

Remark 2.5 Initial and terminal objects are examples of dual concepts: an object
that is initial in the category C is terminal in the category Cop . ut

2.3.4 Products

A product of two objects A and B consists of an object, written A × B , and two
arrows outl : A × B → A and outr : A × B → B . Products are required to satisfy
the following universal property: for each pair of arrows f : C → A and g : C → B
there exists an arrow, written f M g : C → A × B , such that

h = f M g ≡ outl · h = f ∩ outr · h = g ,

for all h : C → A × B . The universal property of products states that f M g is
the unique arrow satisfying the equations on the right. The arrows outl and outr
are sometimes called projections and the combinator (M) is known as the ‘split’
operator. In Set products are given by pairing.

If a category has products for each pair of objects, ‘×’ can be made into a
so-called bifunctor whose associated mapping function is given by:

f × g = (f · outl) M (g · outr).

The bifunctor laws and several other laws are implied by the universal property:

outl · (f M g) = f (M-computation law)
outr · (f M g) = g ()
outl · (f × g) = f · outl (×-computation law)
outr · (f × g) = g · outr ()
outl M outr = id (reflection law)
(f M g) · h = (f · h) M (g · h) (M-fusion law)
id × id = id (bifunctor law)
(f × g) · (h × k) = (f · h) × (g · k) ()
(f × g) · (h M k) = (f · h) M (g · k). (×-M-fusion law)

In Haskell products can be defined as follows:

data A × B = (A,B)
outl :: ∀A B .A × B → A
outl (a, b) = a
outr :: ∀A B .A × B → B
outr (a, b) = b
(M) :: ∀A B C . (C → A)→ (C → B)→ (C → A × B)
(f M g) c = (f c, g c)
(×) :: ∀A1 A2 B1 B2 . (A1 → A2)→ (B1 → B2)→ (A1 × B1 → A2 × B2)
(f × g) (a, b) = (f a, g b).

2.3.5 Coproducts

Coproducts are dual to products.
A coproduct of two objects A and B consists of an object, written A + B , and

two arrows inl : A → A + B and inr : B → A + B . Coproducts are required to

2.3 Category theory 27

satisfy the following universal property: for each pair of arrows f : A → C and
g : B → C there exists an arrow, written f O g : A + B → C , such that

h = f O g ≡ h · inl = f ∩ h · inr = g ,

for all h : A + B → C . The universal property of coproducts states that f O g is
the unique arrow satisfying the equations on the right. The arrows inl and inr
are sometimes called injections and the combinator (O) is known as the ‘case’ or
‘junk’ operator. In Set coproducts are given by disjoint unions.

If a category has coproducts for each pair of objects, ‘+’ can also be made into
a bifunctor whose associated mapping function is:

f + g = (inl · f) O (inr · g).

The universal property implies the bifunctor laws and several other laws:

(f O g) · inl = f (O-computation law)
(f O g) · inr = g ()
(f + g) · inl = inl · f (+-computation law)
(f + g) · inr = inr · g ()
inl O inr = id (reflection law)
h · (f O g) = (h · f) O (h · g) (O-fusion law)
id + id = id (bifunctor law)
(f + g) · (h + k) = (f · h) + (g · k) ()
(f O g) · (h + k) = (f · h) O (g · k) (O-+-fusion law)

In Haskell coproducts can be defined as follows:

data A + B = inl A | inr B
(O) :: ∀A B C . (A→ C)→ (B → C)→ (A + B → C)
(f O g) (inl a) = f a
(f O g) (inr b) = g b
(+) :: ∀A1 A2 B1 B2 . (A1 → A2)→ (B1 → B2)→ (A1 + B1 → A2 + B2)
(f + g) (inl a) = inl (f a)
(f + g) (inr b) = inr (g b).

2.3.6 Exponentials

Assume that we have a category with a terminal object and products. An exponent
of two objects A and B is an object, written BA, and an arrow eval :BA × A→ B .
Exponents are required to satisfy the following universal property: for each arrow
f : A × B → C there exists an arrow, written curry f : A→ C B , such that

g = curry f ≡ eval · (g × id) = f ,

for all g :A→ C B . If a category has a terminal object, products, and for every pair
of objects the exponential BA exists, the category is said to be cartesian closed.
In Set, which is cartesian closed, exponents are sets of total functions.

Remark 2.6 An alternative characterization of exponentials is based on the iso-
morphism A × B → C ∼= A → C B , which allows us to turn a binary function

28 Background

f :A × B → C into a unary, higher-order function curry f :A→ C B and conversely
a function g : A → C B into a function uncurry g : A × B → C . The universal
property reads:

g = curry f ≡ uncurry g = f .

The arrows eval and uncurry are interdefinable: uncurry g = eval · (g × id) and
eval = uncurry id . ut

Contrary to products and coproducts, (−)(−) cannot be made into a bifunctor.
Rather, (−)(−) serves as an example of a so-called difunctor. A difunctor is con-
travariant in its first argument and covariant in its second. Its mapping function
is given by

g f = curry (g · eval · (id × f)).

As usual, the universal property implies the difunctor laws and several others:

eval · (curry f × id) = f (computation law)
curry (eval · (g × id)) = g ()
curry eval = id (reflection law)
curry f · g = curry (f · (g × id)) (fusion law)
id id = id (difunctor law)
g f · kh = (g · k)(h·f) ()

In Haskell exponents are simply function spaces.

type BA = A→ B
curry :: ∀A B C . (A × B → C)→ (A→ C B)
curry f a b = f (a, b)
uncurry :: ∀A B C . (A→ C B)→ (A × B → C)
uncurry g (a, b) = g a b
eval :: ∀A B .BA × A→ B
eval (f , a) = f a

(−)(−) :: ∀A1 A2 B1 B2 . (A2 → A1)→ (B1 → B2)→ (BA1
1 → BA2

2)
g f = λh → g · h · f

Note that the pointwise definition of the mapping function is much simpler than
the point-free definition in terms of eval and curry .

2.3.7 Isomorphisms

An isomorphism is an arrow i : A → B that has an inverse, written i−1 : B → A,
such that i−1 · i = idA and i · i−1 = idB . If there exists an isomorphism i :A→ B ,
A and B are said to be isomorphic, and we write i : A ∼= B : i−1 or simply A ∼= B .

A natural transformation is called a natural isomorphism if its components are
isomorphisms. For instance, the natural transformation swap : A × B → B × A =
outr M outl is an isomorphism with associated naturality property:

(g × f) · swap = swap · (f × g).

2.3 Category theory 29

In every category with a terminal object and products there exist the following
natural isomorphisms:

unit : 1 × A ∼= A : ununit
swap : A × B ∼= B × A : swap

assocl : A × (B × C) ∼= (A × B) × C : assocr .

Dually, in every category with an initial object and coproducts there exist the
following natural isomorphisms:

zero : 0 + A ∼= A : unzero
mirror : A + B ∼= B + A : mirror

A + (B + C) ∼= (A + B) + C .

A category with products and coproducts is called distributive if there exist natural
isomorphisms:

0 × A ∼= 0
distl : (B + C) × A ∼= (B × A) + (C × A) : undistl .

The function distl distributes ‘×’ leftward through ‘+’. Note that any cartesian
closed category that has coproducts is distributive.

Finally, in a cartesian closed category there exist natural isomorphisms:

A0 ∼= 1
A1 ∼= A

AB+C ∼= AB × AC

AB×C ∼= (AB)C .

These isomorphisms are also known as the laws of exponentials.
Here are some of the isomorphisms programmed in Haskell.

unit :: ∀A . 1 × A→ A
unit ((), a) = a
ununit :: ∀A .A→ 1 × A
ununit a = ((), a)
swap :: ∀A B .A × B → B × A
swap (a, b) = (b, a)
assocl :: ∀A B C .A × (B × C)→ (A × B) × C
assocl (a, (b, c)) = ((a, b), c)
assocr :: ∀A B C . (A × B) × C → A × (B × C)
assocr ((a, b), c) = (a, (b, c))
distl :: ∀A B C . (A + B) × C → (A × C) + (B × C)
distl (inl a, c) = inl (a, c)
distl (inr b, c) = inr (b, c)
undistl :: ∀A B C . (A × C) + (B × C)→ (A + B) × C
undistl (inl (a, c)) = (inl a, c)
undistl (inr (b, c)) = (inr b, c)

2.3.8 Fixed points

In the previous sections we have shown how to implement each of the categorical
constructions in Haskell. We tacitly assumed that we are working in the category

30 Background

Set, the category of sets and total functions. Unfortunately, full Haskell cannot
be given a semantics in Set since Haskell provides unbounded recursion. It is a
lamentable fact that cartesian closure, coproducts and fixed points cannot coexist,
see (Huwig and Poigné 1990). A category has fixed points if for every object A
there is a fixed point combinator fix A : AA → A. A cartesian-closed category that
has coproducts and fixed points is a preorder, that is, A ∼= 1 for every object A.

The usual resort is to work with complete partial orders and continuous func-
tions instead of sets and total functions. Recall that a partially ordered set is
complete if every directed subset has a least upper bound; it is pointed if it has
a least element. A function is continuous if it preserves least upper bounds; it is
strict if it preserves the least element. Let D be a complete, pointed partial order
and let ϕ : D→ D be a continuous function. The fixed point theorem then shows
that

⊔
{ϕn(⊥) | n ∈ N} is the least fixed point of ϕ.

Now, sacrificing one of the three properties ‘cartesian closure’, ‘has coproducts’,
or ‘has fixed points’ we obtain one of the following three categories:
Cpo, the category of complete partial orders and continuous functions: it has

categorical products (the cartesian product ‘×’); it is cartesian closed; it has cat-
egorical coproducts (the disjoint union ‘]’); ∅ is the initial object; {⊥} is the
terminal object; it has fixed points for every pointed object (however, if D is not
pointed, then a continuous function ϕ : D→ D may not have a fixed point).
Cppo, the category of complete, pointed partial orders and continuous functions:

it has categorical products (the cartesian product ‘×’); it is cartesian closed; it
has no coproducts and no initial object; {⊥} is the terminal object; it has fixed
points on every object.
Cpo⊥, the category of complete, pointed partial orders and strict, continuous

functions: it has products (the cartesian product ‘×’), but it is not cartesian
closed; it is, however, monoidally closed (the smash product ‘⊗’ and the space
‘◦→’ of strict continuous functions form a monoidal closure2); it has categorical
coproducts (the coalesced sum ‘⊕’, see below); {⊥} is both initial and terminal.

2.3.9 A semantics for data declarations

Each of the three categories listed in the previous section can be used to give a
semantics for Haskell. For instance, Launchbury and Paterson (1996) show how to
interpret Haskell in Cpo by restricting the fixed point operator to pointed objects.
The last category, Cpo⊥, is particularly attractive, since it allows to define a precise
semantics for Haskell’s data construct (including strictness annotations). To this
end let us introduce three constructions on partially ordered sets: lifts, coalesced
sums (or amalgated sums) and smash products (or strict products):

D⊥ = {(0, δ) | δ} ∪ {⊥}
D⊕ E = {(0, δ) | δ ∈ D \ {⊥}} ∪ {(1, ε) | ε ∈ E \ {⊥}} ∪ {⊥}
D⊗ E = {(δ, ε) | δ ∈ D \ {⊥}, ε ∈ E \ {⊥}} ∪ {⊥}.

Given these constructions the right-hand side of the data type declaration

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn

is interpreted by

((D11)⊥ ⊗ · · · ⊗ (D1m1)⊥)⊕ · · · ⊕ ((Dn1)⊥ ⊗ · · · ⊗ (Dnmn)⊥)
2Monoidal closure is similar to cartesian closure except that the product (here, the smash

product) is not a categorical product but a tensor product (MacLane 1998).

2.4 The simply typed λ-calculus 31

where Dij is the interpretation of Tij (if the type Tij has a strictness flag ‘!’, then
Dij is not lifted). Since 0⊥⊕D ∼= D and 1⊥⊗D ∼= D (where 0 = ∅ and 1 = {⊥}),
we set D1 ⊕ · · · ⊕Dn = 0⊥ and D1 ⊗ · · · ⊗Dn = 1⊥ for n = 0. Consequently, the
data type declarations (corresponding to ‘0’, ‘1’, ‘+’, ‘×’ and ‘⊗’)

data Void
data () = ()
data Either A B = left A | right B
data (A,B) = (A,B)
data Smash A B = smash ! A ! B

are interpreted by (mixing syntax and semantics)

Void = 0⊥
() = 1⊥
Either A B = A⊥ ⊕ B⊥
(A,B) = A⊥ ⊗ B⊥
Smash A B = A⊗ B .

Note that A⊥ ⊕ B⊥ is isomorphic to the so-called separated sum (usually written
‘+’) and that A⊥ ⊗ B⊥ ∼= (A × B)⊥ is a lifted product.

Not only sums and products are lifted in Haskell, but also functional types,
that is, T → U is interpreted by [D → E]⊥ ∼= [D⊥ ◦→E]⊥ where D is the
interpretation of T and E is the interpretation of U . Unfortunately, this implies
that η-conversion is not valid since λa .⊥ = λa .⊥ a 6= ⊥.

The bottom line of all this is that almost none of the laws we have seen so
far holds in Haskell. Or, to put it positively, most of the laws are subject to side
conditions. For instance,

h = f O g ≡ h · inl = f ∩ h · inr = g

holds only for strict h : A + B → C .
Somewhat ironically, even uncurry (curry f) = f does not hold in Haskell3,

since Haskell has lifted products.

2.4 The simply typed λ-calculus

This section deals with the simply typed λ-calculus, its syntax and semantics.
Essentially, it prepares the ground for the next section which is dedicated to the
polymorphic λ-calculus. Besides, we will introduce the main proof technique used
in this thesis, which is based on so-called logical relations. For a more leisurely
exposition the reader is referred to the excellent textbook by Mitchell (1996).

3Recall that Haskell is named after the logician Haskell B. Curry.

32 Background

C :: ?
(t-const-form)

T :: ? U :: ?
(T × U) :: ?

(×-form)
T :: ? U :: ?

(T → U) :: ?
(→-form)

Figure 2.1: Type formation rules.

2.4.1 Syntax

Syntactic categories The simply typed λ-calculus has a two-level structure.

type constants C ,D ∈ Const
type terms T ,U ∈ Type
individual constants c, d ∈ const
individual variables a, b ∈ var
terms t , u ∈ term

We use upper-case Roman letters for types and lower-case Roman letters for terms.

Types Type terms are formed according to the following grammar.

T ,U ∈ Type ::= C type constant
| T × U product type
| T → U function type

We agree upon the convention that ‘×’ and ‘→’ associate to the right, that is,
T1 → T2 → T3 stands for T1 → (T2 → T3).

The construction of type terms can alternatively be formalized using so-called
type formation rules, see Figure 2.1. Here, ‘?’ denotes the ‘type’ of types.

Terms Terms are built from constants and variables using pairing, projection,
abstraction, application and recursion. It is convenient to assume that constants
and variables are typed, that is, a constant or a variable is a pair consisting of a
name and a type usually written s :: T . If s :: T is a typed constant or a typed
variable, we define ‘type (s :: T) = T ’. Furthermore, we assume that for each
type there is an infinite number of typed variables (we could set, for instance,
var = Σ∗×Type where Σ is some non-empty alphabet). Pseudo-terms (also called
raw terms) are formed according to the following grammar.

t , u ∈ term ::= c constant
| a variable
| (t1, t2) pairing
| outl t projection
| outr t projection
| λa . t abstraction
| t u application
| fix t recursion

Here, (t1, t2) denotes pairing, outl t projects onto the first component of t , outr t
projects onto the second component, λa . t denotes abstraction, t u denotes ap-
plication, and fix t denotes the fixed point of t . We assume that application

2.4 The simply typed λ-calculus 33

c :: type c
(const)

a :: type a
(var)

t1 :: T1 t2 :: T2

(t1, t2) :: (T1 × T2)
(×-intro)

t :: (T1 × T2)
(outl t) :: T1

(×-elim-l)
t :: (T1 × T2)
(outr t) :: T2

(×-elim-r)

t :: T
(λa . t) :: (type a → T)

(→-intro)
t :: (U → V) u :: U

(t u) :: V
(→-elim)

t :: (U → U)
(fix t) :: U

(fix)

Figure 2.2: Typing rules.

associates to the left and that abstraction extends as far to the right as possible.
Finally, we abbreviate nested abstractions λa1 λam . t by λa1 . . . am . t .

Remark 2.7 The fairly standard syntax for abstraction is different from Haskell
syntax: λa . t is written λa → t in Haskell. Keep this in mind when reading the
examples in later chapters, which usually employ Haskell syntax. ut

Pseudo-terms are syntactically well-formed but they may be ill-typed. Con-
sider, for instance, the pseudo-term c c where c is some constant of type C . A
pseudo-term t is called a term if there is some type T such that t :: T is derivable
using the typing rules depicted in Figure 2.2. It is worth noting that since con-
stants and variables are annotated with their types, we do not require an explicit
typing environment.

The axiomatic semantics of the simply typed λ-calculus is given by the con-
vertibility relation.

Definition 2.8 The convertibility relation, denoted ‘↔’, is given by the following
axioms

outl (t1, t2) ↔ t1 (π1)
outr (t1, t2) ↔ t2 (π1)
(outl t , outr t) ↔ t (π)
(λa . t) u ↔ t [a := u] (β)
λa . t a ↔ t a not free in t (η)
fix t ↔ t (fix t) (µ)

plus rules for reflexivity, symmetry, transitivity and congruence. ut

2.4.2 Semantics

This section is concerned with the denotational semantics of the simply typed
λ-calculus. There are two general frameworks for describing the semantics: en-
vironment models and models based on cartesian closed categories. We will use

34 Background

environment models for the presentation since they are somewhat easier to under-
stand. Since the term language includes a fixed point operator, we will furthermore
restrict ourselves to domain-theoretic interpretations, where a domain is an alge-
braic semilattice—a complete partial order with some additional properties, see
(Gunter and Scott 1990). If D and E are domains, then [D→ E] denotes the set
of all continuous functions from D to E.

The definition of the semantics proceeds in three steps. First, we introduce so-
called applicative structures, and then we define two conditions that an applicative
structure must satisfy to qualify as a model.

Definition 2.9 An applicative structure E is a tuple (E, outl, outr, app, const)
such that

• E = (ET | T ∈ Type) is a family of domains,

• outl = (outlT ,U | T ,U ∈ Type) and outr = (outrT ,U | T ,U ∈ Type) are
families of continuous functions with outlT ,U : [ET×U → ET] and outrT ,U :
[ET×U → EU], and

• app = (appT ,U | T ,U ∈ Type) is a family of continuous functions with
appT ,U : [ET→U → [ET → EU]], and

• const :const → E is a mapping from individual constants to values such that
const(c) ∈ ET for all c ∈ const with T = type c.

A type frame is an applicative structure such that

• ET×U ⊆ ET × EU , outlT ,U (δ, ε) = δ and outrT ,U (δ, ε) = ε, and

• ET→U ⊆ ET → EU and appT ,U ϕ δ = ϕ(δ). ut

The first condition on models requires that two elements representing pairs are
equal if they have the same components and that equality between elements of
function types is standard equality on functions.

Definition 2.10 An applicative structure E = (E, outl, outr, app, const) is ex-
tensional, if

• ∀π1, π2 ∈ ET×U . (outl π1 = outl π2 ∩ outr π1 = outr π2) ⊃ π1 = π2, and

• ∀ϕ1, ϕ2 ∈ ET→U . (∀δ ∈ ET . app ϕ1 δ = app ϕ2 δ) ⊃ ϕ1 = ϕ2. ut

The second condition on models ensures that the applicative structure has
enough points so that every term containing pairs and λ-abstractions can be as-
signed a meaning in the structure. To formulate the condition we require the
notion of an environment. An environment η is a mapping η : var → E such that
η(a) ∈ ET for all a ∈ var with T = type a. If η is an environment, then η(a := δ)
is the environment mapping a to δ and b to η(b) for b different from a.

Definition 2.11 An applicative structure E = (E, outl, outr, app, const) satisfies
the environment model condition if the clauses below define a total meaning func-
tion, where the meaning function is defined by induction on the structure of typing

2.4 The simply typed λ-calculus 35

derivations.

EJt :: T Kη ∈ ET

EJc :: T Kη = const(c)
EJa :: T Kη = η(a)
EJ(t1, t2) :: (T1 × T2)Kη = the unique π ∈ ET1×T2 such that

outlT1,T2 π = EJt1 :: T1Kη and
outrT1,T2 π = EJt2 :: T2Kη

EJ(outl t) :: T1Kη = outlT1,T2 (EJt :: T1 × T2Kη)
EJ(outr t) :: T2Kη = outrT1,T2 (EJt :: T1 × T2Kη)
EJ(λa . t) :: (S → T)Kη = the unique ϕ ∈ ES→T such that

∀δ ∈ ES . appS ,T ϕ δ = EJt :: T Kη(a := δ)
EJ(t u) :: V Kη = appU ,V (EJt :: U → V Kη) (EJu :: U Kη)

EJ(fix t) :: U Kη =
⊔
{δn | n ∈ N}

where δ0 = ⊥
δn+1 = appU ,U (EJt :: U → U Kη) δn

An extensional, applicative structure that satisfies the environment model condi-
tion is called an environment model for the simply typed λ-calculus. ut

Note that extensionality guarantees the uniqueness of the elements π and ϕ whose
existence is postulated in the third and in the sixth clause, respectively. So an
extensional, applicative structure might only fail to satisfy the environment model
condition if ET1×T2 or ES→T does not contain enough elements. As an aside,
the clause for EJ(λa . t) :: (S → T)Kη can be written more succinctly using meta
abstraction and inverse application:

EJ(λa . t) :: (S → T)Kη = app−1
S ,T (λδ ∈ ES . EJt :: T Kη(a := δ)).

We will sometimes use this notation as it is more compact.
The following fact states that the axiomatic semantics is sound with respect

to the denotational semantics.

Fact 2.12 Let E be a model and let t1 and t2 be two terms of type T , then

t1 ↔ t2 ⊃ ∀η . EJt1Kη = EJt2Kη. ut

The environment model condition is often difficult to check. An equivalent,
but simpler condition is the combinatory model condition.

Definition 2.13 An applicative structure E = (E, outl, outr, app, const) satisfies
the combinatory model condition if

• for all types T and U there exist elements P ∈ ET→U→(T×U), L ∈ E(T×U)→T

and R ∈ E(T×U)→U such that

app L (app (app P x) y) = x
app R (app (app P x) y) = y
app (app P (app L z)) (app R z) = z

for all x , y and z of the appropriate types.

36 Background

• for all types S , T and U there exist elements K ∈ ET→U→T and S ∈
E(T→U→V)→(T→U)→T→V such that

app (app K x) y = x
app (app (app S x) y) z = app (app x z) (app y z)

for all x , y and z of the appropriate types. ut

2.4.3 Böhm trees

The simply typed λ-calculus can be interpreted in a syntactic way using so-called
Böhm trees. One can think of Böhm trees as a kind of ‘infinite normal form’ for
λ-terms, which is obtained by unwinding a λ-term ad infinitum.

Definition 2.14 A head-normal form is a term of the form λa1 . . . am . z t1 . . . tn
with m,n > 0 and z ∈ const ∪ var . A term t has head-normal form u if t ↔ u
and u is a head-normal form. ut

Definition 2.15 A head-normal form λa1 . . . am . z t1 . . . tn of type T1 →
· · · → Tm′ → C is a η-head-normal form if m = m ′. A term t has η-head-normal
form u if t ↔ u and u is a η-head-normal form. ut

Not every term has an η-head-normal form, consider, for instance, fix (λa . a) ↔
(λa . a) (fix (λa . a)). Contrary to the untyped λ-calculus, however, it is decidable
whether a term possesses an η-head-normal form. For that reason the notion of
Böhm tree introduced below is effective.

Definition 2.16 The Böhm tree of the term t , denoted BT(t), is a labelled,
possibly infinite tree defined as follows: if the term t has η-head-normal form
λa1 . . . am . z t1 . . . tn, then

BT(t) = λa1 . . . am . z

BT(t1) · · · BT(tn).

Otherwise, if t has no η-head-normal form, then BT(t) = Ω. A Böhm-like tree is
a possibly infinite tree labelled with objects of the form λa1 . . . am . z . The set of
all well-typed Böhm-like trees of type T is denoted BT . ut

Example 2.17 We can rewrite the types introduced in Section 2.1 as λ-terms if
we view ‘1’, ‘+’ and ‘×’ as constants over some base type, say, Nat . The types
List and Perfect , for instance, correspond to

list = λa .fix (λl . 1 + a × l)
perfect = fix (λp . λa . a + p (a × a)).

The Böhm trees of list and perfect are displayed in Figure 2.3. Note that list yields
a rational tree while perfect gives rise to an algebraic tree. A rational tree is a
possibly infinite tree that has only a finite number of subtrees. Algebraic trees are
obtained as solutions of so-called algebraic equations, see, for instance, (Courcelle
1983). ut

Böhm trees induce a congruence relation on λ-terms.

2.4 The simply typed λ-calculus 37

list
λa . +

1 ×

a

λa . +

a +

×

a a

+

×

×

a a

×

a a

perfect

Figure 2.3: The Böhm trees of list and perfect .

Definition 2.18 Let t1 and t2 be two terms of type T . We define

t1 ≈ t2 ≡ BT(t1) = BT(t2).

If t1 ≈ t2, we say t1 and t2 are structurally equivalent. ut

It is in general undecidable whether two λ-terms are related by (≈). The problem
becomes decidable if we restrict fix to type constants or to first-order types. In
the first case we obtain rational trees, in the latter case we obtain algebraic trees.
Though decidable, the equality problem for algebraic trees is non-trivial. It has
been known for a long time that this problem and the equivalence problem for
deterministic pushdown automata are interreducible (Courcelle 1983). It was,
however, only recently shown that the latter problem is decidable (Sénizergues
1997).

The set BT of all well-typed Böhm-like trees of type T can be turned into a
domain by imposing some suitable partial order. In fact, BT gives rise to a model
of the simply typed λ-calculus, the so-called Böhm-tree model. The details of the
construction are quite technical, so we will not repeat them here. Instead, we refer
the interested reader to (Barendregt 1984).

2.4.4 Logical relations

Logical relations are an important tool in the study of typed λ-calculi. In fact,
most of the proofs in this thesis are based on (variants of) logical relations. For
that reason, the reader is urged to study this section in some detail. For a compre-
hensive treatment of logical relations the reader is referred to Mitchell’s textbook
(1996).

In presenting logical relations we will restrict ourselves to the binary case. The
extension to the n-ary case is, however, entirely straightforward.

Definition 2.19 Let E1 and E2 be two applicative structures. A logical relation
R = (RT | T ∈ Type) over E1 and E2 is a family of relations such that

• RT ⊆ ET
1 × ET

2 ,

• (const1(c), const2(c)) ∈ RT for all c ∈ const with T = type c,

• RT×U is closed under pairing and projection:

(π1, π2) ∈ RT×U

≡ (outl1 π1, outl2 π2) ∈ RT ∩ (outr1 π1, outr2 π2) ∈ RU ,

38 Background

• RT→U is closed under application and abstraction:

(ϕ1, ϕ2) ∈ RT→U

≡ ∀δ1 ∈ ET
1 , δ2 ∈ ET

2 .

(δ1, δ2) ∈ RT ⊃ (app1 ϕ1 δ1, app2 ϕ2 δ2) ∈ RU ,

• RT is pointed, that is, (⊥,⊥) ∈ RT ,

• RT is chain-complete, that is, S ⊆ RT ⊃
⊔

S ∈ RT for every chain S . ut

Usually, a logical relation is defined on type constants only; the third clause of
the definition then shows how to extend the relation to product types and the
fourth clause shows how to extend the relation to functional types. The last two
conditions ensure that a logical relation relates fixed points. It is generally easy to
prove that a relation is pointed: note that RT×U is pointed if both RT and RU

are pointed and that RT→U is pointed if RU is pointed. Similarly, RT×U and
RT→U are chain-complete if both RT and RU are chain-complete.

Now, say, we are given two models of the simply typed λ-calculus. Then
Lemma 2.20 below shows that the meaning of a term in one model is logically
related to its meaning in the other model. This lemma is sometimes called the
Basic Lemma of logical relations.

Lemma 2.20 Let E1 and E2 be two models of the simply typed λ-calculus. Let R
be a logical relation over E1 and E2 and let η1 and η2 be environments for E1 and
E2 such that (η1(a), η2(a)) ∈ RT for all a ∈ var with T = type a, then

(E1Jv :: V Kη1, E2Jv :: V Kη2) ∈ RV

for every term v of type V .

Proof. We proceed by induction on the typing derivation of v :: V .

• Case v = c :: T : the statement holds since R respects constants.

• Case v = a :: T : it is easy to see that (E1Ja :: T Kη1, E2Ja :: T Kη2) ∈ RT since
we have assumed that (η1(a), η2(a)) ∈ RT .

• Case v = (t1, t2) :: (T1 × T2): by the induction hypothesis we have

(E1Jt1 :: T1Kη1, E2Jt1 :: T1Kη2) ∈ RT1 ∩ (E1Jt2 :: T2Kη1, E2Jt2 :: T2Kη2) ∈ RT2 .

Now, since by definition E1J(t1, t2) :: (T1 × T2)Kη1 = π1 such that outl1 π1 =
E1Jt1 :: T1Kη1 and outr1 π1 = E1Jt2 :: T2Kη1 and similarly for E2 we have

(outl1 π1, outl2 π2) ∈ RT1 ∩ (outr1 π1, outr2 π2) ∈ RT2

and consequently (π1, π2) ∈ RT1×T2 .

• Case v = (outl t) :: T1: by the induction hypothesis we have

(E1Jt :: (T1 × T2)Kη1, E2Jt :: (T1 × T2)Kη2) ∈ RT1×T2

which immediately implies

(outl1 (E1Jt :: (T1 × T2)Kη1), outl2 (E2Jt :: (T1 × T2)Kη2)) ∈ RT1 .

2.4 The simply typed λ-calculus 39

• Case v = (outr t) :: T2: analogous.

• Case v = (λa . t) :: (S → T): we have to show that

(E1J(λa . t) :: (S → T)Kη1, E2J(λa . t) :: (S → T)Kη2) ∈ RS→T

≡ ∀δ1 δ2 . (δ1, δ2) ∈ RS

⊃ (app1 (E1J(λa . t) :: (S → T)Kη1) δ1, app2 (E2J(λa . t) :: (S → T)Kη2) δ2) ∈ RT

Assume that (δ1, δ2) ∈ RS . Since the modified environments η1(a := δ1) and
η2(a := δ2) are related, we can invoke the induction hypothesis to obtain

(E1Jt :: T Kη1(a := δ1), E2Jt :: T Kη2(a := δ2)) ∈ RT

Now, since app1 (E1J(λa . t) :: (S → T)Kη1) δ1 = E1Jt :: T Kη1(a := δ1) and
similarly for E2, the proposition follows.

• Case v = (t u) :: V : by the induction hypothesis we have

(E1Jt :: U → V Kη1, E2Jt :: U → V Kη2) ∈ RU→V

≡ ∀δ1 δ2 . (δ1, δ2) ∈ RU

⊃ (app1 (E1Jt :: U → V Kη1) δ1, app2 (E2Jt :: U → V Kη2) δ2) ∈ RV

and
(E1Ju :: U Kη1, E2Ju :: U Kη2) ∈ RV

which implies

(app1 (E1Jt :: U → V Kη1) (E1Ju :: U Kη1), app2 (E2Jt :: U → V Kη2) (E2Ju :: U Kη2)) ∈ RV .

• Case v = (fix t) :: U : by the induction hypothesis we have

(E1Jt :: U → U Kη1, E2Jt :: U → U Kη2) ∈ RU→U

≡ ∀δ1 δ2 . (δ1, δ2) ∈ RU

⊃ (app1 (E1Jt :: U → U Kη1) δ1, app2 (E2Jt :: U → U Kη2) δ2) ∈ RU .

Since RU is pointed, we have (⊥,⊥) ∈ RU . A straightforward induction
shows that (δ1

n , δ
2
n) ∈ RU for all n ∈ N. Since RU is furthermore chain-

complete, we have

(
⊔
{δ1

n | n ∈ N},
⊔
{δ2

n | n ∈ N}) ∈ RU

as desired. ut

An example application Let us conclude the section with an example appli-
cation of logical relations. In fact, the purpose of the example is twofold. First, it
illustrates the use of several notions we have introduced in this section. Second,
it implies a useful result that we require in the following chapter.

For concreteness, let us assume that we have one type constant, say, Nat and
two individual constants

zero :: Nat
succ :: Nat → Nat .

40 Background

Furthermore, assume that we are given a type P = P1 → · · · → Pn → Nat and
a model E = (E, outl, outr, app, const). Building upon E we will construct two
other models, K and L, and establish a relation between the two. To improve
readability, we abbreviate appT ,U ϕ d by ϕ d and we omit app−1

T ,U altogether.
The first model, K = (K, outlK, outrK, appK, constK), is given by

KT = EP1→···→Pn→T

outlK π = λπ1 . . . πn . outl (π π1 · · · πn)
outrK π = λπ1 . . . πn . outr (π π1 · · · πn)
appK ϕ δ = λπ1 . . . πn . (ϕ π1 · · · πn) (δ π1 · · · πn)
constK(c) = λπ1 . . . πn . const(c).

Each element is interpreted by a function that takes n parameters; appK passes
the parameters to both of its arguments while constK(c) ignores them. It is not
hard to show that K is extensional (using the fact that E is extensional). How do
we show that K satisfies the environment model condition? In fact, the easiest
way to establish this condition is to use the combinatory model condition instead.
Since E is a model it has combinators P, L, R, K and S. The combinators of K
are simply given by

PK = λπ1 . . . πn .P
LK = λπ1 . . . πn .L
RK = λπ1 . . . πn .R
KK = λπ1 . . . πn .K
SK = λπ1 . . . πn .S.

We leave it to the reader to check that the equational laws are satisfied.
To define the second model we require the following ‘lifting’ operation on types.

↑Nat = P
↑T × U = (↑T) × (↑U)
↑T → U = (↑T)→ (↑U)

The second model L = (L, outlL, outrL, appL, constL) is then given by

LT = E↑T

outlL π = outl π
outrL π = outr π
appL ϕ δ = ϕ δ
constL(zero) = λπ1 . . . πn . const(zero)
constL(succ) = λϕ .λπ1 . . . πn . const(succ) (ϕ π1 · · · πn).

Note that application in L is implemented by application in E albeit at a higher
functional level: appLT ,U = app↑T ,↑U . Clearly, L is a model since E is one.

Now, note that KNat = LNat . In fact, K and L interpret a term of type Nat
by the same element of EP . More generally, K and L are related by the logical
relation (∼T) ⊆ KT × LT given by

δ1 ∼Nat δ2 ≡ δ1 = δ2
π1 ∼T×U π2 ≡ outlK π1 ∼T outlL π2 ∩ outrK π1 ∼U outrL π2

ϕ1 ∼T→U ϕ2 ≡ ∀δ1 ∈ KT , δ2 ∈ LT . δ1 ∼T δ2 ⊃ appK ϕ1 δ1 ∼U appL ϕ2 δ2.

So (∼T) is simply the extension of the equality relation on EP .

2.5 The polymorphic λ-calculus 41

Theorem 2.21 Let t :: T be a closed term, then

KJtK ∼T LJtK.

Proof. It is not hard to see that (∼T) is both pointed and chain-complete. It
remains to prove that (∼T) relates constants: we have to show that

constK(zero) = constL(zero)
appK (constK(succ)) δ = appL (constL(succ)) δ.

The first equation obviously holds and the latter equation follows directly from
constL(succ) = λϕ . appK (constK(succ)) ϕ. ut

The effect of the two interpretations K and L can also be expressed on a
syntactical level. Define

K̂ t = λx1 . . . xn . t
Ŝ t u = λx1 . . . xn . (t x1 . . . xn) (u x1 . . . xn)

then we have KJtK = EJK̂ tK for all closed terms t . The proof proceeds by induction
over the structure of so-called combinatory terms (that is, terms built from P =
λx y . (x , y), L = λz . outl z , R = λz . outr z , K = λx y . x , S = λx y z . (x z) (y z)
and constants using application) employing the fact that Ŝ (K̂ t) (K̂ u) = K̂ (t u).

The second model corresponds to a program transformation called lifting. Lift-
ing maps a term t :: T to a term ↑t :: ↑T where ↑t is defined as follows (we assume
that for each variable a of type T there is a lifted variable named a of type ↑T):

↑c = c
↑a = a
↑(t1, t2) = (↑t1, ↑t2)
↑outl t = outl (↑t)
↑outr t = outr (↑t)
↑λa . t = λa . ↑t
↑t u = (↑t) (↑u)
↑fix t = fix (↑t).

The lifted versions of the constants zero and succ are given by

zero = λx1 . . . xn . zero
succ n = λx1 . . . xn . succ (n x1 . . . xn).

It is not hard to show that LJtK = EJ↑tK for all closed terms t (in general, we have
LJtKη = EJ↑tKη where η(a) = η(a)). Now putting everything together we obtain
the following corollary of Theorem 2.21.

Corollary 2.22 Let t :: T be a closed term, then

EJK̂ tK ∼T EJ↑tK. ut

2.5 The polymorphic λ-calculus

Considered as a programming language the simply typed λ-calculus is very restric-
tive. For instance, while we can form a pair of values of arbitrary types, we cannot

42 Background

define a single function that swaps elements of an arbitrary pair. The typing rules
require that we precisely lay down the types of the components. The swap func-
tion cries for polymorphism. In fact, polymorphism nicely complements the type
security of the simply typed λ-calculus with flexibility. A polymorphic type system
like the one introduced in this section allows the definition of functions like swap
that behave uniformly over all types.

The polymorphic λ-calculus builds upon the simply typed λ-calculus in two
ways. On the value level it extends the simply typed λ-calculus by constructions
for creating and using polymorphic values. On the type level it reuses the simply
typed λ-calculus: the type terms of the polymorphic λ-calculus are essentially the
terms of the simply typed λ-calculus.

The polymorphic λ-calculus has been discovered independently by Girard (1972)
and Reynolds (1974). It trades under a variety of names: second-order λ-calculus
or system F2 (in these cases A in ∀A .T is restricted to types of kind ?), higher-
order λ-calculus or system Fω. Apart from its use as a model for polymorphism
the polymorphic λ-calculus is also used in practice as the internal language of the
Glasgow Haskell Compiler (Peyton Jones 1996).

2.5.1 Syntax

Syntactic categories The polymorphic λ-calculus has a three-level structure.

kind terms T,U ∈ Kind

type constants C ,D ∈ Const
type variables A,B ∈ Var
type terms T ,U ∈ Type
individual constants c, d ∈ const
individual variables a, b ∈ var
terms t , u ∈ term

We use upper-case Fraktur letters for kinds, upper-case Roman letters for types
and lower-case Roman letters for terms.

Kinds Kind terms are formed according to the following grammar.

T,U ∈ Kind ::= ? kind of types
| T × U product kind
| T→ U function kind

Thus, the kind terms of the polymorphic λ-calculus are the type terms of the
simply typed λ-calculus. The kind ‘?’ represents the ‘type’ of manifest types such
as Char or Int . The kind formation rules are displayed in Figure 2.4. Here, ‘2’
denotes the ‘type’ of kinds, sometimes called superkind.

Types Type terms are built from type constants and type variables using type
pairing, type projection, type application, type abstraction, type recursion and
construction of polymorphic types. As before, we assume that type constants and
type variables are kinded, that is, they are annotated with their kinds, usually
written S :: T. If S :: T is a kinded type constant or type variable, we define
‘kind (S :: T) = T’. Pseudo-type terms are formed according to the following

2.5 The polymorphic λ-calculus 43

? :: 2
(k-?-form)

T :: 2 U :: 2

T × U :: 2
(k-×-form)

T :: 2 U :: 2

T→ U :: 2
(k-→-form)

Figure 2.4: Kind formation rules.

grammar.

T ,U ∈ Type ::= C type constant
| A type variable
| (T1,T2) type pairing
| Outl T type projection
| Outr T type projection
| ΛA .T type abstraction
| T U type application
| Fix T type recursion
| ∀A .T polymorphic type

Thus, the pseudo-type terms of the polymorphic λ-calculus are essentially the
pseudo-terms of the simply typed λ-calculus. The only addition is a construction
for polymorphic types, which gives the polymorphic λ-calculus its name.

The choice of Const , the set of type constants, is more or less arbitrary. Of
course, Const should contain at least the function space constructor. For con-
creteness, we assume that Const comprises the following type constants (‘1’, ‘+’,
‘×’ are included so that we can model Haskell data type declarations, see below):

Char :: ?
Int :: ?
1 :: ?
(+) :: ?→ ?→ ?
(×) :: ?→ ?→ ?
(→) :: ?→ ?→ ?.

We assume that ‘→’, ‘×’ and ‘+’ associate to the right. Furthermore, ‘→’ binds
more tightly than ‘×’, which takes precedence over ‘+’.

A pseudo-type term T is called a type term if there is some kind T such that
T :: T is derivable using the kinding rules depicted in Figure 2.5. Note that A in
∀A .T may range over any kind. A type-term is called monomorphic if it does not
contain any occurrences of ‘∀’. The set of all monomorphic type-terms is denoted
MonoType (for emphasis the set of all type terms is sometimes denoted PolyType).
Define ?n → ? by ?0 → ? = ? and ?n+1 → ? = ? → (?n → ?). If T has kind
?n → ?, we say that T has arity n. The rank (McCracken 1984) of a type term is
given by (the other cases are the obvious ones):

rank(A) = 0
rank(∀A .T) = max{1, rank(T)}
rank(T → U) = max{1 + rank(T), rank(U)}.

Finally, we transfer the relation ‘≈’ (see Definition 2.18) to type terms (additionally
setting T ≈ U ⊃ ∀A .T ≈ ∀A .U).

44 Background

C :: kind C
(t-const)

A :: kind A
(t-var)

T1 :: T1 T2 :: T2

(T1,T2) :: (T1 × T2)
(t-×-intro)

T :: (T1 × T2)
(Outl T) :: T1

(t-×-elim-l)
T :: (T1 × T2)
(Outr T) :: T2

(t-×-elim-r)

T :: T

(ΛA .T) :: (kind A→ T)
(t-→-intro)

T :: (U→ V) U :: U

(T U) :: V
(t-→-elim)

T :: U→ U

(Fix T) :: U
(t-rec)

T :: ?
(∀A .T) :: ?

(t-all)

Figure 2.5: Kinding rules.

Here are some type terms that will be used in the subsequent chapters:

Id :: ?→ ?
Id = ΛA :: ? .A
K :: ?→ ?→ ?
K = ΛA :: ? .ΛB :: ? .A
(·) :: (?→ ?)→ (?→ ?)→ (?→ ?)
F ·G = ΛA :: ? .F (G A)
1,Char , Int :: ?→ ?
1 = ΛA :: ? . 1
Char = ΛA :: ? .Char
Int = ΛA :: ? . Int
(+), (×), (→) :: (?→ ?)→ (?→ ?)→ (?→ ?)
F + G = ΛA :: ? .F A + G A
F × G = ΛA :: ? .F A × G A
F → G = ΛA :: ? .F A→ G A.

Note that we take some notational liberties: we write F A = T instead of F =
ΛA .T and we often omit kind annotations of type constants and type variables
(usually the kind of a type variable is only given in the binding position).

The type language is fairly expressive. It subsumes, for instance, the type
system of Haskell. As an example, we can easily translate Haskell data type
declarations into type terms. Recall the schematic form of data declarations
given in Section 2.1:

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn .

The type B thus defined can be written as the following type term (we tacitly
assume that the kinds of the type variables have been inferred)

Fix (ΛB .ΛA1 . . . Am . (T11 × · · · × T1m1) + · · ·+ (Tn1 × · · · × Tnmn
)),

where T1 × · · · × Tk = 1 for k = 0. For simplicity, n-ary sums are reduced
to binary sums and n-ary products to binary products. For instance, the data

2.5 The polymorphic λ-calculus 45

declarations

data List A = nil | cons A (List A)
data Fork A = fork A A
data Perfect A = zeroP A | succP (Perfect (Fork A))

are translated to (see also Example 2.17)

List :: ?→ ?
List = Fix (ΛList .ΛA . 1 + A × List A)
Fork :: ?→ ?
Fork = ΛA .A × A
Perfect :: ?→ ?
Perfect = Fix (ΛPerfect .ΛA .A + Perfect (Fork A)).

Note that we have simplified Fix (ΛFork .ΛA .A × A) to ΛA .A × A.
Interestingly, the representation of regular types such as List can be improved

by applying a technique called lambda-dropping (Danvy 1999): if Fix (ΛF .ΛA .T)
is regular, then it is equivalent to ΛA .Fix (ΛB .T [F A := B]) where T [T1 :=
T2] denotes the type term, in which all occurrences of T1 are replaced by T2.
For instance, the λ-dropped version of Fix (ΛList .ΛA . 1 + A × List A) is
ΛA .Fix (ΛB . 1 + A × B). The λ-dropped version employs the fixed point opera-
tor at kind ? (that is, the subterm Fix T has kind ?) whereas the λ-lifted version
employs the fixed point operator at kind ?→ ?. Nested types such as Perfect are
not amenable to this transformation since the type argument of the nested type
is changed in the recursive call(s). As an aside, note that the λ-dropped and the
λ-lifted version correspond to two different methods of modelling parameterized
types: families of first-order fixed points versus higher-order fixed points, see, for
instance, (Bird and Paterson 1999).

We have not yet taken into account that data type definitions can be mutually
recursive. Fortunately, since the language of types provides pairs (where pair
means pair of types, not product type), we can easily deal with the general case.
Say, we are given two recursive equations B1 = T1 and B2 = T2, then we can
express B1 and B2 using fixed points operating on pairs:

B1 = Outl (Fix (ΛB . (T1[B1 := Outl B ,B2 := Outr B],T2[B1 := Outl B ,B2 := Outr B])))
B2 = Outr (Fix (ΛB . (T1[B1 := Outl B ,B2 := Outr B],T2[B1 := Outl B ,B2 := Outr B]))).

Likewise a system of n recursive equations can be dealt with using n-tuples (or
nested pairs).

Remark 2.23 An alternative approach taken in (Hinze 2000f) is to introduce
recursion equations into the type language.

T ,U ∈ Type ::= . . .
| T where {A1 = T1; . . . ; An = Tn} local type definition

While this approach allows us to model data type declarations more directly and
also more naturally, it complicates the development in later chapters. ut

46 Background

Terms As before, we assume that constants and variables are annotated with
their types. Of course, the type of a constant must be closed. Pseudo-terms are
formed according to the following grammar.

t , u ∈ term ::= c constant
| a variable
| () empty tuple
| inl t1 injection
| inr t2 injection
| case t of {inl a1 ⇒ u1; inr a2 ⇒ u2}

bcase analysis
| (t1, t2) pairing
| outl t projection
| outr t projection
| λa . t abstraction
| t u application
| λA . t universal abstraction
| t U universal application
| fix t recursion

Here, λA . t denotes universal abstraction (forming a polymorphic value) and t U
denotes universal application (instantiating a polymorphic value). Note that we
use the same syntax for value abstraction λa . t (here a is a value variable) and
universal abstraction λA . t (here A is a type variable). The term language contains
constructs for the type constants ‘1’, ‘+’, ‘×’ and ‘→’. We assume that the set
const of value constants includes suitable functions for each of the other type
constants C in Const .

Remark 2.24 The syntax of the polymorphic λ-calculus is slightly different from
Haskell syntax: the abstraction λa . t is written λa → t in Haskell and the case
analysis case t of {inl a1 ⇒ u1; inr a2 ⇒ u2} is written case t of {inl a1 →
u1; inr a2 → u2}—in general, we avoid using the arrow ‘→’ too often. ut

A pseudo-term t is called a term if there is some type T such that t :: T is
derivable using the typing rules depicted in Figure 2.6. Two remarks are in order.
First, the restriction on type variables in rule (∀-intro) prevents non-sensible
terms such as λA :: ? . a :: A where the value variable a carries the type variable A
out of scope.

Second, rule (conv) allows to interchange types which are structurally equiv-
alent, that is, which have the same Böhm tree (see Definition 2.18). Note that
this is a very liberal notion of type equivalence. Consider, for instance, List1 and
List2 given by (the λ-lifted and λ-dropped versions of List)

List1 = Fix (ΛList .ΛA . 1 + A × List A)
List2 = ΛA .Fix (ΛB . 1 + A × B).

We have List1 Char ≈ List2 Char , but List1 Char and List2 Char are, for
instance, not convertible. Furthermore, note since the relation (≈) is undecidable
in general, we have an undecidable type system.

Remark 2.25 The term language is quite voluminous. A less involved alternative
is to introduce the constructs for the type constants ‘1’, ‘+’ and ‘×’ as additional

2.5 The polymorphic λ-calculus 47

c :: type c
(var)

a :: type a
(const)

() :: 1
(1-intro)

t1 :: T1

(inl t1) :: (T1 + T2)
(+-intro-l)

t2 :: T2

(inr t2) :: (T1 + T2)
(+-intro-r)

t :: (type a1 + type a2) u1 :: U u2 :: U
(case t of {inl a1 ⇒ u1; inr a2 ⇒ u2}) :: U

(+-elim)

t1 :: T1 t2 :: T2

(t1, t2) :: (T1 × T2)
(×-intro)

t :: (T1 × T2)
(outl t) :: T1

(×-elim-l)
t :: (T1 × T2)
(outr t) :: T2

(×-elim-r)

t :: T
(λa . t) :: (type a → T)

(→-intro)
t :: (U → V) u :: U

(t u) :: V
(→-elim)

t :: T
(λA . t) :: (∀A .T)

A not free in the type
of a free variable of t

(∀-intro)

t :: (∀A .V) U :: kind A
(t U) :: V [A := U]

(∀-elim)

t :: U → U
(fix t) :: U

(fix)

t :: T T ≈ U
t :: U

(conv)

Figure 2.6: Typing rules.

48 Background

constants:

() :: 1
inl :: ∀A1 A2 .A1 → A1 + A2

inr :: ∀A1 A2 .A2 → A1 + A2

case :: ∀A1 A2 B .A1 + A2 → (A1 → B)→ (A2 → B)→ B
(,) :: ∀A1 A2 .A1 → A2 → A1 × A2

outl :: ∀A1 A2 .A1 × A2 → A1

outr :: ∀A1 A2 .A1 × A2 → A2.

A drawback of this approach is that inl , inr etc now take two additional type
arguments. We will use the variant whichever is more appropriate. ut

Let us finally look at some examples:

id :: ∀A :: ? .A→ A
id = λA :: ? . λa :: A . a
k :: ∀A :: ? .∀B :: ? .A→ B → A
k = λA :: ? . λB :: ? . λa :: A . λb :: B . a
(O) :: ∀A B C . (A→ C)→ (B → C)→ (A + B → C)
f O g = λx . case x of {inl a ⇒ f a; inr b ⇒ g b}
mapList :: ∀A1 :: ? .∀A2 :: ? . (A1 → A2)→ (List A1 → List A2)
mapList = λA1 :: ? . λA2 :: ? . λmapA :: (A1 → A2) . λas :: List A1 .

case as of {inl u ⇒ inl u;
inr z ⇒ inr (mapA (outl z),mapList A1 A2 mapA (outr z))}.

As usual, we take some notational liberties: we write f a = t for f = λa . t , we
omit kind and type annotations and we sometimes omit universal abstractions and
applications—especially when defining operators such as (O).

2.5.2 Semantics

This section sketches the denotational semantics of the polymorphic λ-calculus.
As in Section 2.4.2 we will use the general framework of environment models for
the presentation. The semantics will be given in two steps. First, we define the
semantics of types. Since type terms of the polymorphic λ-calculus are essentially
terms of the simply typed λ-calculus, we will, in fact, re-use the semantics given
in Section 2.4.2. Second, we define the semantics of terms.

Since we allow recursion both on the term and on the type level, we require
domain-theoretic models both for terms and for types. Note that finding models
that support solving arbitrary domain equations is by no means trivial. Suitable
models are, for instance, models based on universal domains. These models inter-
pret types as certain elements (closures, finitary retracts or finitary projections)
of the universal domain, so that type recursion can be interpreted by the untyped
least fixed point operator.

A particular attractive model is the finitary projection model (Amadio, Bruce,
and Longo 1986) where types are represented by finitary projections. Briefly, a
projection π is a continuous function that is idempotent, π ·π = id , and reductive,
π v id . A projection is finitary if its range is a domain. The central idea of this
model is to interpret the type constraint t :: T by the application π JtK, where the
finitary projection π = JT K coerces JtK to an element of the domain associated
with T , that is, π’s range. Now, if JtK is already an element of this domain, then
π will leave it unchanged (since π is idempotent).

2.5 The polymorphic λ-calculus 49

Types For simplicity, we use frames rather than applicative structures for the
semantics of types.

Definition 2.26 A kind frame T is a tuple (T,Const,Π) such that

• T = (TT | T ∈ Kind) is a family of domains, such that TT×U ⊆ TT × TU

and TT→U ⊆ TT → TU,

• Const : Const → T is a mapping from type constants to values such that
Const(C) ∈ TT for all C ∈ Const with T = kind C ,

• Π = (ΠT | T ∈ Kind) is a family of continuous functions ΠT ∈ T(T→?)→?. ut

The elements of TT represent type constructors. In particular, the elements of
T? represent types (but note: they are not types, they merely represent types).
For instance, in the finitary projection model the elements of TT are finitary
projections. The function ΠT will be used to give a semantics to polymorphic
types of the form ∀A .T where A ranges over type constructors of kind T.

Definition 2.27 A kind frame T = (T,Const,Π) is a type model if the clauses
below define a total meaning function for types, where the meaning function is
defined by induction on the structure of kinding derivations.

T JT :: TKη ∈ TT

T JC :: CKη = Const(C)
T JA :: AKη = η(A)
T J(T1,T2) :: (T1 × T2)Kη = (T JT1 :: T1Kη, T JT2 :: T2Kη)
T J(Outl T) :: T1Kη = outl (T JT :: T1 × T2Kη)
T J(Outr T) :: T2Kη = outr (T JT :: T1 × T2Kη)
T J(ΛA .T) :: (V→ T)Kη = λα ∈ TV . T JT :: TKη(A := α)
T J(T U) :: VKη = (T JT :: U→ VKη) (T JU :: UKη)
T J(Fix T) :: UKη = lfp (T JT :: U→ UKη)
T J(∀A .T) :: ?Kη = ΠT (λα ∈ TT . T JT :: ?Kη(A := α))

where T = kind A. ut

Here, lfp is the least fixed point operator given by

lfp ϕ =
⊔
{αn | n ∈ N}

where α0 = ⊥
αn+1 = ϕ αn .

In the next chapter we require an extension of the meaning function that also
interprets ‘infinite type terms’, that is, Böhm-like trees over the language of types.
From the theory of infinite trees (Courcelle 1983) we know that every function
that maps finite trees to elements of some domain can be uniquely extended to a
continuous function on infinite trees. The following fact adapts the result to the
current setting.

Fact 2.28 The meaning function for types can be uniquely extended to a contin-
uous function on Böhm-like trees such that T JΩKη = ⊥ and

T JBT(T)Kη = T JT Kη

for all types T ∈ Type and all environments η. ut

50 Background

A simple consequence of this fact is that structurally equivalent types are inter-
preted by the same element of T.

Corollary 2.29 Let T1 and T2 be two type terms of kind T, then

T1 ≈ T2 ⊃ ∀η . T JT1Kη = T JT2Kη.

Proof. We assume that T1 ≈ T2 and reason:

T JT1Kη
= { Fact 2.28 }
T JBT(T1)Kη

= { T1 ≈ T2 }
T JBT(T2)Kη

= { Fact 2.28 }
T JT2Kη. ut

Terms The semantics of terms will be specified only for a fragment of the lan-
guage. In particular, we do not consider any constructs associated with the type
constants ‘1’, ‘+’ and ‘×’. We tacitly assume that these constructs are supplied
as additional constants, see Remark 2.25.

Definition 2.30 An applicative structure for the polymorphic λ-calculus E is a
tuple (T ,Dom, app,uapp, const) such that

• T = (T,Const,Π) is a kind frame,

• Dom = (Domα | α ∈ T?) is a family of domains,

• app = (appα,β | α, β ∈ T?) is a family of continuous functions with appα,β :
[DomConst(→) α β → [Domα → Domβ]],

• uapp = (uappT,ϕ | T ∈ Kind, ϕ ∈ TT→?) is a family of continuous functions

with uappT,ϕ : [DomΠT(ϕ) → [
∏
α∈TT (Domϕ(α))]],

• const : const → Dom is a mapping function from constants to values such
that const(c) ∈ DomT JTK for all c ∈ const with T = type c.

The applicative structure E is extensional if appα,β and uappT,ϕ are one-to-one.
ut

The function Dom assigns a type, that is, a domain, to each element of T?. In the
case of the finitary projection model, Domπ simply is the range of π (recall that
the range of a finitary projection is by definition a domain). Perhaps surprisingly,
in this model there is even a bijection between T? and Dom, that is, α = β ≡
Domα = Domβ . Thus, each element of T? represents a unique type.

An environment η is a mapping η : (Var → T)] (var → Dom) such that
η(A) ∈ TT for all A ∈ Var with T = kind A and η(a) ∈ DomT JTKη for all a ∈ var
with T = type a.

2.5 The polymorphic λ-calculus 51

Definition 2.31 An applicative structure for the polymorphic λ-calculus E =
(T ,Dom, app,uapp, const) satisfies the environment model condition if the clauses
below define a total meaning function, where the meaning function is defined by
induction on the structure of typing derivations.

EJt :: T Kη ∈ DomT JTKη

EJc :: T Kη = const(c)
EJa :: T Kη = η(a)

EJ(λa . t) :: (S → T)Kη = the unique ϕ ∈ DomConst(→) σ τ such that
∀δ ∈ Domσ . appσ,τ ϕ δ = EJt :: T Kη(a := δ)

where σ = T JSKη and τ = T JT Kη
EJ(t u) :: SKη = appυ,ω (EJt :: U → V Kη) (EJu :: U Kη)

where υ = T JU Kη and ω = T JV Kη

EJ(λA . t) :: (∀A .T)Kη = the unique ψ ∈ DomΠU(ϕ) such that
∀α ∈ TU .uappU,ϕ ψ α = EJt :: T Kη(A := α)

where U = kind A and ϕ(α) = T JT Kη(A := α)
EJ(t U) :: V [A := U]Kη = uappU,ϕ (EJt :: ∀A .V Kη) (T JU :: UKη)

where U = kind A and ϕ(α) = T JV Kη (A := α)

EJ(fix t) :: U Kη =
⊔
{δn | n ∈ N}

where δ0 = ⊥
δn+1 = appυ,υ (EJt :: U → U Kη) δn

υ = T JU Kη
EJt :: U Kη = EJt :: T Kη

where T ≈ U .

The applicative structure E is an environment model of the polymorphic λ-calculus
if T is a type model and if E is extensional and satisfies the environment model
condition. ut

The definition of the meaning function proceeds by induction on the structure of
typing derivations. However, because of rule (conv) there may be more than one
derivation. Fortunately, it is relatively easy to show that the meaning of a well-
typed term does not depend on the particular typing derivation we use, the main
reason being that structurally equivalent type terms possess the same meaning.

52 Background

Chapter 3

Generic programs

This chapter constitutes the core of the thesis. It shows how to program generically
and how to specialize a given generic definition to concrete instances of data types.
In fact, we will get to know two different forms of generic definitions. The first
form, called POPL-style, is easier to use from the generic programmer’s point
of view, whereas the second, called MPC-style1, is considerably more general.
Because the second form builds heavily upon the first, it is necessary to introduce
them both.

This chapter is organized as follows. Section 3.1 sets the scene explaining in
some detail the definition of generic values such as encode or decodes that are
indexed by types of kind ?. Section 3.2 then generalizes the definitional scheme
to values such as size that are indexed by types of first- or second-order kinds.
Section 3.3 generalizes even further and explains how to define values that are
indexed by types of arbitrary kinds. Finally, Section 3.4 reviews related work.

3.1 Type-indexed values

Before we start the formal investigation, let us briefly recall the basics of generic
programming from the introduction.

A standard example of a generic function is testing two values for equality. We
have already remarked that we cannot define a polymorphic equality function that
has type ∀ T . T → T → Bool . A polymorphic function is an algorithm that is
insensitive to what type the values in some structure are, so a function of type
∀ T . T → T → Bool must necessarily be constant—this informal argument can
be made precise using the parametricity theorem (Wadler 1989). However, the
equality function enjoys a generic definition as it can be defined by induction on
the structure of its type argument.

equal〈T :: ?〉 :: T → T → Bool
equal〈1〉 u1 u2 = true
equal〈Char〉 c1 c2 = equalChar c1 c2

equal〈Int〉 i1 i2 = equalInt i1 i2
equal〈A + B〉 (inl a1) (inl a2) = equal〈A〉 a1 a2

equal〈A + B〉 (inl a1) (inr b2) = false
equal〈A + B〉 (inr b1) (inl a2) = false
equal〈A + B〉 (inr b1) (inr b2) = equal〈B〉 b1 b2

equal〈A × B〉 (a1, b1) (a2, b2) = equal〈A〉 a1 a2 ∧ equal〈B〉 b1 b2

The type signature makes precise that equal is indexed by a type of kind ? and
that the type of equal〈T 〉 depends on T . To define equal it suffices to supply

1Rather unimaginatively, the two styles are called after the conferences where I first published
the respective results: Symposium on Principles of Programming Languages (POPL’ 00) and
Conference on Mathematics of Program Construction (MPC 2000).

54 Generic programs

instances for each of the primitive type constructors. Note, however, that equal
cannot be defined for the function space constructor. Let us consider each equation
in turn. Since ‘1’ comprises only one element, two elements of type ‘1’ are trivially
equal. For Char and Int generic equality falls back on the functions equalChar and
equalInt supplied from elsewhere. Elements of a sum type are equal if they have
the same constructor and the arguments of the constructor are equal. Finally, two
pairs are equal if the corresponding components are equal.

The following sections study generic definitions in detail. Section 3.1.1 char-
acterizes the set of normal forms of types of kind ?, Section 3.1.2 introduces the
general scheme for defining generic values indexed by types of this kind, and Sec-
tion 3.1.3 shows how to specialize a generic value thus defined to types of arbitrary
kinds.

3.1.1 Normal forms of types

The simple inductive definition of equal is quite elegant but does it cover all pos-
sible cases? Recall that the type language of Haskell is far more complex includ-
ing among other things type abstraction and type recursion. Now, it turns out
that we have to make one basic assumption, namely, that a generic definition
yields the same instance when applied to structurally equivalent types, that is,
equal〈T1〉 = equal〈T2〉 if T1 ≈ T2. This is, however, a very reasonable assumption
since structurally equivalent types are interchangeable using typing rule (conv).
Given this assumption it is then sufficient to consider as type indices types in
normal form where normal form means ‘infinite normal form’, that is, the Böhm
tree of a type.

Working with potentially infinite type terms is not as problematic as one might
think at first sight. After all, in a non-strict language such as Haskell we happily
operate on potentially infinite objects such as infinite lists or trees. In fact, we
will show in the next section how to implement a poor man’s version of generic
equality in Haskell using infinite type terms.

For the following treatment let us assume that the set of type constants Const
is given by Const = {1,Char , Int , (+), (×), (→)}. Note that Const only includes
zeroth- or first-order kinded type constants, that is, order(C) 6 1 for all type
constants C :: C. We will see later that this is an essential requirement for POPL-
style definitions.

Now, types of kind ? have a very simple normal form. Consider the Böhm tree
of a type of kind ?. Clearly, the root of the tree cannot be labelled with a type
abstraction. Instead, it must be labelled with a primitive type constructor, say, C .
Moreover, if C has arity n, the root must have n direct successors (since Böhm
trees are based on η-head-normal forms). Thus, the normal form of type terms of
kind ? is described by the following grammar.

NF? ::= 1
| Char
| Int
| NF?1 + NF?2
| NF?1 × NF?2
| NF?1 → NF?2

Even though specified by a grammar, it is understood that NF? includes finite and
infinite type terms. In particular, we have {BT(T) | T :: ?} ⊆ NF? = B?.

3.1 Type-indexed values 55

3.1.2 Defining generic values

While I prefer Haskell for the practical examples, I will use the polymorphic λ-
calculus for the theoretical treatment of generic programming. The main reason for
this choice is that we require rank-n polymorphism for the specialization of generic
values but Haskell only supports rank-1 polymorphism (extensions of Haskell allow
for rank-2 type signatures).

The characterization of normal forms motivates the following scheme for defin-
ing type-indexed values.

poly〈T :: ?〉 :: Poly T
poly〈1〉 = poly1

poly〈Char〉 = polyChar

poly〈Int〉 = polyInt

poly〈A + B〉 = poly+ A (poly〈A〉) B (poly〈B〉)
poly〈A × B〉 = poly× A (poly〈A〉) B (poly〈B〉)
poly〈A→ B〉 = poly→ A (poly〈A〉) B (poly〈B〉)

Here, poly is the name of the type-indexed value; T , A, and B are type variables of
kind ?; Poly , poly1, polyChar , polyInt , poly+, poly×, and poly→ are the ingredients
that have to be supplied by the generic programmer. The type of poly〈T 〉 is given
by Poly T , where Poly is a type constructor of kind ?→ ?. Note that unlike the
type index Poly may also contain polymorphic types. The polyC values must have
the following types:

poly1 :: Poly 1
polyInt :: Poly Int
poly+ :: ∀A .Poly A→ ∀B .Poly B → Poly (A + B)
poly× :: ∀A .Poly A→ ∀B .Poly B → Poly (A × B)
poly→ :: ∀A .Poly A→ ∀B .Poly B → Poly (A→ B).

In the latter three cases A and B are universally quantified since poly+, poly× and
poly→ have to work for all possible argument types.

In practice, we do not require that an instance is provided for every type
constant C in Const . In case an instance for C is missing, we tacitly add polyC =
undefined . Alternatively, one can generate a compile-time error if an attempt is
made to specialize poly for a type that includes C .

It is instructive to see how the example given in the introduction to Section 3.1
maps to the formalism above: equal〈T 〉 has type Equal T = T → T → Bool and
the functions equal1, equalChar , equal Int , equal+ and equal× are given by

equal1 = λu1 :: 1 . λu2 :: 1 . true
equalChar = λc1 :: Char . λc2 :: Char . equalChar c1 c2

equal Int = λi1 :: Int . λi2 :: Int . equalInt i1 i2
equal+ = λA . λequalA :: (A→ A→ Bool) . λB . λequalB :: (B → B → Bool) .

λs1 :: A + B . λs2 :: A + B .
case s1 of {inl a1 ⇒ case s2 of {inl a2 ⇒ equalA a1 a2; inr b2 ⇒ false };

inr b1 ⇒ case s2 of {inl a2 ⇒ false; inr b2 ⇒ equalB b1 b2}}
equal× = λA . λequalA :: (A→ A→ Bool) . λB . λequalB :: (B → B → Bool) .

λp1 :: A × B . λp2 :: A × B .
equalA (outl p1) (outl p2) ∧ equalB (outr p1) (outr p2).

The essential difference to the original Haskell code is that universal abstractions
and applications are made explicit.

56 Generic programs

Turning to the semantics of generic definitions let us assume that we are given
an environment model E = (T ,Dom, app,uapp, const) for the polymorphic λ-
calculus. We will specify the semantics of generic definitions relative to this model.
To simplify notation we omit appT ,U , app−1

T ,U , uappT,ϕ, uapp−1
T,ϕ and we abbre-

viate T JT K by JT K and EJtK by JtK.
The definition of type-indexed values is inductive on the structure of NF?:

we have one equation for each primitive type constructor. Now, a standard result
from the theory of infinite trees (Courcelle 1983) guarantees that every inductively
defined function that maps trees to elements of some domain possesses a unique
least extension in the realm of infinite trees. Define poly〈T 〉 = Jpoly〈T 〉K and
polyC = JpolyC K, then there exists a unique least extension such that poly〈Ω〉 =
⊥—that is, poly is strict—and

poly〈BT(C) τ1 · · · τn〉 = polyC Jτ1K (poly〈τ1〉) · · · JτnK (poly〈τn〉)

for all type constants C :: ?n → ? and for all Böhm trees τ1, . . . , τn. In that sense,
poly is uniquely defined by its action on primitive type constructors, that is, by
poly1, polyChar , polyInt , poly+, poly× and poly→.

To summarize, the semantics of poly〈T 〉, where T ∈ MonoType is a closed
monomorphic type term, is given by poly〈BT(T)〉. Thus, to evaluate poly〈T 〉 we
apply the extension of poly to the Böhm tree of T .

Before we proceed let us briefly discuss how to implement generic definitions
in Haskell. Since Haskell does not support the definition of values that depend
on types, we have to work with encodings of types and a so-called universal data
type. Figures 3.1 and 3.2 summarize the implementation.

The data type Type, which corresponds to NF?, is used to represent types of
kind ?. Type constructors of kind ? → ? are simply given by functions of type
Type → Type. Since Haskell is a non-strict language, recursive data type declara-
tions can be directly translated into recursive value definitions. The functions list
and perfect serve as examples.

The data type Univ is a so-called universal data type that can be used to
represent values of an arbitrary type formed according to the grammar of NF?.
The class EP then introduces a function for embedding values into the universal
data type and a function for projecting values back. Perhaps surprisingly, embed
and project also enjoy generic definitions.

embed〈T :: ?〉 :: T → Univ
embed〈1〉 u = U1 u
embed〈Char〉 c = UChar c
embed〈Int〉 i = UInt i
embed〈A + B〉 (inl a) = USum (inl (embed〈A〉 a))
embed〈A + B〉 (inr b) = USum (inr (embed〈B〉 b))
embed〈A × B〉 (a, b) = UPair (embed〈A〉 a, embed〈B〉 b)
embed〈A→ B〉 f = UFun (embed〈B〉 · f · project〈A〉)
project〈T :: ?〉 :: Univ → T
project〈1〉 (U1 u) = u
project〈Char〉 (UChar c) = c
project〈Int〉 (UInt i) = i
project〈A + B〉 (USum (inl a)) = inl (project〈A〉 a)
project〈A + B〉 (USum (inr b)) = inr (project〈B〉 b)
project〈A × B〉 (UPair (a, b)) = (project〈A〉 a, project〈B〉 b)
project〈A→ B〉 (UFun f) = project〈B〉 · f · embed〈A〉

3.1 Type-indexed values 57

{- representing types -}
data Type = TChar

| TInt
| T1
| Type :+: Type
| Type :×: Type
| Type :→: Type

char , int , string :: Type
char = TChar
int = TInt
string = list char
list , perfect :: Type → Type
list a = T1 :+: (a :×: list a)
perfect a = a :+: perfect (a :×: a)
{- a universal datatype -}
data Univ = UChar Char

| UInt Int
| U1 1
| USum (Univ + Univ)
| UPair (Univ × Univ)
| UFun (Univ → Univ)

class EP A where
embed :: A→ Univ
project :: Univ → A

instance EP Univ where
embed = id
project = id

instance EP Char where
embed c = UChar c
project (UChar c) = c

instance EP Int where
embed i = UInt i
project (UInt i) = i

instance EP 1 where
embed u = U1 u
project (U1 u) = u

instance (EP A,EP B)⇒ EP (A + B) where
embed (inl a) = USum (inl (embed a))
embed (inr b) = USum (inr (embed b))
project (USum (inl a)) = inl (project a)
project (USum (inr b)) = inr (project b)

Figure 3.1: A poor man’s implementation of generic values in Haskell (part 1).

58 Generic programs

instance (EP A,EP B)⇒ EP (A × B) where
embed (a, b) = UPair (embed a, embed b)
project (UPair (a, b)) = (project a, project b)

instance (EP A,EP B)⇒ EP (A→ B) where
embed f = UFun (embed · f · project)
project (UFun f) = project · f · embed

instance (EP A)⇒ EP [A] where
embed x = embed (case x of {[]→ inl (); a : as → inr (a, as)})
project x = case project x of {inl ()→ []; inr (a, as)→ a : as }

instance (EP A)⇒ EP (Fork A) where
embed x = embed (case x of {fork a1 a2 → (a1, a2)})
project x = case project x of {(a1, a2)→ fork a1 a2}

instance (EP A)⇒ EP (Perfect A) where
embed x = embed (case x of {zeroP a → inl a; succP t → inr t })
project x = case project x of {inl a → zeroP a; inr t → succP t }
{- generic equality -}
equal :: Type → Univ → Univ → Bool
equal TChar c1 c2 = equalChar (project c1) (project c2)
equal TInt i1 i2 = equalInt (project i1) (project i2)
equal T1 u1 u2 = true
equal (a :+: b) s1 s2 = case (project s1, project s2) of

(inl a1, inl a2) → equal a a1 a2

(inl a1, inr b2) → false
(inr b1, inl a2) → false
(inr b1, inr b2) → equal b b1 b2

equal (a :×: b) p1 p2 = case (project p1, project p2) of
((a1, b1), (a2, b2)) → equal a a1 a2 ∧ equal b b1 b2

{- specializing generic equality -}
equalString :: String → String → Bool
equalString s1 s2 = equal string (embed s1) (embed s2)
equalPerfectInt :: Perfect Int → Perfect Int → Bool
equalPerfectInt t1 t2 = equal (perfect int) (embed t1) (embed t2)

Figure 3.2: A poor man’s implementation of generic values in Haskell (part 2).

3.1 Type-indexed values 59

Note that embed and project are mutually recursive and that the equations also
cover functional types. These clauses can be directly mapped to instances of EP .
Unfortunately, Haskell’s class and instance declarations are an imperfect substitute
for generic definitions: we have to provide explicit instances for every data type by
hand (we provide instance declarations for ‘[]’, Fork and Perfect in Figure 3.2).

Using the types Type and Univ we can implement a generic value of type
poly〈T :: ?〉 :: Poly T by a Haskell function of type poly :: Type → Poly Univ . The
only difference to a generic definition is that at each stage of the recursion we have
to project arguments out of the universal data type and embed results into the
universal data type.

Finally, if we require a generic value at some specific instance T , we call the
Haskell function with T ’s encoding. Furthermore, we have to embed arguments
into the universal data type and project results back.

3.1.3 Specializing generic values

The purpose of a generic value is to be specialized. Before we look at the formal
definition let us motivate the key idea. First of all, note that the poor man’s
implementation given in the previous section is rather inefficient because poly
interprets its type argument at each stage of the recursion. The type argument is,
however, statically known. By specializing poly〈T 〉 for a given T we remove this
interpretative layer. Thus, we can view the following as a very special instance of
partial evaluation.

In order to specialize poly〈T 〉, where T is a closed monomorphic type term,
we cannot simply unfold the definition of poly . To see why consider the following
attempt to specialize poly〈Perfect Int〉 (to improve readability we omit universal
applications):

poly〈Perfect Int〉
= poly〈Int + Perfect (Fork Int)〉
= poly+ polyInt (poly〈Perfect (Fork Int)〉)
= poly+ polyInt (poly〈Fork Int + Perfect (Fork2 Int)〉)
= poly+ polyInt (poly+ (poly〈Fork Int〉) (poly〈Perfect (Fork2 Int)〉))
= . . .

To define poly〈Perfect Int〉 we require poly〈Perfect (Forkn Int)〉 for each natural
number n > 1. So if we simply unfold the definition, we will in general not obtain
a finite representation of poly〈T 〉.

The key idea of the specialization is to mimic the structure of types at the
value level. For example, poly〈Perfect Int〉 should be compositionally defined in
terms of specializations for the constituent types, say, polyPerfect and polyInt . Since
Perfect is a function on types, polyPerfect is consequently a function operating on
generic values. Then the implementation for the type application Perfect Int is
given by the application of polyPerfect to polyInt . In a nutshell, type abstraction
is mapped to value abstraction, type application to value application, and type
recursion to value recursion. Note that we have already applied this principle in
the introduction when giving ad-hoc definitions for encode and decodes. Recall,
for instance, that the encoder for List has type ∀A . (A→ Bin)→ (List A→ Bin).
It is a function that maps an encoder for the base type A to an encoder for the
type List A.

60 Generic programs

It is important to note that when we specialize a generic value poly to a par-
ticular data type T , we must be prepared to specialize poly to types of arbitrary
kinds. The reason is simply that the definition of T may involve arbitrarily com-
plex types. For clarity, let us denote the generalization of poly that works for types
of arbitrary kinds by poly〈〈−〉〉. We call poly〈〈−〉〉 the promoted version of poly . In
general, we reserve single angle brackets for type arguments that range over type
of one fixed kind and use double angle brackets for type arguments of arbitrary
kinds. The double angle brackets are reminiscent of the semantic brackets J−K. In
fact, we will see shortly that this correspondence is intentional.

Now, since polyPerfect is a function that operates on generic values, it has a
type different from polyInt . In fact, the type of poly〈〈T ::T〉〉 is given by Poly〈T〉 T
where Poly〈T〉 is defined by induction on the structure of kinds.

Poly〈T :: 2〉 :: T→ ?
Poly〈?〉 T = Poly T
Poly〈A × B〉 T = Poly〈A〉 (Outl T) × Poly〈B〉 (Outr T)
Poly〈A→ B〉 T = ∀A .Poly〈A〉 A→ Poly〈B〉 (T A)

If T is a pair of types, then poly〈〈T 〉〉 is a pair of generic values. Similarly, if T is
a type constructor of kind A → B, then poly〈〈T 〉〉 is a function that maps values
of type Poly〈A〉 A to values of type Poly〈B〉 (T A), for all types A. Again, it
is important that A is universally quantified since T may be applied to different
types.

The nesting of universal quantifiers is dictated by the kind: if T has order n,
then Poly〈T〉 T is a rank-n type—assuming that Poly T has rank 0. For instance,
for GRose :: (?→ ?)→ (?→ ?) we have

Poly〈(?→ ?)→ (?→ ?)〉 GRose
= ∀F .Poly〈?→ ?〉 F → Poly〈?→ ?〉 (GRose F)
= ∀F . (∀B .Poly〈?〉 B → Poly〈?〉 (F B))→ (∀A .Poly〈?〉 A→ Poly〈?〉 (GRose F A))
= ∀F . (∀B .Poly B → Poly (F B))→ (∀A .Poly A→ Poly (GRose F A)).

Since GRose has an order-2 kind, Poly〈T〉 GRose is a rank-2 type.
The definition of poly〈〈T 〉〉 is inductive on the structure of kinding derivations.

In fact, we can view the definition as an interpretation of the simply typed λ-
calculus.

poly〈〈T :: T〉〉 :: Poly〈T〉 T
poly〈〈C :: C〉〉 = polyC

poly〈〈A :: A〉〉 = polyA

poly〈〈(T1,T2) :: T1 × T2〉〉 = (poly〈〈T1 :: T1〉〉, poly〈〈T2 :: T2〉〉)
poly〈〈Outl T :: T1〉〉 = outl (poly〈〈T :: T1 × T2〉〉)
poly〈〈Outr T :: T2〉〉 = outr (poly〈〈T :: T1 × T2〉〉)
poly〈〈(ΛA .T) :: (V→ T)〉〉 = λA . λpolyA . poly〈〈T :: T〉〉
poly〈〈T U :: V〉〉 = (poly〈〈T :: U→ V〉〉) U (poly〈〈U :: U〉〉)
poly〈〈Fix T :: U〉〉 = fix ((poly〈〈T :: U→ U〉〉) (Fix T))

Three remarks are in order. First, we allow only monomorphic types as type
indices. This restriction is, however, quite mild. Haskell, for instance, does not
allow universal quantifiers in data declarations.

Second, for the translation we use a simple variable naming convention, which
obviates the need for an explicit environment. We assume that poly〈〈A〉〉 is mapped

3.1 Type-indexed values 61

to the variable polyA, which has type Poly〈A〉 A with A = kind A. We often write
polyA by concatenating the name of the generic value and the name of the type
variable as in encodeList or encodeA. Of course, to avoid name capture we assume
that polyA is distinct from variables introduced by the generic programmer.

Third, the last equation of the definition probably requires some explanation.
The instance poly〈〈T :: U → U〉〉 has type ∀A .Poly〈U〉 A → Poly〈U〉 (T A). Sup-
plying Fix T as the type argument and noting that T (Fix T) ≈ T , we obtain a
value of type Poly〈U〉 (Fix T) as desired.

Remark 3.1 The structure of poly〈〈T 〉〉’s definition becomes more visible if we
omit kind annotations, universal abstractions and universal applications.

poly〈〈T :: T〉〉 :: Poly〈T〉 T
poly〈〈C 〉〉 = polyC

poly〈〈A〉〉 = polyA

poly〈〈(T1,T2)〉〉 = (poly〈〈T1〉〉, poly〈〈T2〉〉)
poly〈〈Outl T 〉〉 = outl (poly〈〈T 〉〉)
poly〈〈Outr T 〉〉 = outr (poly〈〈T 〉〉)
poly〈〈ΛA .T 〉〉 = λpolyA . poly〈〈T 〉〉
poly〈〈T U 〉〉 = (poly〈〈T 〉〉) (poly〈〈U 〉〉)
poly〈〈Fix T 〉〉 = fix (poly〈〈T 〉〉)

Indeed, type abstraction is mapped to value abstraction, type application to value
application, and type recursion to value recursion. ut

Now, the specialized version of poly〈T 〉, which we write polyT , is simply

polyT = poly〈〈T 〉〉.

As an example, the specialized version of poly〈Perfect Int〉 is polyPerfect Int polyInt

where polyPerfect is given by

polyFork :: ∀A .Poly A→ Poly (Fork A)
polyFork = λA . λpolyA . poly× A polyA A polyA

polyPerfect :: ∀A .Poly A→ Poly (Perfect A)
polyPerfect = fix ((λP . λpolyP :: (∀B .Poly B → Poly (P B)) . λA . λpolyA :: Poly A .

poly+ A polyA (P (Fork A)) (polyP (Fork A) (polyFork A polyA))) Perfect).

We can simplify the last definition slightly by performing a λ-reduction and by
writing a = fix f as the recursive equation a = f a.

polyPerfect :: ∀A .Poly A→ Poly (Perfect A)
polyPerfect A polyA = poly+ A polyA (Perfect (Fork A))

(polyPerfect (Fork A) (polyFork A polyA))

The code nicely illustrates why we require polymorphic recursion when we trans-
late it to Haskell: the recursive call is used at an instance, Fork A, of the declared
type.

As a second example, consider the specialization of poly to the ubiquitous list
data type List = ΛA .Fix (ΛB . 1+ A × B)—this is the λ-dropped variant of List ,
see Section 2.5.1.

polyList :: ∀A .Poly A→ Poly (List A)
polyList = λA . λpolyA :: Poly A .fix ((λL . λpolyL :: Poly L .

poly+ 1 poly1 (A × L) (poly× A polyA L polyL)) (List A))

62 Generic programs

Again, we can simplify the definition slightly, this time by using a local definition.

polyList :: ∀A .Poly A→ Poly (List A)
polyList A polyA = polyL

where polyL :: Poly (List A)
polyL = poly+ 1 poly1 (A × List A) (poly× A polyA (List A) polyL)

This time ordinary recursion will do (polyL has not even a polymorphic type).
Finally, let us consider some instances given in Haskell. Figures 3.3 and 3.4

list the specialization of encode, defined in Section 1.1.1, to some of the data
types introduced in Section 2.1. Note that we have simplified the code by inlining
the encodeC instances. The specializations illustrate several interesting points.
As to be expected, the function encodeSequ makes use of polymorphic recursion:
the recursive call has type ∀A . (Fork A → Bin) → (Sequ (Fork A) → Bin),
which is a substitution instance of the declared type. In general, polymorphic
recursion is required whenever the type recursion is nested. Several functions
have rank-2 type signatures; encodeFMapFork shows in a nutshell why this is
necessary: the argument encodeFA is applied at two different instances: the inner
call has type ∀A . (A → Bin) → (FA A → Bin) while the outer call has type
∀A . (FA A → Bin) → (FA (FA A) → Bin). The functions encodeFMapSequ and
encodeSquare ′ even combine polymorphic recursion and the specialized use of a
polymorphic argument.

The following theorem states that poly〈〈−〉〉 is well-typed.

Theorem 3.2 If poly〈〈C :: C〉〉 :: Poly〈C〉 C for all type constants C ∈ Const , then
poly〈〈T :: T〉〉 :: Poly〈T〉 T for all closed monomorphic type terms T ∈ MonoType.

Proof. This is a simple instance of Theorem 3.10. ut

The rest of this section is concerned with the proof of correctness. You may
wish to skip the following on first reading. Roughly speaking, we have to show
that poly〈T 〉 = poly〈〈T 〉〉, that is, the extension of poly is equal to the promoted
version. The proof takes place in a semantic setting and is based on a variant of
logical relations. Here is a brief outline of the proof:

Let poly〈〈T 〉〉η = Jpoly〈〈T 〉〉Kη be the semantic pendant of poly〈〈−〉〉. We have
already mentioned that poly〈〈−〉〉 can be seen as specifying an interpretation of
type terms (or of terms of the simply typed λ-calculus if you like). A second
interpretation of type terms is given by the Böhm-tree model. Now, let T be a
closed monomorphic type term of kind ?. Then we can prove that the Böhm-tree
τ = BT(T) and the instance ϕ = poly〈〈T 〉〉 are related by poly〈τ〉 = ϕ. This result
immediately implies poly〈BT(T)〉 = poly〈〈T 〉〉 as desired.

For ease of reference here is the definition of poly〈〈−〉〉 spelled out in detail.

poly〈〈C :: C〉〉η = polyC

poly〈〈A :: A〉〉η = η(polyA)
poly〈〈(T1,T2) :: T1 × T2〉〉η = (poly〈〈T1 :: T1〉〉η,poly〈〈T2 :: T2〉〉η)
poly〈〈Outl T :: T1〉〉η = outl (poly〈〈T :: T1 × T2〉〉η)
poly〈〈Outr T :: T2〉〉η = outr (poly〈〈T :: T1 × T2〉〉η)
poly〈〈(ΛA .T) :: S→ T〉〉η = λα .λϕ .poly〈〈T :: T〉〉η(A := α, polyA := ϕ)
poly〈〈T U :: V〉〉η = (poly〈〈T :: U→ V〉〉η) (JU Kη) (poly〈〈U :: U〉〉η)
poly〈〈Fix T :: U〉〉η = lfp ((poly〈〈T :: U→ U〉〉η) (lfp (JT Kη)))

3.1 Type-indexed values 63

encodeMaybe :: ∀A . (A→ Bin)→ (Maybe A→ Bin)
encodeMaybe encodeA nothing = [0]
encodeMaybe encodeA (just a) = 1 : encodeA a
encodeList :: ∀A . (A→ Bin)→ (List A→ Bin)
encodeList encodeA = encodeL

where encodeL nil = [0]
encodeL (cons a as) = 1 : encodeA a ++ encodeL as

encodeRose :: ∀A . (A→ Bin)→ (Rose A→ Bin)
encodeRose encodeA = encodeR

where encodeR (branch a ts) = encodeA a ++ encodeList encodeR ts
encodeGRose :: ∀F . (∀B . (B → Bin)→ (F B → Bin))

→ (∀A . (A→ Bin)→ (GRose F A→ Bin))
encodeGRose encodeF encodeA = encodeG

where encodeG (gbranch a ts) = encodeA a ++ encodeF encodeG ts
encodeFix :: ∀F . (∀A . (A→ Bin)→ (F A→ Bin))

→ (Fix F → Bin)
encodeFix encodeF = encodeR

where encodeR (in x) = encodeF encodeR x
encodeListBase :: ∀A . (A→ Bin)→ (∀B . (B → Bin)

→ (ListBase A B → Bin))
encodeListBase encodeA encodeB nilL

= [0]
encodeListBase encodeA encodeB (consL a b)

= 1 : encodeA a ++ encodeB b
encodeFork :: ∀A . (A→ Bin)→ (Fork A→ Bin)
encodeFork encodeA (fork a1 a2) = encodeA a1 ++ encodeA a2

encodeSequ :: ∀A . (A→ Bin)→ (Sequ A→ Bin)
encodeSequ encodeA endS = [0]
encodeSequ encodeA (zeroS s) = 1 : 0 : encodeSequ (encodeFork encodeA) s
encodeSequ encodeA (oneS a s) = 1 : 1 : encodeA a ++ encodeSequ (encodeFork encodeA) s

Figure 3.3: Specializing encode to different data types (part 1).

64 Generic programs

encodeFMapFork :: ∀FA . (∀W . (W → Bin)→ (FA W → Bin))
→ (∀V . (V → Bin)→ (FMapFork FA V → Bin))

encodeFMapFork encodeFA encodeV (trieFork tf)
= encodeFA (encodeFA encodeV) tf

encodeFMapSequ :: ∀FA . (∀W . (W → Bin)→ (FA W → Bin))
→ (∀V . (V → Bin)→ (FMapSequ FA V → Bin))

encodeFMapSequ encodeFA encodeV nullSequ
= [0]

encodeFMapSequ encodeFA encodeV (trieSequ te tz to)
= 1 : encodeMaybe encodeV te
++ encodeFMapSequ (encodeFMapFork encodeFA) encodeV tz
++ encodeFA (encodeFMapSequ

(encodeFMapFork encodeFA) encodeV) to
encodeSquare :: ∀A . (A→ Bin)→ (Square A→ Bin)
encodeSquare encodeA m = encodeSquare ′ encodeNil encodeA m
encodeSquare ′ :: ∀F . (∀B . (B → Bin)→ (F B → Bin))

→ (∀A . (A→ Bin)→ (Square ′ F A→ Bin))
encodeSquare ′ encodeF encodeA (zeroM m)

= 0 : encodeF (encodeF encodeA) m
encodeSquare ′ encodeF encodeA (succM m)

= 1 : encodeSquare ′ (encodeCons encodeF) encodeA m
encodeNil :: ∀A . (A→ Bin)→ (Nil A→ Bin)
encodeNil encodeA nilN = []
encodeCons :: ∀F . (∀B . (B → Bin)→ (F B → Bin))

→ (∀A . (A→ Bin)→ (Cons F A→ Bin))
encodeCons encodeF encodeA (consC a x)

= encodeA a ++ encodeF encodeA x

Figure 3.4: Specializing encode to different data types (part 2).

3.1 Type-indexed values 65

Before we proceed let us make one small amendment to the definition of poly〈〈−〉〉,
which will simplify the proof of correctness. Consider the last equation, which
is concerned with the interpretation of type recursion, and note the nesting of
fixed points. Let ϕ = poly〈〈T 〉〉η and Φ = JT Kη, then the right-hand side is
lfp (ϕ (lfp Φ)). Perhaps surprisingly, we can rewrite this expression using a fixed
point operator that works on Φ and ϕ simultaneously. Let

slfp Φ ϕ =
⊔
{δn | n ∈ N}

where α0 = ⊥ δ0 = ⊥
αn+1 = Φ αn δn+1 = ϕ αn δn ,

then one can prove that slfp Φ ϕ = lfp (ϕ (lfp Φ)). In fact, this a simple instance
of a more general result due to Bekič, which shows how to solve simultaneous
fixed point equations using iterated fixed points (Plotkin 1983). Using slfp the
last equation of poly〈〈−〉〉 reads

poly〈〈Fix T :: U〉〉η = slfp (JT Kη) (poly〈〈T :: U→ U〉〉η).

Remark 3.3 We can also make this change on the syntactical level. To this end
we introduce a family of kind-indexed fixed point operators of type

sfixU :: ∀F . (∀A .Poly〈U〉 A→ Poly〈U〉 (F A))→ Poly〈U〉 (Fix F)

and replace the last equation of poly〈〈−〉〉 by

poly〈〈Fix T :: U〉〉 = sfixU T (poly〈〈T :: U→ U〉〉).

Whether this has any practical advantages remains to be seen. ut

We have already remarked that the proof of correctness is based on a variant of
logical relations that relates Böhm-like trees to generic instances. Since the type
of a generic instance depends on the type argument, the relation is a subset of a
dependent product:

ST ⊆
∑
τ ∈ BT .Dom (PolyT(JτK)),

where PolyA = JPoly〈A〉K. The members of S are given by

(τ, ϕ) ∈ S? ≡ poly〈τ〉 = ϕ
(τ, ϕ) ∈ ST×U ≡ (outl τ, outl ϕ) ∈ ST ∩ (outr τ, outr ϕ) ∈ SU

(τ, ϕ) ∈ ST→U ≡ ∀υ ∈ BT .∀δ ∈ Dom (PolyT(JυK)) .
(υ, δ) ∈ ST ⊃ (τ υ, ϕ JυK δ) ∈ SU.

Note that S closely adheres to the structure of logical relations: pairs are re-
lated iff the corresponding components are related; functions are related iff related
arguments are taken to related results. The only difference to ‘classical’ logical
relations is that in the last clause ϕ additionally takes JυK as an argument. This
is because the instance poly〈〈F :: T→ U〉〉 is given by a polymorphic function.

Recall from Section 2.4.3 that the set of all Böhm-like trees gives rise to a model
of the simply typed λ-calculus. The following fact is a restatement of Fact 2.28.

66 Generic programs

Fact 3.4 Let V be a monomorphic type term of kind V. Let % : Var → B and
η :: Var → T be two environments such that J%(A)K = η(A) for every free variable
A of V , then

JBJV K%K = JV Kη. ut

The following Lemma is a variant of Lemma 2.20 suitably modified to work with
the relation S.

Lemma 3.5 Let V be a monomorphic type term of kind V. Let % : Var → B and
η :: (Var → T)] (var → Dom) be two environments such that J%(A)K = η(A) and
(%(A), η(polyA)) ∈ SA for every free variable A :: A of V :: V, then

(BJV :: VK%,poly〈〈V :: V〉〉η) ∈ SV.

Proof. We proceed by induction on the kinding derivation of V :: V.

• Case V = C :: C: if T = ?k → ?, then (BT(C),poly〈〈C 〉〉) ∈ ST equals

poly〈BT(C) υ1 · · · υk 〉 = polyC Jυ1K (poly〈υ1〉) . . . Jυk K (poly〈υk 〉),

which holds by assumption (see Section 3.1.2).

• Case V = A :: A: holds since %(A) and η(polyA) are related.

• Case V = (T1,T2) :: T1 × T2: by the induction hypothesis we have

(BJT1 ::T1K%,poly〈〈T1 ::T1〉〉η) ∈ ST1 ∩ (BJT2 ::T2K%,poly〈〈T2 ::T2〉〉η) ∈ ST2 ,

which immediately implies

((BJT1 :: T1K%,BJT2 :: T2K%), (poly〈〈T1 :: T1〉〉η,poly〈〈T2 :: T2〉〉η)) ∈ ST1×T2 .

• Case V = Outl T :: T1: by the induction hypothesis we have

(BJT :: T1 × T2K%,poly〈〈T :: T1 × T2〉〉η) ∈ ST1×T2 ,

which immediately implies

(outl (BJT :: T1 × T2K%), outl (poly〈〈T :: T1 × T2〉〉η)) ∈ ST1 .

• Case V = Outr T :: T2: analogous.

• Case V = (ΛA .T) :: S→ T: We have to show that

(BJ(ΛA .T) :: S→ TK%,poly〈〈(ΛA .T) :: S→ T〉〉η) ∈ SS→T

≡ ∀υ δ . (υ, δ) ∈ SS

⊃ (BJ(ΛA .T) :: S→ TK% υ,poly〈〈(ΛA .T) :: S→ T〉〉η JυK δ) ∈ ST

Assume that (υ, δ) ∈ SS. Since the modified environments %(A := υ) and
η(A := JυK, polyA := δ) are related, we can invoke the induction hypothesis
to obtain

(BJT :: TK%(A := υ),poly〈〈T :: T〉〉η(A := JυK, polyA := δ)) ∈ ST.

Now, since BJ(ΛA .T) :: S → TK% υ = BJT :: TK%(A := υ) and furthermore
poly〈〈(ΛA .T) :: S → T〉〉η JυK δ = poly〈〈T :: T〉〉η(A := JυK, polyA := δ) the
proposition follows.

3.1 Type-indexed values 67

• Case V = (T U) :: V: by induction hypothesis we have

(BJT :: U→ VK%,poly〈〈T :: U→ V〉〉η) ∈ SU→V

≡ ∀υ δ . (υ, δ) ∈ SU

⊃ ((BJT :: U→ VK%) υ,poly〈〈T :: U→ V〉〉η JυK δ) ∈ SV

and
(BJU :: UK%,poly〈〈U :: U〉〉η) ∈ SU.

Setting υ = BJU :: UK% and δ = poly〈〈U :: U〉〉η and since JBJU K%K = JU Kη,
we obtain

((BJT :: U→ VK%) (BJU :: UK%), (poly〈〈T :: U→ V〉〉η) (JU Kη) (poly〈〈U :: U〉〉η)) ∈ SV.

• Case V = Fix T :: U: by induction hypothesis we have

(BJT :: U→ UK%,poly〈〈T :: U→ U〉〉η) ∈ SU→U

≡ ∀υ δ . (υ, δ) ∈ SU

⊃ (BJT :: U→ UK% υ,poly〈〈T :: U→ U〉〉η JυK δ) ∈ SU.

Define
τ0 = ⊥
τn+1 = BJT :: U→ UK% τn

δ0 = ⊥
δn+1 = poly〈〈T :: U→ U〉〉η JτnK δn .

Using the induction hypothesis and the fact that SV is pointed (since poly
is strict) we can show

(τn , δn) ∈ SU

for all n ∈ N. Since SV is furthermore chain-complete, we have

(
⊔
{τn | n ∈ N},

⊔
{δn | n ∈ N}) ∈ SU.

Now, since
⊔
{τn | n ∈ N} = lfp (BJT :: U→ UK%) and⊔

{δn | n ∈ N}
= { definition slfp }

slfp (JBJT :: U→ UK%K) (poly〈〈T :: U→ U〉〉η)
= { JBJT K%K = JT Kη }

slfp (JT :: U→ UKη) (poly〈〈T :: U→ U〉〉η)

the proposition follows. ut

Theorem 3.6 Let T be a closed monomorphic type term of kind ?, then

poly〈BT(T)〉 = poly〈〈T 〉〉. ut

68 Generic programs

3.2 Generalizing to first- and second-order kinds

In the previous section we have considered generic values indexed by types of
kind ?. For generic values such as size that are indexed by type constructors,
some additional machinery is needed. Before we tackle the general case, we first
discuss the main ideas for type indices of kind ? → ? (Section 3.2.1) and kind
(?→ ?)→ ?→ ? (Section 3.2.2). Sections 3.2.3–3.2.5 then mirror the structure of
the previous section. Section 3.2.3 characterizes the set of normal forms of types
of first- or second-order kind, Section 3.2.4 introduces a scheme for defining values
indexed by types of this kind, and Section 3.2.5 shows how to promote a generic
value thus defined to types of arbitrary kinds. Finally, Section 3.2.6 explains why
the approach is limited to types of first- and second-order kinds.

3.2.1 Type indices of kind ?→ ?

Generic values such as size that are indexed by type constructors of kind ? → ?
are defined using a scheme similar to the one introduced in Section 3.1.2, except
that the type patterns on the left-hand side operate on type constructors and that
there is one additional case to take into account, namely the identity type. As an
example, consider the generic definition of the mapping function (as usual, we use
Haskell syntax, that is, we omit universal abstractions and applications).

map〈T :: ?→ ?〉 :: ∀A B . (A→ B)→ (T A→ T B)
map〈Id〉 m a = m a
map〈1〉 m u = u
map〈Char〉 m c = c
map〈Int〉 m i = i
map〈F + G〉 m (inl f) = inl (map〈F 〉 m f)
map〈F + G〉 m (inr g) = inr (map〈G〉 m g)
map〈F × G〉 m (f , g) = (map〈F 〉 m f ,map〈G〉 m g)

The definition employs the type abbreviations introduced in Section 2.5.1. We will
refer to 1, Char , Int , (+) and (×) as the lifted variants of 1, Char , Int , (+) and
(×), respectively. When used as type patterns, we call Id projection pattern and
1, Char , Int , F + G and F × G constructor patterns.

The mapping function map〈T 〉 applies a given function to each element of
type A in a given container of type T A. The above definition shows quite clearly
that the mapping function leaves the structure of the container intact. We have
remarked several times that the mapping function is related to the categorical
concept of a functor—map〈T 〉 corresponds to the morphism part of a functor the
object part being given by the type constructor T . Now, the above definition
of map makes essential use of the fact that Id , 1, Char , Int , (+) and (×) are
functors (or bifunctors) themselves. Using the mapping functions of these type
constructors we can define map more succinctly:

map〈T :: ?→ ?〉 :: ∀A B . (A→ B)→ (T A→ T B)
map〈Id〉 m = m
map〈1〉 m = id
map〈Char〉 m = id
map〈Int〉 m = id
map〈F + G〉 m = map〈F 〉 m + map〈G〉 m
map〈F × G〉 m = map〈F 〉 m × map〈G〉 m.

3.2 Generalizing to first- and second-order kinds 69

Now, can we be sure that the type patterns cover all possible cases? To answer
this question let us characterize the set of normal forms of types of kind ? → ?.
Assume that we are given a type F of kind ? → ?. Applying η-expansion we
have F = ΛA .F A. The body of the abstraction has kind ? and we know from
Section 3.1.1 the shape of its normal form. The free type variable, A, is simply
treated as an additional type constant of kind ?. Now, to make the passing of A
explicit we abstract A out. The abstraction function [A] T is defined by induction
on the structure of normal forms of kind ?.

[A] A = Id
[A] 1 = 1
[A] Char = Char
[A] Int = Int
[A] T + U = ([A] T) + ([A] U)
[A] T × U = ([A] T) × ([A] U)
[A] T → U = ([A] T)→ ([A] U)

The abstraction process replaces A by Id and the primitive type constructors by
their lifted versions. It is easy to see that ΛA .T = [A] T . Thus, we obtain the
following characterization of NF?→?.

NF?→? ::= Id
| 1
| Char
| Int
| NF?→?1 + NF?→?2

| NF?→?1 × NF?→?2

| NF?→?1 → NF?→?2

We can, in fact, view Id , 1, Char , Int , ‘+’, ‘×’ and ‘→’ as a tiny combinator
language for defining type constructors of kind ?→ ?.

3.2.2 Type indices of kind (?→ ?)→ ?→ ?

Let us start with a characterization of the set of normal forms of types of kind
(?→ ?)→ ?→ ?. We proceed exactly as in the previous section. Given a type H
of kind (?→ ?)→ ?→ ? we apply η-expansion to obtain H = ΛA1 A2 .H A1 A2.
The body of the abstraction has kind ? and its normal form can be characterized
in the usual way. Again, the type variables A1 :: ? → ? and A2 :: ? are treated as
additional type constants. The abstraction function now simultaneously abstracts
A1 and A2 out (note that A1 takes an argument since it has kind ?→ ?):

[A1 A2] (A1 T) = P1 ([A1 A2] T)
[A1 A2] A2 = P2

[A1 A2] 1 = 1
[A1 A2] Char = Char
[A1 A2] Int = Int
[A1 A2] T + U = ([A1 A2] T) + ([A1 A2] U)
[A1 A2] T × U = ([A1 A2] T) × ([A1 A2] U)
[A1 A2] T → U = ([A1 A2] T)→ ([A1 A2] U).

70 Generic programs

The type combinators are defined as follows:

P1 H = ΛA1 A2 .A1 (H A1 A2)
P2 = ΛA1 A2 .A2

1 = ΛA1 A2 . 1
Char = ΛA1 A2 .Char
Int = ΛA1 A2 . Int
H1 + H2 = ΛA1 A2 . (H1 A1 A2) + (H2 A1 A2)
H1 × H2 = ΛA1 A2 . (H1 A1 A2) × (H2 A1 A2)
H1 → H2 = ΛA1 A2 . (H1 A1 A2)→ (H2 A1 A2).

Since we have two type variables, A1 and A2, we have two projection patterns,
P1 H and P2. Consequently, the set of normal forms NF(?→?)→?→? is characterized
by the following grammar.

NF(?→?)→?→? ::= P1 NF(?→?)→?→?

| P2

| 1
| Char
| Int
| NF(?→?)→?→?

1 + NF(?→?)→?→?
2

| NF(?→?)→?→?
1 × NF(?→?)→?→?

2

| NF(?→?)→?→?
1 → NF(?→?)→?→?

2

An example of a generic function that is indexed by types of this kind is a so-
called higher-order mapping function. A higher-order functor operates on a functor
category, which has as objects functors and as arrows natural transformations. In
Haskell we can model natural transformations by polymorphic functions:

type F1
·→ F1 = ∀A .F1 A→ F1 A.

A natural transformation between functors F1 and F2 is simply a polymorphic
function of type F1

·→ F2. A higher-order functor H then consists of a type
constructor of kind (?→ ?)→ (?→ ?), such as GRose, and an associated mapping
function of type (F1

·→ F2)→ (H F1
·→ H F2). The mapping function enjoys the

following generic definition.

hmap〈T :: (?→ ?)→ ?→ ?〉 :: ∀F1 F2 . (Functor F1,Functor F2)
⇒ (F1

·→ F2)→ (T F1
·→ T F2)

hmap〈P1 H 〉 m = m · fmap (hmap〈H 〉 m)
hmap〈P2〉 m = id
hmap〈1〉 m = id
hmap〈Char〉 m = id
hmap〈Int〉 m = id
hmap〈H1 + H2〉 m (inl h1) = inl (hmap〈H1〉 m h1)
hmap〈H1 + H2〉 m (inr h2) = inr (hmap〈H2〉 m h2)
hmap〈H1 × H2〉 m (h1, h2) = (hmap〈H1〉 m h1, hmap〈H2〉 m h2)

Note that the assumption that F1 and F2 are functors is expressed by the Haskell
context (Functor F1,Functor F2). Actually, we only require a simpler context,
namely Functor F1, since the method of Functor , fmap, is only used at that type.
There is an alternative definition of hmap given by (only the first equation is
different)

hmap〈P1 H 〉 m = fmap (hmap〈H 〉 m) ·m

3.2 Generalizing to first- and second-order kinds 71

that requires a Functor F2 context. Both definitions are equivalent by virtue of
m’s naturality condition (or by virtue of the parametricity theorem).

We can use the higher-order map, for instance, to change the ‘base collec-
tion’ F in a generalized rose tree of type GRose F A. Say, we are given a function
toSequ :: List ·→ Sequ that turns a list into a binary random-access list. Using
hmap〈GRose〉 toSequ :: GRose List ·→ GRose Sequ we can change the base col-
lection of a generalized rose tree from lists to binary random-access lists. Note
that the higher-order map does not touch the elements contained in the tree. The
elements can be changed using map〈GRose List〉 or map〈GRose Sequ〉.

3.2.3 Normal forms of types

After having considered two instances, let us tackle the general case. To this
end assume that we are given an arbitrary set of type constants Const = {C1 ::
C1, . . . ,Cl :: Cl} where the kind of the i -th constant Ci is given by Ci = ?ki → ?.
So the only requirement on Const is that the type constants have first-order kinds
(note that if order(C) 6 1 then C = ?k → ? for some k). Furthermore, assume
that we want to define a generic value that is indexed by a type constructor of
kind P = P1 → · · · → Pn → ? with Pj = ?mj → ?. So P has at most order 2.

For characterizing the set of normal forms it is useful to introduce the notion
of lifting. We have already introduced lifting in Section 2.4.4 albeit for terms of
the simply typed λ-calculus. The following is a recap of the definitions adapted
to type terms. Lifting maps a type T :: T to a type ↑T :: ↑T where ↑T is given by

↑? = P
↑T × U = (↑T) × (↑U)
↑T→ U = (↑T)→ (↑U).

Note that ↑T is defined by induction on the structure of kind terms. If P = ?, then
(↑) is simply the identity. The lifted version ↑T of type T is defined by induction
on the structure of type terms:

↑C = C
↑A = A
↑(T1,T2) = (↑T1, ↑T2)
↑Outl T = Outl (↑T)
↑Outr T = Outr (↑T)
↑ΛA .T = ΛA . ↑T
↑T U = (↑T) (↑U)
↑Fix T = Fix (↑T).

The transformation assumes that for each type variable A ::A there is a lifted type
variable A :: ↑A. The lifted versions of the primitive types Ci :: ↑Ci are given by

Ci (H1 :: P) . . . (Hki :: P)
= Λ(X1 :: P1) . . . (Xn :: Pn) .Ci (H1 X1 . . . Xn) . . . (Hki X1 . . . Xn).

Recall from the previous two sections that the type patterns used in a generic
definition can be divided into two categories: projection patterns and constructor
patterns. The latter are formed using the lifted type constants. The former are
built using the projection types Pj :: ↑Pj defined by

Pj (H1 :: P) . . . (Hmj :: P)
= Λ(X1 :: P1) . . . (Xn :: Pn) .Xj (H1 X1 . . . Xn) . . . (Hmj X1 . . . Xn).

72 Generic programs

Consequently, the set of normal forms is characterized by the following grammar.

NFP ::= P1 NFP
1 . . . NFP

m1

| · · ·
| Pn NFP

1 . . . NFP
mn

| C1 NFP
1 . . . NFP

k1

| · · ·
| Cl NFP

1 . . . NFP
kl

We have n projection patterns and l constructor patterns. Thus, the total number
of patterns depends on the arity of P and on the number of primitive types.

The following lemma, which will be needed in Section 3.2.5, shows that if we
apply a lifted type to the projection types we obtain the original type back.

Lemma 3.7 Let T :: P be a closed monomorphic type term, then

(↑T) P1 . . . Pn ≈ T .

Proof. The proof is based on Corollary 2.22 (we use the Böhm tree model as
the underlying model E). First of all, we require type-level counterparts of the
combinators K and S .

K̂ T = Λ(X1 :: P1) . . . (Xn :: Pn) .T
Ŝ T U = Λ(X1 :: P1) . . . (Xn :: Pn) . (T X1 . . . Xn) (U X1 . . . Xn)

Let Ŝ = BJŜK and note that appK ϕ d = Ŝ ϕ d . Now, Corollary 2.22 states that
BJK̂ T K ∼P BJ↑T K, which is equivalent to

∀τ1 . . . τn .∀τ ′1 . . . τ ′n .
τ1 ∼P1 τ ′1 ∩ · · · ∩ τn ∼Pn τ ′n
⊃ Ŝ · · · (Ŝ (BJK̂ T K) τ1) · · · τn = BJ↑T K τ ′1 · · · τ ′n ,

(3.1)

where

τj ∼Pj τ ′j ≡ ∀υ1 . . . υmj
. Ŝ · · · (Ŝ τj υ1) · · · υmj

= τ ′j υ1 · · · υmj
.

Note that BJNthjK ∼Pj BJPjK where Nthj = Λ(X1 ::P1) . . . (Xn ::Pn) .Xj , which
implies

BJ(↑T) P1 . . . PnK
= { definition of B }
BJ↑T K BJP1K · · · BJPnK

= { (3.1) and BJNthjK ∼Pj BJPjK }
Ŝ . . . (Ŝ (BJK̂ T K) BJNth1K) · · · BJNthnK

= { definition of B }
BJŜ . . . (Ŝ (K̂ T) Nth1) . . . NthnK

= { definition of Ŝ , K̂ and Nthj }
BJΛX1 . . . Xn .T X1 . . . XnK

= { η-conversion }
BJT K.

Consequently, (↑T) P1 . . . Pn ≈ T . ut

3.2 Generalizing to first- and second-order kinds 73

For instance, if P = ? → ?, we have P1 = Id and (↑T) Id = T . As a second
example, if P = ? → ? → ?, we have P1 = Fst = ΛA1 A2 .A1, P2 = Snd =
ΛA1 A2 .A2 and (↑T) Fst Snd = T .

3.2.4 Defining generic values

The characterization of normal forms given in the previous section suggests the
following scheme for defining values indexed by type constructors of kind P.

poly〈T :: P〉 :: Poly T
poly〈P1 A1 . . . Am1〉 = polyP1

A1 (poly〈A1〉) . . . Am1 (poly〈Am1〉)
. . .
poly〈Pn A1 . . . Amn〉 = polyPn A1 (poly〈A1〉) . . . Amn (poly〈Amn〉)
poly〈C1 A1 . . . Ak1〉 = polyC1

A1 (poly〈A1〉) . . . Ak1 (poly〈Ak1〉)
. . .
poly〈Cl A1 . . . Akl〉 = polyCl

A1 (poly〈A1〉) . . . Akl (poly〈Akl〉)

The type of poly〈T 〉 is given by Poly T , where Poly is a type constructor of kind
P→ ?. The polyPj and the polyCi values must have the following types:

polyPj :: ∀A1 .Poly A1 → · · · → ∀Amj .Poly Amj → Poly (Pj A1 . . . Amj)
polyCi :: ∀A1 .Poly A1 → · · · → ∀Aki .Poly Aki → Poly (Ci A1 . . . Aki).

Each of the generic definitions we have encountered so far adheres to this defini-
tional scheme. As an example, let us consider how the size function introduced in
the introduction fits into it: size is indexed by type constructors of kind ? → ?,
size〈T 〉 has type Size T = ∀A .T A→ Int and the functions sizeId , size1, sizeInt ,
sizeChar , size+, and size× are given by

sizeId = λA . λa :: A . 1
size1 = λA . λu :: 1 . 0
sizeChar = λA . λc :: Char . 0
sizeInt = λA . λi :: Int . 0
size+ = λF . λsizeF :: (∀A .F A→ Int) . λG . λsizeG :: (∀A .G A→ Int) .

λA . λs :: (F A + G A) . case s of {inl f ⇒ sizeF A f ; inr g ⇒ sizeG A g }
size× = λF . λsizeF :: (∀A .F A→ Int) . λG . λsizeG :: (∀A .G A→ Int) .

λA . λp :: (F A × G A) . sizeF A (outl p) + sizeG A (outr p).

As an aside, note that size〈T 〉 is not only a generic, but also a polymorphic
function. This combination is, however, not compelling: the generic function
sum〈T 〉, which sums a structure of integers, has the monomorphic type T Int →
Int .

The semantics of generic definitions is as before: the meaning of poly〈T 〉,
where T ∈ MonoType is a closed monomorphic type term of kind P, is given by
poly〈BT(T)〉.

3.2.5 Specializing generic values

Promoting poly to types of arbitrary kind also proceeds as before, except that we
are now working in a higher realm, that is, we work with lifted kinds and types.

74 Generic programs

To begin with, the type of the promoted version is given by Poly〈−〉, which is
defined by induction on the structure of lifted kinds.

Poly〈↑T :: 2〉 :: (↑T)→ ?
Poly〈↑?〉 T = Poly T
Poly〈↑A × B〉 T = Poly〈↑A〉 (Outl T) × Poly〈↑B〉 (Outr T)
Poly〈↑A→ B〉 T = ∀A .Poly〈↑A〉 A→ Poly〈↑B〉 (T A)

The definition of poly〈〈−〉〉 is inductive on the structure of kinding derivations.

poly〈〈↑T :: ↑T〉〉 :: Poly〈↑T〉 (↑T)
poly〈〈C :: C〉〉 = polyC

poly〈〈A :: A〉〉 = polyA

poly〈〈(T1,T2) :: T1 × T2〉〉 = (poly〈〈T1 :: T1〉〉, poly〈〈T2 :: T2〉〉)
poly〈〈Outl T :: T1〉〉 = outl (poly〈〈T :: T1 × T2〉〉)
poly〈〈Outr T :: T2〉〉 = outr (poly〈〈T :: T1 × T2〉〉)
poly〈〈(ΛA .T) :: (S→ T)〉〉 = λA . λpolyA . poly〈〈T :: T〉〉
poly〈〈T U :: V〉〉 = (poly〈〈T :: U→ V〉〉) U (poly〈〈U :: U〉〉)
poly〈〈Fix T :: U〉〉 = fix ((poly〈〈T :: U→ U〉〉) (Fix T)).

Note that poly〈〈−〉〉 depends only on the polyCi but not on the polyPj values. The
latter instances are used in the initial call: the specialized version of poly〈T 〉,
which we write polyT , is given by

polyT = poly〈〈↑T 〉〉 P1 (poly〈〈P1〉〉) . . . Pn (poly〈〈Pn〉〉).

Thus, in order to specialize poly〈T 〉 we specialize poly〈〈↑T 〉〉. The resulting function
has type

∀X1 .Poly〈↑P1〉 X1 → · · · → ∀Xn .Poly〈↑Pn〉 Xn → Poly ((↑T) X1 . . . Xn).

Supplying Pj as type and polyPj :: Poly〈↑Pj〉 Pj as value arguments we obtain a
value of type Poly ((↑T) P1 . . . Pn) ≈ Poly T .

The following theorem states that the specialization is correct.

Theorem 3.8 Let T :: P be a closed monomorphic type term, then

poly〈BT(T)〉 = poly〈〈↑T 〉〉 JP1K (poly〈〈P1〉〉) . . . JPnK (poly〈〈Pn〉〉).

Proof. Using an argument similar to Lemma 3.5 we have

(BJ↑T K,poly〈〈↑T 〉〉) ∈ SP

≡ ∀τ1 . . . τn .∀ϕ1 . . . ϕn .
(τ1, ϕ1) ∈ SP1 ∩ · · · ∩ (τn, ϕn) ∈ SPn

⊃ poly〈BJ↑T K τ1 · · · τn〉 = poly〈〈↑T 〉〉 Jτ1K ϕ1 . . . JτnK ϕn,

(3.2)

where

(τj , ϕj) ∈ SPj

≡ ∀υ1 . . . υmj
.

poly〈τj υ1 · · · υmj
〉 = ϕj Jυ1K (poly〈υ1〉) . . . Jυmj

K (poly〈υmj
〉).

3.3 Type-indexed values with kind-indexed types 75

Note that (BJPjK,poly〈〈Pj〉〉) ∈ SPj , which implies

poly〈〈↑T 〉〉 JP1K (poly〈〈P1〉〉) . . . JPnK (poly〈〈Pn〉〉)
= { (3.2) and (BJPjK,poly〈〈Pj〉〉) ∈ SPj }

poly〈BJ↑T K BJP1K · · · BJPnK〉
= { definition of B }

poly〈BJ(↑T) P1 · · · PnK〉
= { Lemma 3.7 }

poly〈BJT K〉 ut

3.2.6 Limitations of the approach

The approach to generic programming introduced in the previous sections is re-
stricted to type constants of first-order kind and type indices of second-order kind.

To see why Const must not contain types of second-order kind or higher assume
that Fix :: (? → ?) → ? is a primitive type. Since Fix ’s argument is a type
constructor, we can no longer define generic values inductively: poly〈Fix F 〉, for
instance, cannot fall back on poly〈F 〉 since F has not kind ?. A similar argument
applies to type indices. Recall from the characterization of normal forms that we
η-expand a type T of kind P to ΛA1 . . . An .T A1 . . . An. The type parameters
A1, . . . , An are then treated like additional type constants. Consequently, their
kinds must have order less or equal 1, which in turn implies that P must have
order less or equal 2.

3.3 Type-indexed values with kind-indexed types

In the two previous sections we have discussed POPL-style generic definitions.
They nicely illustrate the power of genericity: to define a generic value for all
possible instances of data types it suffices to provide instances for all primitive
types (plus some instances for projection types). We have also come across some
limitations of the approach: primitive types are restricted to first-order kinded
types and type indices may only range over second-order kinded types. One may
argue that this is not a severe restriction as higher-order kinded types are a rare
species. However, there is one further limitation that is not so obvious at first
sight but that is more constraining in practice: type indices are restricted to types
of one fixed kind.

To illustrate the problem consider again the mapping function. In Section 3.2.1
we have defined a mapping function for unary type constructors of kind ? → ?.
But mapping functions can be defined for type constructors of arbitrary arity.
In the general case, the mapping function takes n functions and applies the i -th
function to each element of type Ai in a given structure of type F A1 . . . An.
Alas, POPL-style definitions do not allow to define these mapping functions at
one stroke. The reason is simply that the mapping functions have different types
for different arities. For instance, here is the mapping function for bifunctors:

76 Generic programs

bimap〈T :: ?→ ?→ ?〉 :: ∀A1 A2 . (A1 → A2)
→ ∀B1 B2 . (B1 → B2)→ (T A1 B1 → T A2 B2)

bimap〈Fst〉 mA mB a = mA a
bimap〈Snd〉 mA mB b = mB b
bimap〈1〉 mA mB u = u
bimap〈Char〉 mA mB c = c
bimap〈Int〉 mA mB i = i
bimap〈F + G〉 mA mB (inl f) = inl (bimap〈F 〉 mA mB f)
bimap〈F + G〉 mA mB (inr g) = inr (bimap〈G〉 mA mB g)
bimap〈F × G〉 mA mB (f , g) = (bimap〈F 〉 mA mB f , bimap〈G〉 mA mB g).

The definition is nearly identical to the definition of map except for the first two
cases. The mapping function for ternary functors also requires a separate definition
and it also shares most of the code with map and so forth. Somewhat ironically,
even though the generic programmer has to provide separate definitions for each
arity, the specialization of map and colleagues works for arbitrary kinds. If a unary
type constructor is defined in terms of, say, a ternary type constructor, then the
specialization generates a (higher-order) mapping function for this type.

So the million-dollar question is, whether there is a chance that the generic
programmer may profit from the flexibility present at the implementation level.
Fortunately, the answer to this question is in the affirmative. But before we spell
out the details, let us make a brief détour.

What is the most uninteresting generic function you can think of? Most read-
ers would probably agree that this is the generic identity function. Here is its
definition—we call it copy because it copies the whole of its argument.

copy〈T :: ?〉 :: T → T
copy〈1〉 u = u
copy〈Char〉 c = c
copy〈Int〉 i = i
copy〈A + B〉 (inl a) = inl (copy〈A〉 a)
copy〈A + B〉 (inr b) = inr (copy〈B〉 b)
copy〈A × B〉 (a, b) = (copy〈A〉 a, copy〈B〉 b)

For the sake of example let us specialize the copy function to some data types.
Recall that the promoted version has type copy〈〈T :: T〉〉 :: Copy〈T〉 T where Copy
is defined by induction on the structure of kinds:

Copy〈T :: 2〉 :: T→ ?
Copy〈?〉 T = T → T
Copy〈A × B〉 T = Copy〈A〉 (Outl T) × Copy〈B〉 (Outr T)
Copy〈A→ B〉 T = ∀A .Copy〈A〉 A→ Copy〈B〉 (T A).

The specialization of copy to List = ΛA .Fix (ΛB . 1 + A × B) is, for instance,
given by (to improve readability we omit universal abstractions and applications):

copyList :: ∀A . (A→ A)→ (List A→ List A)
copyList = λcopyA .fix (λcopyB . copy+ copy1 (copy× copyA copyB)).

If we rewrite this definition as a Haskell function, we obtain

copyList :: ∀A . (A→ A)→ (List A→ List A)
copyList copyA nil = nil
copyList copyA (cons a x) = cons (copyA a) (copyList copyA x).

3.3 Type-indexed values with kind-indexed types 77

Perhaps surprisingly, the code is identical to mapList , the mapping function of
List . Only the type of copyList is more restricted: it takes as first argument a
function of type A → A whereas mapList takes a function of type A1 → A2. Is
this correspondence just a coincidence? Let us take a look at a second example.
Specializing copy to binary random access lists, Fork = ΛA .A × A and Sequ =
Fix (ΛS .ΛA . 1 + S (Fork A) + A × S (Fork A)), yields

copyFork :: ∀A . (A→ A)→ (Fork A→ Fork A)
copyFork = λcopyA . copy× copyA copyA

copySequ :: ∀A . (A→ A)→ (Sequ A→ Sequ A)
copySequ = fix (λcopyS . λcopyA . copy+ copy1 (

copy+ (copyS (copyFork copyA))
(copy× copyA (copyS (copyFork copyA))))).

The corresponding Haskell code looks familiar, as well.

copyFork :: ∀A . (A→ A)→ (Fork A→ Fork A)
copyFork copyA (fork a1 a2) = fork (copyA a1) (copyA a2)
copySequ :: ∀A . (A→ A)→ (Sequ A→ Sequ A)
copySequ copyA endS = endS
copySequ copyA (zeroS s) = zeroS (copySequ (copyFork copyA) s)
copySequ copyA (oneS a s) = oneS (copyA a) (copySequ (copyFork copyA) s)

Again, we obtain the code of the mapping functions!
A first résumé: while the copy function is uninteresting and useless when spe-

cialized to types of kind ?, it is interesting and useful when specialized to type
constructors of kind ? → ? or higher. So why not allow the user to specialize a
generic value to types of arbitrary kinds?

Returning to the example one small mismatch remains: the mapping functions
have more general types than the instances of copy . Can we suitably generalize
the type of copy? It turns out that we must merely add a second type argument:

Map〈T :: 2〉 :: T→ T→ ?
Map〈?〉 T1 T2 = T1 → T2

Map〈T × U〉 T1 T2 = Map〈T〉 (Outl T1) (Outl T2) × Map〈U〉 (Outr T1) (Outr T2)
Map〈T→ U〉 T1 T2 = ∀A1 A2 .Map〈T〉 A1 A2 → Map〈U〉 (T1 A1) (T2 A2).

The type of map〈〈T ::T〉〉 (alias copy〈〈T ::T〉〉) is then Map〈T〉 T T . It is instructive
to consider some instances of Map.

Map〈?〉 Int Int = Int → Int
Map〈?→ ?〉 List List = ∀A1 A2 . (A1 → A2)→ (List A1 → List A2)
Map〈(?→ ?)→ ?→ ?〉 GRose GRose

= ∀F1 F2 . (∀B1 B2 . (B1 → B2)→ (F1 B1 → F2 B2))
→ (∀A1 A2 . (A1 → A2)→ (GRose F1 A1 → GRose F2 A2))

For types of kind ? we obtain the type of the identity function (in fact, map is
the identity function for types of kind ?), for type constructors of kind ? → ? we
obtain the familiar type of mapping functions and for type constructors of kind
(? → ?) → ? → ? we obtain a sort of higher-order map. Note that the first
argument of the higher-order map takes a function of type B1 → B2 to a function
of type F1 B1 → F2 B2, that is, it changes both the container type and the element
type. By contrast, the mapping function for List (which also has kind ?→ ?) takes
A1 → A2 to List A1 → List A2.

78 Generic programs

Finally, here is the definition of the mapping function itself. To emphasize that
map can be specialized to types of arbitrary kinds we enclose the type argument
in double angle brackets.

map〈〈T :: T〉〉 :: Map〈T〉 T T
map〈〈1〉〉 u = u
map〈〈Char〉〉 c = c
map〈〈Int〉〉 i = i
map〈〈+〉〉 mapA mapB (inl a) = inl (mapA a)
map〈〈+〉〉 mapA mapB (inr b) = inr (mapB b)
map〈〈×〉〉 mapA mapB (a, b) = (mapA a,mapB b)

This straightforward definition contains all the ingredients needed to derive maps
for arbitrary data types of arbitrary kinds. We can define map even more succinctly
if we use a point-free style—as usual, the maps on sums and products are denoted
(+) and (×).

map〈〈1〉〉 = id
map〈〈Char〉〉 = id
map〈〈Int〉〉 = id
map〈〈+〉〉 mapA mapB = mapA + mapB
map〈〈×〉〉 mapA mapB = mapA × mapB

Remark 3.9 The copy function can be extended to functional types:

copy〈A→ B〉 f = copy〈B〉 · f · copy〈A〉.

However, in this case we can no longer generalize the type of copy〈〈T :: T〉〉 to
Map〈T〉 T T as copy→ does not have the type Map〈?→ ?→ ?〉 (→) (→). ut

3.3.1 Defining generic values

The definition of a generic value in MPC-style consists of two parts: a type signa-
ture, which typically involves a kind-indexed type, and a set of equations, one for
each type constant. Likewise, the definition of a kind-indexed type consists of two
parts: a kind signature and one equation for kind ?. The equations for product
kinds and functional kinds need not be explicitly specified. They are inevitable
because of the way type constructors of kind T1 × T2 and T1 → T2 are specialized.
In general, a kind-indexed type definition has the following schematic form.

Poly〈T :: 2〉 :: T→ · · · → T→ ?
Poly〈?〉 T1 . . . Tn =
Poly〈A × B〉 T1 . . . Tn = Poly〈A〉 (Outl T1) . . . (Outl Tn)

× Poly〈B〉 (Outr T1) . . . (Outr Tn)
Poly〈A→ B〉 T1 . . . Tn = ∀A1 . . . An .Poly〈A〉 A1 . . . An

→ Poly〈B〉 (T1 A1) . . . (Tn An)

The kind signature makes precise that the kind-indexed type Poly〈T :: 2〉 maps
n types of kind T to a manifest type (for Map〈T :: 2〉 we had n = 2). The generic
programmer merely has to fill out the right-hand side of the first equation.

3.3 Type-indexed values with kind-indexed types 79

Given the kind-indexed type a generic value definition takes on the following
schematic form.

poly〈〈T :: T〉〉 :: Poly〈T〉 T . . . T
poly〈〈1〉〉 =
poly〈〈Char〉〉 =
poly〈〈Int〉〉 =
poly〈〈+〉〉 =
poly〈〈×〉〉 =
poly〈〈→〉〉 =

Again, the generic programmer has to fill out the right-hand sides. To be well-
typed, the poly〈〈C :: C〉〉 instances must have type Poly〈C〉 C . . . C as stated in
the type signature. As usual, we do not require that an equation is provided for
every type constant C in Const . In case an equation for C is missing, we tacitly
add poly〈〈C 〉〉 = undefined .

It is worth noting that there are no restrictions on the set Const of type con-
stants. In particular, type constants are not restricted to types of first-order kind.

3.3.2 Specializing generic values

The type signature of a generic value determines the type for closed type indices.
However, since the specialization is defined by induction on the structure of type
terms, we must also explicate the type for type indices that contain free type
variables. To motivate the necessary amendments let us take a look at an example
first. Consider specializing map for the type Matrix given by ΛA .List (List A).
The definition of mapMatrix is

mapMatrix :: ∀A1 A2. (A1 → A2)→ (Matrix A1 → Matrix A2)
mapMatrix = λA1 A2. λmapA :: (A1 → A2) .mapList (List A1) (List A2)

(mapList A1 A2 mapA).

First of all, the type of mapMatrix determines the type of mapA, which is given by
Map〈?〉 A1 A2 = A1 → A2. Now, Matrix contains the type term List A, in which
A occurs free. The corresponding mapping function is mapList A1 A2 mapA, which
has type Map〈?〉 (List A1) (List A2) = List A1 → List A2. In general, poly〈〈T ::T〉〉
has type Poly〈T〉 bTc1 . . . bTcn where bTci denotes the type term T , in which
every free type variable A has been replaced by Ai. To make this work we assume
that the individual variable polyA associated with A has type Poly〈A〉 A1 . . . An

with A = kind A and that the Ai are fresh type variables associated with A. Given
these prerequisites the extension of poly is defined by

poly〈〈T :: T〉〉 :: Poly〈T〉 bTc1 . . . bTcn
poly〈〈A :: A〉〉 = polyA

poly〈〈(T1,T2) :: T1 × T2〉〉 = (poly〈〈T1 :: T1〉〉, poly〈〈T2 :: T2〉〉)
poly〈〈Outl T :: T1〉〉 = outl (poly〈〈T :: T1 × T2〉〉)
poly〈〈Outr T :: T2〉〉 = outr (poly〈〈T :: T1 × T2〉〉)
poly〈〈(ΛA .T) :: (S→ T)〉〉 = λA1 . . . An . λpolyA . poly〈〈T :: T〉〉
poly〈〈T U :: V〉〉 = (poly〈〈T :: U→ V〉〉) bU c1 . . . bU cn (poly〈〈U :: U〉〉)
poly〈〈Fix T :: U〉〉 = fix ((poly〈〈T :: U→ U〉〉) bFix Tc1 . . . bFix Tcn)

For n = 1 we obtain the definition given in Section 3.1.3. The following theorem
states that poly〈〈−〉〉 thus defined is well-typed.

80 Generic programs

Theorem 3.10 If poly〈〈C :: C〉〉 :: Poly〈C〉 C . . . C for all type constants C ∈
Const , then poly〈〈X 〉〉 :: Poly〈X〉 bX c1 . . . bX cn for all monomorphic type terms
X ∈ MonoType of kind X.

Proof. We proceed by induction on the kinding derivation of X :: X.

• Case X = C :: C: by assumption

polyC :: Poly〈C〉 C . . . C = Poly〈C〉 bC c1 . . . bC cn .

• Case X = A :: A: by assumption

polyA :: Poly〈T〉 A1 . . . An = Poly〈T〉 bAc1 . . . bAcn .

• Case X = (T1,T2) :: T1 × T2: by the induction assumption we have

poly〈〈T1 :: T1〉〉 :: Poly〈T1〉 bT1c1 . . . bT1cn and
poly〈〈T2 :: T2〉〉 :: Poly〈T2〉 bT2c1 . . . bT2cn

and consequently by (×-intro)

(poly〈〈T1 :: T1〉〉, poly〈〈T2 :: T2〉〉)
:: Poly〈T1〉 bT1c1 . . . bT1cn × Poly〈T2〉 bT2c1 . . . bT2cn

Noting that Outl (T1,T2) ≈ T1, Outr (T1,T2) ≈ T2 and b(T1,T2)ci =
(bT1ci , bT2ci) we have

Poly〈T1〉 bT1c1 . . . bT1cn × Poly〈T2〉 bT2c1 . . . bT2cn
≈ Poly〈T × U〉 b(T1,T2)c1 . . . b(T1,T2)cn .

Using (conv) the proposition follows.

• Case X = Outl T :: T1: by the induction assumption we have

poly〈〈T :: T1 × T2〉〉 :: Poly〈T1 × T2〉 bTc1 . . . bTcn

where
Poly〈T1 × T2〉 bTc1 . . . bTcn

= Poly〈A〉 (Outl bTc1) . . . (Outl bTcn)
× Poly〈B〉 (Outr bTc1) . . . (Outr bTcn)

Applying (×-elim-l) we obtain

outl (poly〈〈T :: T1 × T2〉〉) :: Poly〈A〉 (Outl bTc1) . . . (Outl bTcn)

Since bOutl Tci = Outl bTci the proposition follows.

• Case X = Outr T :: T2: analogous.

• Case X = (ΛA .T) :: S→ T: by the induction assumption we have

poly〈〈T :: T〉〉 :: Poly〈T〉 bTc1 . . . bTcn

Using (→-intro) and (∀-intro) we have

λA1 . . . An . λpolyA . poly〈〈T :: T〉〉
:: ∀A1 . . . An .Poly〈S〉 A1 . . . An

→ Poly〈T〉 bTc1 . . . bTcn .

Since bΛA .Tci Ai = bTci the proposition follows.

3.3 Type-indexed values with kind-indexed types 81

• Case X = T U :: V: by the induction assumption we have

poly〈〈T :: U→ V〉〉 :: Poly〈U→ V〉 bTc1 . . . bTcn
poly〈〈U :: U〉〉 :: Poly〈U〉 bU c1 . . . bU cn

where

Poly〈U→ V〉 bTc1 . . . bTcn
= ∀A1 . . . An .Poly〈U〉 A1 . . . An

→ Poly〈V〉 (bTc1 A1) . . . (bTcn An)

Using (∀-elim) we obtain

(poly〈〈T :: U→ V〉〉) bU c1 . . . bU cn
:: Poly〈U〉 bU c1 . . . bU cn → Poly〈V〉 (bTc1 bU c1) . . . (bTcn bU cn)

and using (→-elim)

(poly〈〈T :: U→ V〉〉) bU c1 . . . bU cn (poly〈〈U :: U〉〉)
:: Poly〈V〉 (bTc1 bU c1) . . . (bTcn bU cn)

Since bTci bU ci = bT U ci the proposition follows.

• Case X = Fix T :: U: by the induction assumption we have

poly〈〈T :: U→ U〉〉 :: Poly〈U→ U〉 bTc1 . . . bTcn

where

Poly〈U→ U〉 bTc1 . . . bTcn
= ∀A1 . . . An .Poly〈U〉 A1 . . . An

→ Poly〈U〉 (bTc1 A1) . . . (bTcn An)

Using (∀-elim) we obtain

(poly〈〈T :: U→ U〉〉) bFix Tc1 . . . bFix Tcn
:: Poly〈U〉 bFix Tc1 . . . bFix Tcn
→ Poly〈U〉 (bTc1 bFix Tc1) . . . (bTcn bFix Tcn)

Since bFix Tci ≈ bTci bFix Tci we can apply (conv) and (fix) to obtain

fix ((poly〈〈T :: U→ U〉〉) bFix Tc1 . . . bFix Tcn)
:: Poly〈U〉 bFix Tc1 . . . bFix Tcn

as desired. ut

Let us conclude the section by noting a trivial consequence of the special-
ization. Since the structure of types is reflected on the value level, we have
poly〈〈ΛA .F (G A)〉〉 = λpolyA . poly〈〈F 〉〉 (poly〈〈G〉〉 polyA). This implies, in par-
ticular, that map〈〈F · G〉〉 = map〈〈F 〉〉 · map〈〈G〉〉. Perhaps surprisingly, this re-
lationship holds for all generic values, not only for mapping functions. A simi-
lar observation is that poly〈〈ΛA .A〉〉 = λpolyA . polyA for all generic values. We
have, in particular, that map〈〈Id〉〉 = id . As an aside, note that these generic
identities are not to be confused with the functorial laws map〈T 〉 id = id and
map〈T 〉 (f · g) = map〈T 〉 f · map〈T 〉 g (see Section 2.2.2), which are base-level
identities.

82 Generic programs

3.3.3 Examples

Can we turn the generic functions we have encountered so far into MPC-style?
The answer is an emphatic “Yes!”.

Consider the generic equality function defined in the introduction of Section 3.1.
The kind-indexed equality type is

Equal〈T :: 2〉 :: T→ ?
Equal〈?〉 T = T → T → Bool
Equal〈A × B〉 T = Equal〈A〉 (Outl T) × Equal〈B〉 (Outr T)
Equal〈A→ B〉 T = ∀A .Equal〈A〉 A→ Equal〈B〉 (T A).

Rewriting the POPL-style definition of equal into MPC-style is straightforward.

equal〈〈T :: T〉〉 :: Equal〈T〉 T
equal〈〈1〉〉 u1 u2 = true
equal〈〈Char〉〉 c1 c2 = equalChar c1 c2

equal〈〈Int〉〉 i1 i2 = equalInt i1 i2
equal〈〈+〉〉 equala equalb (inl a1) (inl a2) = equala a1 a2

equal〈〈+〉〉 equala equalb (inl a1) (inr b2) = false
equal〈〈+〉〉 equala equalb (inr b1) (inl a2) = false
equal〈〈+〉〉 equala equalb (inr b2) (inr b2) = equalb b1 b2

equal〈〈×〉〉 equala equalb (a1, b1) (a2, b2) = equala a1 a2 ∧ equalb b1 b2

Now, since equal has a kind-indexed type we can also specialize it for, say, unary
type constructors.

equal〈〈F :: ?→ ?〉〉 :: ∀A . (A→ A→ Bool)→ (F A→ F A→ Bool)

This gives us an extra degree of flexibility: equal〈〈F 〉〉 op x1 x2 checks whether
corresponding elements in x1 and x2 are related by op. Of course, op need not be
an equality operator. PolyLib (Jansson and Jeuring 1998) defines an analogous
function but with a more general type:

pequal〈F :: ?→ ?〉 :: ∀A1 A2 . (A1 → A2 → Bool)→ (F A1 → F A2 → Bool).

Here, the element types need not be identical. And, in fact, equal〈〈T :: T〉〉 can be
assigned the more general type PEqual〈T〉 T T given by

PEqual〈T :: 2〉 :: T→ T→ ?
PEqual〈?〉 T1 T2 = T1 → T2 → Bool
PEqual〈A × B〉 T1 T2 = PEqual〈A〉 (Outl T1) (Outl T2) × PEqual〈B〉 (Outr T1) (Outr T2)
PEqual〈A→ B〉 T1 T2 = ∀A1 A2 .PEqual〈A〉 A1 A2 → PEqual〈B〉 (T1 A1) (T2 A2),

which gives us an even greater degree of flexibility.
In general, ?-indexed definitions can be easily adopted to MPC-style. Some-

times we can even generalize the types to make the functions more general.
Now, let us turn to a (? → ?)-indexed value, the size function introduced in

3.3 Type-indexed values with kind-indexed types 83

Section 1.1.2. Its MPC-style variant, which we call count , is given by

Count〈T :: 2〉 :: T→ ?
Count〈?〉 T = T → Int
Count〈T × U〉 T = Count〈T〉 (Outl T) × Count〈U〉 (Outr T)
Count〈T→ U〉 T = ∀A .Count〈T〉 A→ Count〈U〉 (T A)
count〈〈T :: T〉〉 :: Count〈T〉 T
count〈〈1〉〉 u = 0
count〈〈Char〉〉 c = 0
count〈〈Int〉〉 i = 0
count〈〈+〉〉 countA countB (inl a) = countA a
count〈〈+〉〉 countA countB (inr b) = countB b
count〈〈×〉〉 countA countB (a, b) = countA a + countB b.

It is not hard to see that count〈〈T 〉〉 t returns 0 for all types T of kind ? provided t
is finite and fully defined (we will prove this in Section 4.3.2). So one might be led
to conclude that count is not a very useful function. This conclusion is, however,
too rash since count can also be parameterized by type constructors. For instance,
for unary type constructors count has type

count〈〈F :: ?→ ?〉〉 :: ∀A . (A→ Int)→ (F A→ Int).

Now, if we pass the identity function to count , we obtain a function that sums up
a structure of integers. Another viable choice is k 1; this yields the size function.

sum〈F :: ?→ ?〉 :: F Int → Int
sum〈F 〉 = count〈〈F 〉〉 id
size〈F :: ?→ ?〉 :: ∀A .F A→ Int
size〈F 〉 = count〈〈F 〉〉 (k 1)

In the introduction to Section 3.3 we have discussed how to define mapping
functions for types of arbitrary kinds. Interestingly, the MPC-style map even
subsumes higher-order mapping functions. Recall from Section 3.2.2 that a higher-
order mapping function has type ∀F1 F2 . (F1

·→ F2) → (H F1
·→ H F2). Now,

the MPC-style map gives us a function of type

map〈H 〉 :: ∀F1 F2 . (∀B1 B2 . (B1 → B2)→ (F1 B1 → F2 B2))
→ (∀A1 A2 . (A1 → A2)→ (H F1 A1 → H F2 A2)).

Given a natural transformation m of type F1
·→ F2 there are basically two alterna-

tives for constructing a function of type ∀B1 B2 . (B1 → B2)→ (F1 B1 → F2 B2):
λh .m ·mapF1

h or λh .mapF2
h ·m. The naturality of m, however, implies that

both alternatives are equal. Consequently, the higher-order map is given by

hmap〈H :: (?→ ?)→ ?→ ?〉 :: ∀F1 F2 . (Functor F1,Functor F2)
⇒ (F1

·→ F2)→ (H F1
·→ H F2)

hmap〈H 〉 m = map〈〈H 〉〉 (λh .m · fmap h) id .

Let us conclude the section with a brief account of the pros and cons of POPL-
style and MPC-style definitions. It is undoubtedly easier to write POPL-style
definitions (at least if the type index has a first-order kind). MPC-style definitions
require more understanding on the user’s side but as a compensation they are

84 Generic programs

much more general. If I tackle a generic problem, I usually start writing a POPL-
style definition. If it works, I convert it in a second step to MPC-style. We
have already seen that ?-indexed definitions can be easily adopted to MPC-style.
Sometimes one can even generalize the types to make the functions more general.
The adaptation of (? → ?)-indexed functions such as map or size is not entirely
straightforward. It often requires some additional thoughts to be able to formulate
a suitable kind-indexed type.

3.4 Related work

Generic programming The concept of generic functional programming ap-
pears under a variety of names: Ruehr refers to this concept as structural poly-
morphism (1992, 1998), Sheard calls generic functions type parametric (1993),
Jay and Cocket use the term shape polymorphism (1994), Harper and Morrisett
(1995) coined the phrase intensional polymorphism, and Jeuring invented the word
polytypism (1996).

The mainstream of generic programming is based on the initial algebra seman-
tics of data types, see, for instance (Hagino 1987), and puts emphasis on general
recursion operators like map and catamorphisms (folds). In (Sheard 1991) sev-
eral variations of these operators are informally defined and algorithms are given
that specialize these functions for given data types. The programming language
Charity (Cockett and Fukushima 1992) automatically provides map and catamor-
phisms for each user-defined data type. Since general recursion is not available,
Charity is strongly normalizing. Functorial ML (Jay, Bellè, and Moggi 1998) has a
similar functionality, but a different background. It is based on the theory of shape
polymorphism, in which values are separated into shape and contents. The poly-
typic programming language extension PolyP (Jansson and Jeuring 1997) offers a
special construct for defining generic functions. The generic definitions are similar
to POPL-style definitions (modulo notation) except that the generic programmer
must additionally consider cases for type composition and for type recursion, see
below for a more detailed comparison.

All the approaches are restricted to first-order kinded, regular data types (or
even subsets of this class). One notable exception is the work of Ruehr (1992), who
presents a higher-order language based on a type system related to ours (only type
recursion is missing). Genericity is achieved through the use of type patterns which
are interpreted at run-time. By contrast, the specialization technique presented
in Section 3.1.3 does not require the passing of types or representations of types
at run-time. This also distinguishes our approach from the work on intensional
polymorphism (Harper and Morrisett 1995; Crary, Weirich, and Morrisett 1999)
where a typecase is used for defining type-dependent operations.

The idea to assign kind-indexed types to type-indexed values is, to the best of
the author’s knowledge, original. Other approaches to generic programming are
restricted in that they only allowed to parameterize values by types of one fixed
kind. Three notable exceptions are Functorial ML (Jay, Bellè, and Moggi 1998),
the work of Ruehr (1992), and the work of Hoogendijk and Backhouse (1997).
Functorial ML allows to quantify over functor arities in type schemes (since Func-
torial ML only handles regular, first-order functors, kinds can be simplified to
arities). However, no formal account of this feature is given and the informal
description makes use of an infinitary typing rule. Furthermore, the generic def-
initions based on this extension are rather unwieldy from a notational point of

3.4 Related work 85

view. Ruehr also restricts type indices to types of one fixed kind. Additional
flexibility is, however, gained through the use of a more expressive kind language,
which incorporates kind variables. This extension is used to define a higher-order
map indexed by types of kind (A → ?) → ?, where A is a kind variable. Clearly,
this mapping function is subsumed by the MPC-style map given in Section 3.3.3.
Whether kind polymorphism has other benefits remains to be seen. Finally, def-
initions of generic values that are indexed by relators of different arities can be
found in the work of Hoogendijk and Backhouse (1997) on commuting data types.

PolyP Currently, PolyP (Jansson and Jeuring 1997) is the only implemented
generic programming extension for Haskell. It is based on the initial algebra
semantics of data types, where recursive data types are modeled by fixed points
of associated base functors. Functors and bifunctors are formed according to the
following grammar.

F ::= µB
B ::= K T | Fst | Snd | B + B | B × B | F · B

The functor µB , which is known as a type functor, denotes the unary functor F
given as the least solution of the equation F a = B(a,F a). Generic functions are
defined according to the above structure of functors. For instance, in PolyP the
generic function size〈F 〉 is defined as follows—modulo change of notation.

size〈F 〉 :: ∀A .F A→ Int
size〈µB〉 = cata〈µB〉 (bsize〈B〉)
bsize〈B〉 :: ∀A .B A Int → Int
bsize〈K T 〉 x = 0
bsize〈Fst〉 x = 1
bsize〈Snd〉 n = n
bsize〈B1 + B2〉 (inl x1) = bsize〈B1〉 x1

bsize〈B1 + B2〉 (inr x2) = bsize〈B2〉 x2

bsize〈B1 × B2〉 (x1, x2) = bsize〈B1〉 x1 + bsize〈B2〉 x2

bsize〈F · B〉 x = sum〈F 〉 (map〈F 〉 (bsize〈B〉) x)

The program is quite elaborate as compared to the one given in Section 1.1.2: it
involves two general combining forms, the catamorphism cata and the mapping
function map, and an auxiliary generic function, sum. The disadvantages of the
initial algebra approach are fairly obvious. The above definition is redundant:
we know that size is uniquely defined by its action on constant functors (that
is, 1, Char , Int), Id , sums, and products. The definition is incomplete: size
is only applicable to regular functors (recall that, for instance, Perfect is not a
regular functor). Furthermore, the regular functor may not depend on functors
of arity > 2 since functor composition is only defined for unary functors. Finally,
the definition exhibits a slight inefficiency: the combing form map produces an
intermediate data structure, which is immediately consumed by sum.

86 Generic programs

Chapter 4

Generic proofs

If you want to prove a property of a generic value, you have to reason generically.
Like the program the proof will be parametric in the underlying data type. This
chapter introduces two fundamental generic proof methods. The first method, a
variant of fixed point induction, is tailored to POPL-style definitions and proceeds
by induction on the structure of types (Section 4.1). Varying the method slightly
we can also use it constructively to derive a generic program from its specification
(Section 4.2). The second method, which is based on logical relations, generalizes
the first method much in the same way as MPC-style definitions generalize POPL-
style definitions (Section 4.3). Using a kind-indexed logical relation we prove, for
instance, that the generic mapping function satisfies suitable generalizations of the
functor laws.

4.1 Fixed point induction

Recall that a generic value such as encode or equal is defined by induction on the
structure of its type argument. In order to deal gracefully with type recursion
we do not operate on finite type terms directly but on their potentially infinite
Böhm trees. For that reason, the basic proof method associated with POPL-style
definitions is fixed point induction. Fixed point induction is like ordinary induction
except that the property in question must denote a pointed and chain-complete
relation.

Section 4.1.1 introduces fixed point induction for type-indexed values and Sec-
tion 4.1.2 generalizes the proof method to values indexed by types of first- or
second-order kinds.

4.1.1 Type-indexed values

The structure of normal forms, see Section 3.1.1, suggests the following induction
principle. Let P be a type-indexed property that denotes a pointed and chain-
complete relation. In order to show that P holds for all types of kind ?, it suffices
to show that

P(1)
P(Char)
P(Int)
∀A .P(A) ⊃ ∀B .P(B) ⊃ P(A + B)
∀A .P(A) ⊃ ∀B .P(B) ⊃ P(A × B)
∀A .P(A) ⊃ ∀B .P(B) ⊃ P(A→ B).

To ensure that P denotes a pointed relation it suffices to show that P(0) holds,
where ‘0’ is the ‘empty’ or ‘bottom’ type with BT(0) = Ω and J0K = ⊥. Of course,
since we are working in a domain-theoretic setting, ‘0’ is not empty but contains
⊥ as the single element.

88 Generic proofs

It is useful to know under what conditions P denotes a chain-complete relation.
This is the case, for instance, if P is built from equalities and inequalities using
conjunction, disjunction and universal quantification. All the properties we use
are of this restricted form.

We have already encountered a generic proof in Section 1.1.1. The proof es-
tablished the property Inv given by

Inv(T) ≡ ∀t :: T .∀bin :: Bin . decodes〈T 〉 (encode〈T 〉 t ++ bin) = (t , bin) :: T ⊗ Bin.

Recall that we assumed that we are working in a strict setting. For that reason,
we use smash products, T ⊗ Bin, rather than products in the equation above.
Now, since Inv takes the form of an equation it is chain-complete. The following
calculation shows that it is also pointed.

• Case T = 0 and t = ⊥:

decodes〈0〉 (encode〈0〉 ⊥++ bin)
≡ { poly is strict: poly〈0〉 = ⊥ }
⊥

≡ { pairing is strict for smash products }
(⊥, bin).

4.1.2 Generalizing to first- and second-order kinds

The extension of the induction scheme to type indices of first- or second-order kinds
is straightforward. Recall the normal form of types of kind P from Section 3.2.3.
Let P be a type-indexed property, which denotes a pointed and chain-complete
relation. In order to show that P holds for all types of kind P, it suffices to show
that

∀A1 .P(A1) ⊃ · · · ⊃ ∀Am1 .P(Am1) ⊃ P(P1 A1 . . . Am1)
. . .
∀A1 .P(A1) ⊃ · · · ⊃ ∀Amn .P(Amn) ⊃ P(Pn A1 . . . Amn)
∀A1 .P(A1) ⊃ · · · ⊃ ∀Ak1 .P(Ak1) ⊃ P(C1 A1 . . . Ak1)
. . .
∀A1 .P(A1) ⊃ · · · ⊃ ∀Akl .P(Akl) ⊃ P(Cl A1 . . . Akl).

As before, in order to show that P denotes a pointed relation, we simply have to
establish P(0).

To illustrate the induction principle let us prove that the mapping function
defined in Section 3.2.1 satisfies the two functor laws, so that a type constructor
T :: ? → ? and its mapping function map〈T 〉 can, in fact, be seen as the object
and morphism part of a functor.

map preserves identity This property can be formalized as follows:

Id(T) ≡ ∀A .map〈T 〉 id = id :: T A→ T A.

Note that we make the type of the equation explicit. This type information will,
in fact, be needed in order to show that Id is pointed. For the proof we use the
point-free definition of map given in Section 3.2.1.

4.1 Fixed point induction 89

• Case T = 0:

map〈0〉 id
≡ { poly is strict: poly〈0〉 = ⊥ }
⊥

≡ { ⊥ = id :: 0→ 0 }
id .

Note that the last step is only valid, because the type of the equation is
restricted to 0 → 0 and there is only one function of type 0 → 0 (even in
Haskell).

• Case T = Id :

map〈Id〉 id
≡ { definition of map〈Id〉 }

id .

• Case T = 1:

map〈1〉 id
≡ { definition of map〈1〉 }

id .

• Case T = Char : analogous.

• Case T = Int : analogous.

• Case T = F + G :

map〈F + G〉 id
≡ { definition of map〈F + G〉 }

map〈F 〉 id + map〈G〉 id
≡ { ex hypothesi }

id + id
≡ { (+) functor }

id .

• Case T = F × G : analogous.

Unsurprisingly, the proof essentially rests on the fact that Id , 1, Char , Int , (+)
and (×) are functors (or bifunctors).

map preserves composition This property is given by

Comp(T) ≡ ∀A1 A2 A3. ∀f :: A2 → A3 .∀g :: A1 → A2 .

map〈T 〉 (f · g) = map〈T 〉 f ·map〈T 〉 g :: T A1 → T A3.

The straightforward proof is left as an exercise to the reader.

90 Generic proofs

A property of size Recall the function size〈T 〉 :: ∀A .T A→ Int introduced in
Section 1.1.2, which counts the number of values of type A in a given container
of type T A. The definition presented in Section 1.1.2 uses a pointwise style. For
the following calculations a point-free style is preferable:

size〈T 〉 :: ∀A .T A→ Int
size〈Id〉 = k 1
size〈K C 〉 = k 0
size〈F + G〉 = size〈F 〉 O size〈G〉
size〈F × G〉 = plus · (size〈F 〉 × size〈G〉),

where k a b = a and plus a b = a + b. Note that the definition employs a useful
abbreviation: the type pattern K C where K A B = A unites the three cases ‘1’,
‘Char ’ and ‘Int ’.

We employ the principle of fixed point induction to establish the following
property of size: if A is a parameterized type comprising only containers of the
same size, that is, size〈A〉 = k a, then

size〈T ·A〉 = times a · size〈T 〉, (4.1)

where times a b = a × b. This law can be used, for instance, to derive a
logarithmic implementation of size〈Perfect〉—the generic instance has a linear
running time. Noting that Perfect = Id + Perfect · Fork we reason:

size〈Perfect〉
= { Perfect = Id + Perfect · Fork }

size〈Id + Perfect · Fork〉
= { definition of size }

k 1 O size〈Perfect · Fork〉
= { property (4.1) and size〈Fork〉 = k 2 }

k 1 O times 2 · size〈Perfect〉.

If we remove the abstract clothing, we obtain the following Haskell program:

sizePerfect :: ∀A .Perfect A→ Int
sizePerfect (zeroP a) = 1
sizePerfect (succP p) = 2 × sizePerfect p.

Now for the proof of the property:

• Case T = 0:

size〈0 ·A〉
= { 0 ·A = 0 }

size〈0〉
= { poly is strict: poly〈0〉 = ⊥ }
⊥

= { times a is strict }
times a · ⊥

= { poly is strict: poly〈0〉 = ⊥ }
times a · size〈0〉.

4.1 Fixed point induction 91

• Case T = Id :

size〈Id ·A〉
= { Id ·A = A }

size〈A〉
= { assumption: size〈A〉 = k a }

k a
= { arithmetic: a = a × 1 }

times a · k 1
= { definition of size }

times a · size〈Id〉.

• Case T = K C :

size〈K C ·A〉
= { K C ·A = K C }

size〈K C 〉
= { definition of size }

k 0
= { arithmetic: a × 0 = 0 }

times a · k 0
= { definition of size }

times a · size〈K C 〉.

• Case T = F + G :

size〈(F + G) ·A〉
= { (F + G) ·A = F ·A + G ·A }

size〈F ·A + G ·A〉
= { definition of size }

size〈F ·A〉 O size〈G ·A〉
= { ex hypothesi }

(times a · size〈F 〉) O (times a · size〈G〉)
= { O-fusion law: h · (f O g) = (h · f) O (h · g) }

times a · (size〈F 〉 O size〈G〉)
= { definition of size }

times a · size〈F + G〉.

• Case T = F × G :

size〈(F × G) ·A〉
= { (F × G) ·A = F ·A × G ·A }

size〈F ·A × G ·A〉
= { definition of size }

92 Generic proofs

plus · (size〈F ·A〉 × size〈G ·A〉)
= { ex hypothesi }

plus · ((times a · size〈F 〉) × (times a · size〈G〉))
= { (×) bifunctor }

plus · (times a × times a) · (size〈F 〉 × size〈G〉)
= { arithmetic: a × (b + c) = a × b + a × c }

times a · plus · (size〈F 〉 × size〈G〉)
= { definition of size }

times a · size〈F × G〉.

Perhaps unusual, the proof involves both calculations on the value and on the type
level. We will encounter more examples of this type in due course.

4.2 Deriving generic programs

In the preceding section we have employed fixed point induction to prove a generic
property of a given generic program. Perhaps surprisingly, we can also use the
method constructively to derive a generic program from a generic specification.
Rather than formalizing the technique we introduce it by means of an example:
we show how to derive an already known function, namely decodes, by inverse
function construction. We proceed in two steps.

Deriving encodes Reconsider the definition of encode given in Section 1.1.1 (on
page 8). Since encode uses list concatenation, (++), to encode a pair of values, it
exhibits Θ(n2) worst-case behaviour. In a first step we remedy this defect using
the well-known technique of accumulation (Bird 1984). The basic idea is to define
a function that encodes a value and additionally appends a given bit stream to
the result:

encodes〈T 〉 (t , bin) = encode〈T 〉 t ++ bin. (4.2)

Since x ++[] = x , we can easily define encode in terms of the more efficient encodes:
we have encode〈T 〉 t = encodes〈T 〉 (t , []).

Now, since (++) is strict in its first argument, the specification holds trivially
for T = 0. To derive a definition for encodes we reason as follows.

• Case T = 1 and t = ():

encodes〈1〉 ((), bin)
= { specification (4.2) }

encode〈1〉 () ++ bin
= { definition of encode }

[] ++ bin
= { ‘[]’ is the unit of (++): [] ++ x = x }

bin.

• Case T = A + B and t = inl a:

encodes〈A + B〉 (inl a, bin)

4.2 Deriving generic programs 93

= { specification (4.2) }
encode〈A + B〉 (inl a) ++ bin

= { definition of encode }
(0 : encode〈A〉 a) ++ bin

= { definition of (++): (a : x) ++ y = a : (x ++ y) }
0 : (encode〈A〉 a ++ bin)

= { specification (4.2) }
0 : encodes〈A〉 (a, bin).

• Case T = A + B and t = inr b: analogous.

• Case T = A × B and t = (a, b):

encodes〈A × B〉 ((a, b), bin)
= { specification (4.2) }

encode〈A × B〉 (a, b) ++ bin
= { definition of encode }

(encode〈A〉 a ++ encode〈B〉 b) ++ bin
= { (++) is associative: (x ++ y) ++ z = x ++ (y ++ z) }

encode〈A〉 a ++ (encode〈B〉 b ++ bin)
= { specification (4.2) }

encodes〈A〉 (a, encode〈B〉 b ++ bin)
= { specification (4.2) }

encodes〈A〉 (a, encodes〈B〉 (b, bin)).

Thus, we have derived the following definition of encodes:

type Encodes A = A × Bin → Bin
encodes〈T :: ?〉 :: Encodes T
encodes〈1〉 ((), bin) = bin
encodes〈A + B〉 (inl a, bin) = 0 : encodes〈A〉 (a, bin)
encodes〈A + B〉 (inr b, bin) = 1 : encodes〈B〉 (b, bin)
encodes〈A × B〉 ((a, b), bin) = encodes〈A〉 (a, encodes〈B〉 (b, bin)).

Is the definition correct? Yes, we can easily reorder the derivation to obtain an
inductive proof. Note that the derivation has a particular structure: in the first
step we apply the specification from left to right; then in later steps we (possibly)
apply the specification from right to left, which corresponds to using the induction
hypothesis. If a derivation has this characteristic structure, we can always rewrite
it into an inductive proof.

Deriving decodes Given the definition of encodes we can derive decodes by in-
verse function construction:

decodes〈T 〉 · encodes〈T 〉 = id . (4.3)

Before we proceed let us first rewrite encodes into a point-free style since this
allows for more structured calculations. To this end it is useful to define some

94 Generic proofs

combinators that operate on bit streams:

emit :: Bit → (Bin → Bin)
emit b bin = b : bin
switch :: ∀A . (Bin → A)→ (Bin → A)→ (Bin → A)
switch f g (0 : bin) = f bin
switch f g (1 : bin) = g bin.

Roughly speaking, switch is for bit streams what (O) is for sums and emit 0
and emit 1 are the analogues of inl and inr . The following laws lay down the
interaction between sums and bit streams.

switch f g · (emit 0 O emit 1) = f O g (4.4)
(f O g) · switch inl inr = switch f g (4.5)

Actually, it suffices to remember one law. The second is then obtained by system-
atically exchanging (O) with switch, inl with emit 0, and inr with emit 1.

Now, the point-free definition of encodes is given by

encodes〈T :: ?〉 :: Encodes T
encodes〈1〉 = unit
encodes〈A + B〉 = encodes〈A〉 >+> encodes〈B〉
encodes〈A × B〉 = encodes〈A〉 >×> encodes〈B〉

where

(>+>) :: ∀A B .Encodes A→ Encodes B → Encodes (A + B)
f >+> g = ((emit 0 · f) O (emit 1 · g)) · distl
(>×>) :: ∀A B .Encodes A→ Encodes B → Encodes (A × B)
f >×> g = f · (id × g) · assocr .

To reassure you that the two definitions of encodes are identical we quickly calcu-
late that

(f >+> g) (inl a, bin) = 0 : f (a, bin)
(f >+> g) (inr b, bin) = 1 : g (b, bin)
(f >×> g) ((a, b), bin) = f (a, g (b, bin)).

You can think of (>+>) and (>×>) as combinators for encoding sums and products.
As an aside, note that using these combinators we can easily specialize encodes to
given instances of data types. Take, for example, the List instance:

encodesList :: ∀A .Encodes A→ Encodes (List A)
encodesList encodesA = unit >+> encodesA >×> encodesList encodesA.

Now, let us derive decodes. Note that the specification (4.3) holds for T = 0
since ⊥ = id :: 0 × Bin → 0 × Bin.

• Case T = 1:

decodes〈1〉 · encodes〈1〉 = id
≡ { definition of encodes }

decodes〈1〉 · unit = id
≡ { unit : 1 × A ∼= A : ununit }

decodes〈1〉 = ununit .

4.2 Deriving generic programs 95

• Case T = A + B :

decodes〈A + B〉 · encodes〈A + B〉 = id
≡ { definition of encodes and (>+>) }

decodes〈A + B〉 · ((emit 0 · encodes〈A〉) O (emit 1 · encodes〈B〉)) · distl = id
≡ { distl : (A + B) × C ∼= (A × C) + (B × C) : undistl }

decodes〈A + B〉 · ((emit 0 · encodes〈A〉) O (emit 1 · encodes〈B〉)) = undistl
≡ { O-+-fusion law: (f O g) · (h + k) = (f · h) O (g · k) }

decodes〈A + B〉 · (emit 0 O emit 1) · (encodes〈A〉+ encodes〈B〉) = undistl
⊂ { specification (4.3) and (+) bifunctor }

decodes〈A + B〉 · (emit 0 O emit 1) = undistl · (decodes〈A〉+ decodes〈B〉)
≡ { reflection law: inl O inr = id }

decodes〈A + B〉 · (emit 0 O emit 1) = undistl · (decodes〈A〉+ decodes〈B〉) · (inl O inr)
⊂ { property (4.4) }

decodes〈A + B〉 = undistl · (decodes〈A〉+ decodes〈B〉) · switch inl inr
≡ { definition of (+) }

decodes〈A + B〉 = undistl · (inl · decodes〈A〉 O inr · decodes〈B〉) · switch inl inr
≡ { property (4.5) }

decodes〈A + B〉 = undistl · switch (inl · decodes〈A〉) (inr · decodes〈B〉).

• Case T = A × B :

decodes〈A × B〉 · encodes〈A × B〉 = id
≡ { definition of encodes and (>×>) }

decodes〈A × B〉 · encodes〈A〉 · (id × encodes〈B〉) · assocr = id
≡ { assocl : A × (B × C) ∼= (A × B) × C : assocr }

decodes〈A × B〉 · encodes〈A〉 · (id × encodes〈B〉) = assocl
⊂ { specification (4.3) and (×) bifunctor }

decodes〈A × B〉 · encodes〈A〉 = assocl · (id × decodes〈B〉)
⊂ { specification (4.3) }

decodes〈A × B〉 = assocl · (id × decodes〈B〉) · decodes〈A〉.

Thus, we obtain the following definition of decodes:

type Decodes A = Bin → A × Bin
decodes〈T :: ?〉 :: Decodes T
decodes〈1〉 = ununit
decodes〈A + B〉 = decodes〈A〉 <+< decodes〈B〉
decodes〈A × B〉 = decodes〈A〉 <×< decodes〈B〉,

where

(<+<) :: ∀A B .Decodes A→ Decodes B → Decodes (A + B)
f <+< g = undistl · switch (inl · f) (inr · g)
(<×<) :: ∀A B .Decodes A→ Decodes B → Decodes (A × B)
f <×< g = assocl · (id × g) · f .

96 Generic proofs

Is this definition of decodes equivalent to the one given in Section 1.1.1 (on page 8)?
The answer is in the affirmative. The equivalence is easy to see if we rewrite (<+<)
and (<×<) into a pointwise form:

(f <+< g) (0 : bin) = let (a, bin ′) = f bin in (inl a, bin ′)
(f <+< g) (1 : bin) = let (b, bin ′) = g bin in (inr b, bin ′)
(f <×< g) bin = let (a, bin1) = f bin

(b, bin2) = g bin1

in ((a, b), bin2).

Remark 4.1 We have used the pointwise style for the first but the point-free
style for the second derivation. Why this change of style? Now, the point-free
style is usually preferable for calculations (if you are not convinced, redo the
second derivation in a pointwise style). The first derivation is, however, a notable
exception to this rule. Note that central use is made of the fact that ‘[]’ is the
unit of (++) and that (++) is associative. These properties are simple to state in a
pointwise style

[] ++ x = x
x ++ (y ++ z) = (x ++ y) ++ z

but they are barely recognizable when expressed in a point-free style:

cat · (nil × id) = unit
cat · (cat × id) = cat · (id × cat) · assocr ,

where nil :: ∀A . 1 → [A] and cat :: ∀A . [A] → [A] → [A]. For a more thorough
discussion of pointwise versus point-free reasoning we refer the interested reader
to de Moor and Gibbons (2000). ut

4.3 Generic logical relations

MPC-style definitions generalize POPL-style definitions in that they allow to pa-
rameterize a generic value by types of arbitrary kinds. In much the same way
proofs based on generic logical relations generalize inductive proofs. An induc-
tive proof establishes a property that is parameterized by types of one fixed kind.
By contrast, a generic logical relation is a kind-indexed family of such properties.
Let us introduce the proof technique by means of our running example: mapping
functions.

Recall the MPC-style definition of map given in Section 3.3 (on page 78). To
classify as a functor the mapping function of a unary type constructor must satisfy
the functor laws:

map〈〈T 〉〉 id = id
map〈〈T 〉〉 (f · g) = map〈〈T 〉〉 f ·map〈〈T 〉〉 g ,

that is, map〈〈T 〉〉 preserves identity and composition. If the type constructor is
binary, the functor laws take the form

map〈〈T 〉〉 id id = id
map〈〈T 〉〉 (f1 · f2) (g1 · g2) = map〈〈T 〉〉 f1 g1 ·map〈〈T 〉〉 f2 g2.

4.3 Generic logical relations 97

How can we generalize these laws to data types of arbitrary kinds? Since
map〈〈T 〉〉 has a kind-indexed type, it is reasonable to expect that the functorial
properties are indexed by kinds, as well. So, what form do the laws take if the
type index is a manifest type of kind ?? In this case map〈〈T 〉〉 does not preserve
identity; it is the identity:

map〈〈T 〉〉 = id
map〈〈T 〉〉 = map〈〈T 〉〉 ·map〈〈T 〉〉.

The pendant of the second law states that map〈〈T 〉〉 is idempotent (which is a
simple consequence of the first law). Given this base case the generalization to
arbitrary kinds is within reach. The generic version of the first functor law states
that map〈〈T :: T〉〉 ∈ Id〈T〉 T for all closed monomorphic types T ∈ MonoType,
where Id is given by

Id〈T〉 T ⊆ Map〈T〉 T T
m ∈ Id〈?〉 T ≡ m = id :: T → T
m ∈ Id〈A × B〉 T ≡ outl m ∈ Id〈A〉 (Outl T) ∩ outr m ∈ Id〈B〉 (Outr T)
m ∈ Id〈A→ B〉 T ≡ ∀A :: A .∀a :: Map〈A〉 A A . a ∈ Id〈A〉 A ⊃ m A a ∈ Id〈B〉 (T A).

The relation Id strongly resembles a unary logical relation, see Section 2.4.4.
The second and the third clause of the definition are characteristic for logical
relations; they guarantee that the relation is closed under projection and pairing,
and application and abstraction. We will call Id and its colleagues generic logical
relations (or simply logical relations) for want of a better name. Section 4.3.1
details the differences between generic and ‘classical’ logical relations.

In a similar vein, the generic version of the second functor law expresses that
(map〈〈T ::T〉〉,map〈〈T ::T〉〉,map〈〈T ::T〉〉) ∈ Comp〈T〉 T T T for all closed monomor-
phic types T ∈ MonoType, where Comp is given by

Comp〈T〉 T1 T2 T3 ⊆ Map〈T〉 T2 T3 × Map〈T〉 T1 T2 × Map〈T〉 T1 T3

(m1,m2,m3) ∈ Comp〈?〉 T1 T2 T3 ≡ m1 ·m2 = m3 :: T1 → T3.

It is not hard to see that the ‘ordinary’ functor laws are instances of these generic
laws. We have, for instance,

mapT ∈ Id〈?→ ?→ ?〉 T
≡ ∀A :: ? .∀mA :: A→ A .mA = id :: A→ A

⊃ ∀B :: ? .∀mB :: B → B .mB = id :: B → B
⊃ mapT A mA B mB = id :: T A B → T A B

≡ ∀A :: ? .∀B :: ? .mapT A id B id = id :: T A B → T A B .

Turning to the proof of the first generic law we must show (i) that Id is pointed
and chain-complete and (ii) map〈〈C :: C〉〉 ∈ Id〈C〉 C for all type constants C ∈
Const . Now, Id is chain-complete since the property takes the form of an equation.
Pointedness means that ⊥ ∈ Id〈?〉 0 ≡ ⊥ = id :: 0 → 0. This holds since
there is only one function of type 0 → 0. The proof of condition (ii) is entirely
straightforward:

• Case T = C ∈ {1,Char , Int }:

map〈〈C :: ?〉〉 ∈ Id〈?〉 C
≡ { definition of Id }

map〈〈C :: ?〉〉 = id :: C → C

98 Generic proofs

≡ { definition of map }
id = id :: C → C

≡ { logic }
true.

• Case T = (./) ∈ {+,×}:

map〈〈(./) :: ?→ ?→ ?〉〉 ∈ Id〈?→ ?→ ?〉 (./)
≡ { definition of Id }
∀A :: ? .∀B :: ? .map〈〈(./) :: ?→ ?→ ?〉〉 A id B id = id :: A ./ B → A ./ B

≡ { definition of map }
∀A :: ? .∀B :: ? . (./) A id B id = id :: A ./ B → A ./ B

≡ { (./) bifunctor }
∀A :: ? .∀B :: ? . id = id :: A ./ B → A ./ B

≡ { logic }
true.

The second law is shown analogously.

4.3.1 Soundness

Recall the basic idea of logical relations (Section 2.4.4). Say, we are given two
models of the simply typed lambda calculus. Lemma 2.20, sometimes called the
Basic Lemma, establishes that the meaning of a term in one model is logically
related to its meaning in the other model.

We have said several times that the specialization of a generic value can be
seen as an interpretation of the simply typed lambda calculus. Actually, the
interpretation is a two-stage process: the specialization maps a type term to a
value term, which is then interpreted in some fixed domain-theoretic model.

Consequently, there are two differences to the ‘classical’ notion of logical re-
lation. (i) We do not relate elements in two different models but different ele-
ments (obtained via the specialization) in the same model, that is, for some fixed
model the meaning of poly1〈〈T 〉〉 is logically related to the meaning of poly2〈〈T 〉〉.
(ii) The type of poly1〈〈T 〉〉 and poly2〈〈T 〉〉 and consequently the type of their mean-
ings depends on the type-index T . For that reason generic logical relations are
parameterized by types (respectively, by the meaning of types).

For presenting the Basic Lemma of generic logical relations we will use the
following ‘semantic version’ of poly (see also Section 3.1.3).

poly〈〈C :: C〉〉η = polyC

poly〈〈A :: A〉〉η = η(polyA)
poly〈〈(T1,T2) :: T1 × T2〉〉η = (poly〈〈T1 :: T1〉〉η,poly〈〈T2 :: T2〉〉η)
poly〈〈Outl T :: T1〉〉η = outl (poly〈〈T :: T1 × T2〉〉η)
poly〈〈Outr T :: T2〉〉η = outr (poly〈〈T :: T1 × T2〉〉η)
poly〈〈(ΛA .T) :: S→ T〉〉η = λα1 . . . αn .λϕ .poly〈〈T :: T〉〉η(A1 := α1, . . . ,An := αn , polyA := ϕ)
poly〈〈T U :: V〉〉η = (poly〈〈T :: U→ V〉〉η) (JbU c1Kη) · · · (JbU cnKη) (poly〈〈U :: U〉〉η)
poly〈〈Fix T :: U 〉〉η = slfp (JbTc1Kη) · · · (JbTcnKη) (poly〈〈T :: U→ U〉〉η)

Here, slfp is the n-ary generalization of slfp introduced in Section 3.1.3.
In presenting logical relations we will restrict ourselves to the binary case. The

extension to the n-ary case is entirely straightforward.

4.3 Generic logical relations 99

Definition 4.2 Let Poly1 and Poly2 be two families of kind-indexed types Polyi =
(PolyT

i | T ∈ Kind) such that PolyT
i ∈ TT→···→T→?. A generic logical relation

R = (RT | T ∈ Kind) over Poly1 and Poly2 is a family of relations such that

• RT τ1 . . . τn ⊆ Dom (PolyT
1 τ1 . . . τn) × Dom (PolyT

2 τ1 . . . τn) for all
τ1, . . . , τn ∈ TT,

• RT×U is closed under pairing and projection:

(ϕ1, ϕ2) ∈ RT×U τ1 . . . τn

≡ (outl ϕ1, outl ϕ2) ∈ RT (outl τ1) . . . (outl τn)
∩ (outr ϕ1, outr ϕ2) ∈ RU (outr τ1) . . . (outr τn),

• RT→U is closed under application and abstraction:

(ϕ1, ϕ2) ∈ RT→U τ1 . . . τn

≡ ∀α1 ∈ TT∀αn ∈ TT .

∀δ1 ∈ Dom (PolyT
1 α1 . . . αn) .

∀δ2 ∈ Dom (PolyT
2 α1 . . . αn) .

(δ1, δ2) ∈ RT α1 . . . αn

⊃ (ϕ1 α1 . . . αn δ1, ϕ2 α1 . . . αn δ2) ∈ RU (τ1 α1) . . . (τn αn),

• RT is pointed, that is, (⊥,⊥) ∈ RT ⊥ · · · ⊥,

• RT is chain-complete, that is, S ⊆ P ⊃
⊔

S ∈ P for every chain S where
P(α1, α2; τ1, . . . , τn) ≡ (α1, α2) ∈ RT τ1 . . . τn . ut

Without loss of generality we assume that the type arguments of R and Polyi
are the same (in general, the type arguments of Polyi are a subset of the type
arguments of R).

Remark 4.3 In models where types are interpreted as certain elements of a uni-
versal domain the notion of chain-completeness that is employed in Definition 4.2
coincides with the usual notion. Consider, for instance, the finitary projection
model: the typed inequality t1 v t2 :: T is interpreted as τ Jt1K v τ Jt2K where
τ = JT K is a finitary projection. Consequently, a property that is built from equal-
ities and inequalities using conjunction, disjunction and universal quantification
always denotes a chain-complete relation. ut

Lemma 4.4 Let R be a generic logical relation over Poly1 and Poly2. Further-
more, let poly1〈〈V :: V〉〉 ∈ Dom (PolyV

1 JT K · · · JT K) and poly2〈〈V :: V〉〉 ∈
Dom (PolyV

2 JT K · · · JT K) be two generic function such that

(poly1〈〈C :: C〉〉,poly2〈〈C :: C〉〉) ∈ RC JC K · · · JC K

for every type constant C ∈ Const . Let V :: V be a monomorphic type term. If
η1, η2, and %1, . . . , %n are environments such that η1(Aj) = η2(Aj) = %j (A) and
(η1(polyA), η2(polyA)) ∈ RA (%1(A)) . . . (%n(A)) for every type variable A ::A free
in V :: V, then

(poly1〈〈V :: V〉〉η1,poly2〈〈V :: V〉〉η2) ∈ RV (JV K%1) · · · (JV K%n).

100 Generic proofs

Proof. We proceed by induction on the kinding derivation of V :: V.

• Case V = C :: C: the statement holds since R relates constants.

• Case V = A :: A: the statement holds since η1(polyA) and η2(polyA) are
related.

• Case V = (T1,T2) :: T1 × T2: by the induction hypothesis we have

(poly1〈〈T1 :: T1〉〉η1,poly2〈〈T1 :: T1〉〉η2) ∈ RT1 (JT1K%1) · · · (JT2K%n)

and

(poly1〈〈T2 :: T2〉〉η1,poly2〈〈T2 :: T2〉〉η2) ∈ RT2 (JT2K%1) · · · (JT2K%n),

which immediately implies

((poly1〈〈T1 :: T1〉〉η1,poly1〈〈T2 :: T2〉〉η1), (poly2〈〈T1 :: T1〉〉η2,poly2〈〈T2 :: T2〉〉η2))
∈ RT1×T2 (JT1K%1, JT2K%1) . . . (JT1K%n, JT2K%n).

• Case V = Outl T :: T1: by the induction hypothesis we have

(poly1〈〈T :: T1 × T2〉〉η1,poly2〈〈T :: T1 × T2〉〉) ∈ RV (JT K%1) · · · (JT K%n),

which immediately implies

(outl (poly1〈〈T :: T1 × T2〉〉η1), outl (poly2〈〈T :: T1 × T2〉〉))
∈ RT (outl (JT K%1)) . . . (outl (JT K%n)).

• Case V = Outr T :: T2: analogous.

• Case V = (ΛA .T) :: S→ T: We have to show that

(poly1〈〈(ΛA .T) :: S→ T〉〉η1,poly2〈〈(ΛA .T) :: S→ T〉〉η2) ∈ RS→T (JΛA .T K%1) . . . (JΛA .T K%n)
≡ ∀α1 ∈ TS∀αn ∈ TS .

∀δ1 ∈ Dom (PolyS
1 α1 . . . αn) .

∀δ2 ∈ Dom (PolyS
2 α1 . . . αn) .

(δ1, δ2) ∈ RS α1 . . . αn

⊃ (poly1〈〈(ΛA .T) :: S→ T〉〉η1 α1 . . . αn δ1,

poly2〈〈(ΛA .T) :: S→ T〉〉η2 α1 . . . αn δ2)
∈ RT (JΛA .T K%1 α1) . . . (JΛA .T K%n αn),

Assume that (δ1, δ2) ∈ RS α1 . . . αn . Since the modified environments
η1(A1 :=α1, . . . ,An :=αn , polyA :=δ1), η2(A1 :=α1, . . . ,An :=αn , polyA :=δ2),
and %1(A := α1), . . . , %n(A := αn) are related, we can invoke the induction
hypothesis to obtain

(poly1〈〈T :: T〉〉η1(A1 := α1, . . . ,An := αn , polyA := δ1),
poly2〈〈T :: T〉〉η2(A1 := α1, . . . ,An := αn , polyA := δ2))
∈ RV (JT K%1(A := α1)) · · · (JT K%n(A := αn)).

4.3 Generic logical relations 101

Now, since

polyi〈〈(ΛA .T) :: S→ T〉〉ηi α1 . . . αn δi = polyi〈〈T :: T〉〉ηi (A1 := α1, . . . ,An := αn , polyA := δi)

and furthermore JΛA .T K%j αj = JT K%j (A := αj) the proposition follows.

• Case V = (T U) :: V: by the induction hypothesis we have

(poly1〈〈T :: U→ V〉〉η1,poly2〈〈T :: U→ V〉〉η2) ∈ RU→V (JT K%1) · · · (JT K%n)
≡ ∀α1 ∈ TU∀αn ∈ TU .

∀δ1 ∈ Dom (PolyU
1 α1 . . . αn) .

∀δ2 ∈ Dom (PolyU
2 α1 . . . αn) .

(δ1, δ2) ∈ RU α1 . . . αn

⊃ (ϕ1 α1 . . . αn δ1, ϕ2 α1 . . . αn δ2) ∈ RV (JT K%1 α1) . . . (JT K%n αn)

and

(poly1〈〈U :: U〉〉η1,poly2〈〈U :: U〉〉η2) ∈ RU (JU K%1) · · · (JU K%n).

Setting αj = JbU cj Kη1 = JbU cj Kη2 and δi = polyi〈〈U :: U〉〉ηi and since
JbU cj Kη1 = JbU cj Kη2 = JU K%j , we obtain

((poly1〈〈T :: U→ V〉〉η1) (JbU c1Kη1) · · · (JbU cnKη1) (poly〈〈U :: U〉〉η1),
(poly2〈〈T :: U→ V〉〉η2) (JbU c1Kη2) · · · (JbU cnKη2) (poly〈〈U :: U〉〉η2))

∈ RV ((JT K%1) (JU K%1)) . . . ((JT K%n) (JU K%n)).

• Case V = Fix T :: U: by the induction hypothesis we have

(poly1〈〈T :: U→ U〉〉η1,poly2〈〈T :: U→ U〉〉η2) ∈ RU→U (JT K%1) · · · (JT K%n)
≡ ∀α1 ∈ TU∀αn ∈ TU .

∀δ1 ∈ Dom (PolyU
1 α1 . . . αn) .

∀δ2 ∈ Dom (PolyU
2 α1 . . . αn) .

(δ1, δ2) ∈ RU α1 . . . αn

⊃ (poly1〈〈T :: U→ U〉〉η1 α1 . . . αn δ1,poly2〈〈T :: U→ U〉〉η2 α1 . . . αn δ2)
∈ RU (JT K%1 α1) . . . (JT K%n αn),

Define
α0

1 = ⊥ αk+1
1 = JT K%1 α

k
1

.

α0
n = ⊥ αk+1

n = JT K%n αk
n

and

δ0
i = ⊥
δk+1
i = polyi〈〈T :: U→ U〉〉ηi αk

1 . . . αk
n δ

k
i .

Using the induction hypothesis and the fact that RU is pointed we can show

(δk
1 , δ

k
2) ∈ RU αk

1 . . . αk
n,

102 Generic proofs

for all k ∈ N. Because RU is furthermore chain-complete, we have

(
⊔
{δk

1 | k ∈ N},
⊔
{δk

2 | k ∈ N}) ∈ RU (
⊔
{αk

1 | k ∈ N}) . . . (
⊔
{αk

n | k ∈ N}).

Now, since⊔
{αk

j | k ∈ N} = lfp (JT K%j) = lfp (JbTcj Kη1) = lfp (JbTcj Kη2)

and ⊔
{δk
i | k ∈ N}

= { definition of slfp }
slfp (JT K%1) . . . (JT K%n) (polyi〈〈T :: U→ U〉〉ηi)

= { JT K%j = JbTcj Kη1 = JbTcj Kη2 }
slfp (JbTc1Kηi) · · · (JbTcnKηi) (polyi〈〈T :: U→ U〉〉ηi)

the proposition follows. ut

4.3.2 Examples

Let us illustrate the proof technique by means of some further examples.

A fusion law for count Many generic properties take the form of fusion laws,
which show how to fuse a composition of two functions into a single function. As
an example, let us formulate a fusion law for the generic function count defined in
Section 3.3.3. Let h :: Int → Int and define Fuseh by

Fuseh〈T〉 T ⊆ Count〈T〉 T × Count〈T〉 T
(c, c′) ∈ Fuseh〈?〉 T ≡ h · c = c′ :: T → Int .

We seek conditions so that

(count〈〈T :: T〉〉, count〈〈T :: T〉〉) ∈ Fuseh〈T〉 T

holds. First of all, Fuseh is pointed iff h is strict: (⊥,⊥) ∈ Fuseh〈?〉 0 ≡ h ·⊥ = ⊥.

• Case T = C ∈ {1,Char , Int }:

(count〈〈C 〉〉, count〈〈C 〉〉) ∈ Fuseh〈?〉 C
≡ { definition of Fuseh }

h · count〈〈C 〉〉 = count〈〈C 〉〉
≡ { definition of count }

h · k 0 = k 0.

Consequently, we must postulate h 0 = 0.

• Case T = (+):

(count〈〈+〉〉, count〈〈+〉〉) ∈ Fuseh〈?→ ?→ ?〉 (+)
≡ { definition of Fuseh }

h · count〈〈+〉〉 c1 c2 = count〈〈+〉〉 (h · c1) (h · c2)
≡ { definition of count }

h · (c1 O c2) = (h · c1) O (h · c2)
≡ { O-fusion law: h · (f O g) = (h · f) O (h · g) }

true.

4.3 Generic logical relations 103

So, this case comes for free.

• Case T = (×):

(count〈〈×〉〉, count〈〈×〉〉) ∈ Fuseh〈?→ ?→ ?〉 (×)
≡ { definition of Fuseh }

h · count〈〈×〉〉 c1 c2 = count〈〈×〉〉 (h · c1) (h · c2)
≡ { definition of count }

h · plus · (c1 × c2) = plus · (h · c1) × (h · c2)
⊂ { (×) bifunctor }

h · plus = plus · (h × h).

Consequently, we must postulate h (i + j) = h i + h j .

To summarize, we have derived the following fusion law for count :

h ⊥ = ⊥
∩ h 0 = 0
∩ h (i + j) = h i + h j
⊃ (count〈〈T :: T〉〉, count〈〈T :: T〉〉) ∈ Fuseh〈T〉 T .

As an application of the law here is a more compact proof of size〈A〉 = k a ⊃
size〈T ·A〉 = times a · size〈T 〉, see Section 4.1.2:

size〈T ·A〉
= { definition of size }

count〈〈T ·A〉〉 (k 1)
≡ { definition of count }

count〈〈T 〉〉 (count〈〈A〉〉 (k 1))
= { definition of size }

count〈〈T 〉〉 (size〈A〉)
= { assumption: size〈A〉 = k a }

count〈〈T 〉〉 (k a)
= { count-fusion: h = times a } (†)

times a · count〈〈T 〉〉 (k 1)
= { definition of size }

times a · size〈T 〉.

For (†) we have to show that times a is strict, that is, a × ⊥ = ⊥, that times a ·
k 0 = k 0, that is, a × 0 = 0 and finally that times a · plus = plus · (times a ×
times a), that is, a × (b + c) = (a × b) + (a × c). All of these conditions hold.

Coping with ⊥ Reconsider the definition of count . One is tempted to assume
that count〈〈T :: ?〉〉 t = 0 for all types T of kind ?. However, in a non-strict
language such as Haskell this law only holds provided t is finite and fully defined.
This example shows how to deal with this restriction in a systematic way. To this

104 Generic proofs

end we introduce a function that fully evaluates its argument.

Force〈T :: 2〉 :: T→ ?
Force〈?〉 T = T → ()
Force〈A × B〉 T = Force〈A〉 (Outl T) × Force〈B〉 (Outr T)
Force〈A→ B〉 T = ∀A .Force〈A〉 A→ Force〈B〉 (T A)
force〈〈T :: T〉〉 :: Force〈T〉 T
force〈〈1〉〉 u = u ‘seq ‘ ()
force〈〈Char〉〉 c = c ‘seq ‘ ()
force〈〈Int〉〉 i = i ‘seq ‘ ()
force〈〈+〉〉 fA fB (inl a) = fA a
force〈〈+〉〉 fA fB (inr b) = fB b
force〈〈×〉〉 fA fB (a, b) = fA a ‘seq ‘ fB b

The Haskell function seq ::∀A B .A→ B → B evaluates its first argument to weak
head-normal form and returns its second argument.

Using force〈T 〉 we can state the law concerning count more precisely

force〈〈T :: ?〉〉 t 6= ⊥ ⊃ count〈〈T :: ?〉〉 t = 0.

The precondition force〈〈T :: ?〉〉 t 6= ⊥ formalizes that t is finite and fully defined.
Note that the property is chain-complete, since we can rewrite it into the form

force〈〈T :: ?〉〉 t = ⊥ ∪ count〈〈T :: ?〉〉 t = 0,

which is chain-complete. Phrasing the property as a logical relation

Const〈T〉 T ⊆ Force〈T〉 T × Count〈T〉 T
(e, c) ∈ Const〈?〉 T ≡ ∀t :: T . e t 6= ⊥ ⊃ c t = 0,

we have to show that

(force〈〈T :: T〉〉, count〈〈T :: T〉〉) ∈ Const〈T〉 T .

The proof is as follows:

• Case T = C ∈ {1,Char , Int }: We have to show that

(force〈〈C 〉〉, count〈〈C 〉〉) ∈ Const〈?〉 C
≡ ∀c ∈ C . force〈〈C 〉〉 c 6= ⊥ ⊃ count〈〈C 〉〉 c = 0,

which holds since count〈〈C 〉〉 c = 0.

• Case T = (+): We have to show that

(force〈〈+〉〉, count〈〈+〉〉) ∈ Const〈?→ ?→ ?〉 (+)
≡ (∀a ∈ A . fA a 6= ⊥ ⊃ cA a = 0)

⊃ (∀b ∈ B . fB b 6= ⊥ ⊃ cB b = 0)
⊃ (∀s ∈ A + B . force〈〈+〉〉 fA fB s 6= ⊥ ⊃ count〈〈+〉〉 cA cB s = 0)

Now, force〈〈+〉〉 fA fB s 6= ⊥ implies s 6= ⊥, so we only have to consider
s = inl a and s = inr b. If s = inl a, we furthermore know that fA a 6= ⊥
and similarly for s = inr b.

4.3 Generic logical relations 105

Case s = inl a:

count〈〈+〉〉 cA cB (inl a)
= { definition of count }

cA a
= { assumption fA a 6= ⊥ ⊃ cA a = 0 and fA a 6= ⊥ }

0.

Case s = inr b: analogous.

• Case T = (×): We have to show that

(force〈〈×〉〉, count〈〈×〉〉) ∈ Const〈?→ ?→ ?〉 (×)
≡ (∀a ∈ A . fA a 6= ⊥ ⊃ cA a = 0)

⊃ (∀b ∈ B . fB b 6= ⊥ ⊃ cB b = 0)
⊃ (∀p ∈ A × B . force〈〈×〉〉 fA fB p 6= ⊥ ⊃ count〈〈×〉〉 cA cB p = 0)

Again, force〈〈×〉〉 fA fB p 6= ⊥ implies p 6= ⊥, so we only have to consider
p = (a, b). Furthermore, we know that both fA a 6= ⊥ and fB b 6= ⊥.

count〈〈×〉〉 cA cB (a, b)
= { definition of count }

cA a + cB b
= { assumptions and fA a 6= ⊥ ∩ fB b 6= ⊥ }

0 + 0
= { arithmetic }

0.

106 Generic proofs

Chapter 5

Examples

This chapter presents further examples of generic values and associated generic
proofs. Among other things, we study comparison functions (Section 5.1), map-
ping functions (Section 5.2), zipping functions (Section 5.3) and reductions (Sec-
tion 5.4). Section 5.5 introduces an interesting extension of the theory developed
in the previous chapters: type-indexed types and kind-indexed kinds. We use these
techniques to implement dictionaries (Section 5.5) and memo tables (Section 5.6)
in a generic way.

5.1 Comparison functions

In Section 3.1 we have introduced a generic version of the equality function. Vary-
ing the definition of equal slightly we can also realize Haskell’s compare function,
which determines the precise ordering of two elements.

data Ordering = LT | EQ | GT
compare〈T :: ?〉 :: T → T → Ordering
compare〈1〉 () () = EQ
compare〈Char〉 c1 c2 = compareChar c1 c2

compare〈Int〉 i1 i2 = compareInt i1 i2
compare〈A + B〉 (inl a1) (inl a2) = compare〈A〉 a1 a2

compare〈A + B〉 (inl a1) (inr b2) = LT
compare〈A + B〉 (inr b1) (inl a2) = GT
compare〈A + B〉 (inr b1) (inr b2) = compare〈B〉 b1 b2

compare〈A × B〉 (a1, b1) (a2, b2) = compare〈A〉 a1 a2 ‘lexord ‘ compare〈B〉 b1 b2

The helper function lexord used in the last equation implements the lexicographic
product of two orderings.

lexord :: Ordering → Ordering → Ordering
lexord LT ord = LT
lexord EQ ord = ord
lexord GT ord = GT

Note that equal and compare are related by

equal〈T 〉 t1 t2 = compare〈T 〉 t1 t2 EQ .

The MPC-style version of compare has type Compare〈T〉 T T where Compare
is given by

Compare〈T :: 2〉 :: T→ T→ ?
Compare〈?〉 T1 T2 = T1 → T2 → Ordering
Compare〈A × B〉 T1 T2 = Compare〈A〉 (Outl T1) (Outl T2)

× Compare〈B〉 (Outr T1) (Outr T2)
Compare〈A→ B〉 T1 T2 = ∀A1 A2 .Compare〈A〉 A1 A2

→ Compare〈B〉 (T1 A1) (T2 A2).

108 Examples

Note that Compare corresponds to PEqual , the second, more general type of equal .

5.2 Mapping functions

In this section we take a look at two variations of mapping functions: embedding-
projection maps (Section 5.2.1) and monadic maps (Section 5.2.2). Embedding-
projection maps are useful for programming ‘representation changers’; we will
make intensive use of these maps in Chapter 6 when we discuss the implementation
of Generic Haskell. Monadic maps can be used to thread a monad through a data
structure; Section 5.2.2 contains an application along these lines.

5.2.1 Embedding-projection maps

Most of the generic functions cannot sensibly be defined for the function space.
For instance, map cannot be defined for functional types since (→) is contravariant
in its first argument:

(→) :: ∀A1 A2 . (A2 → A1)→ ∀B1 B2 . (B1 → B2)→ ((A1 → B1)→ (A2 → B2))
(f → g) h = g · h · f .

Drawing from the theory of embeddings and projections (Gierz, Hofmann, Keimel,
Lawson, Mislove, and Scott 1980) we can remedy the situation as follows. The
central idea is to supply a pair of functions, from and to, where to is the left-inverse
of from, that is, to · from = id . If the functions additionally satisfy from · to v id ,
then they are called an embedding-projection pair. We use the following data type
to represent embedding-projection pairs.

data EP A1 A2 = ep{from :: A1 → A2, to :: A2 → A1}
idE :: ∀A .EP A A
idE = ep{from = id , to = id }
(−)op :: ∀A1 A2 .EP A1 A2 → EP A2 A1

f op = ep{from = to f , to = from f }
(◦) :: ∀A B C .EP B C → EP A B → EP A C
f ◦ g = ep{from = from f · from g , to = to g · to f }

Here, idE is the identity embedding-projection pair and ‘◦’ shows how to compose
two embedding-projection pairs (note that the composition is reversed for the
projection). In fact, idE and ‘◦’ give rise to the category Cpoe, the category
of complete partial orders and embedding-projection pairs. Note that m is an
embedding-projection pair iff

to m · from m = id ∩ from m · to m v id .

POPL-style definition Given the definitions above we can define a variant of
map, which additionally works for the function space constructor:

mapE 〈T :: ?→ ?〉 :: ∀A1 A2 .EP A1 A2 → (T A1 → T A2)
mapE 〈Id〉 m = from m
mapE 〈1〉 m = id
mapE 〈Char〉 m = id
mapE 〈Int〉 m = id
mapE 〈F + G〉 m = mapE 〈F 〉 m + mapE 〈G〉 m
mapE 〈F × G〉 m = mapE 〈F 〉 m × mapE 〈G〉 m
mapE 〈F → G〉 m = mapE 〈F 〉 mop → mapE 〈G〉 m.

5.2 Mapping functions 109

Now, if F is a covariant functor (in Cpo), we can define its mapping function in
terms of mapE :

map〈F :: ?→ ?〉 :: ∀A1 A2 . (A1 → A2)→ (T A1 → T A2)
map〈F 〉 m = mapE 〈F 〉 (ep{from = m, to = ⊥}).

Note that this definition is more general than the original definition of map since
F may involve functional types as in F = ΛA .S → A × S . However, if F is not
covariant, then we get a run-time error.

On the other hand, if F is a contravariant functor, we can define its mapping
function also in terms of mapE :

comap〈F :: ?→ ?〉 :: ∀A1 A2 . (A2 → A1)→ (T A1 → T A2)
comap〈F 〉 m = mapE 〈F 〉 (ep{from = ⊥, to = m }).

Finally, if F is neither covariant nor contravariant, then we can define a mapping
function with a restricted type:

endomap〈F :: ?→ ?〉 :: ∀A . (A→ A)→ (T A→ T A)
endomap〈F 〉 m = mapE 〈F 〉 (ep{from = m, to = m }).

Properties Assume that m is an embedding-projection pair, then we can prove

mapE 〈T 〉 mop ·mapE 〈T 〉 m = id

by fixed point induction. We confine ourselves to the interesting cases.

• Case T = Id :

mapE 〈Id〉 mop ·mapE 〈Id〉 m
= { definition of mapE }

from mop · from m
= { from mop = to m }

to m · from m
= { m is an embedding-projection pair }

id .

• Case T = F → G :

mapE 〈F → G〉 mop ·mapE 〈F → G〉 m
= { definition of mapE }

(mapE 〈F 〉 (mop)op → mapE 〈G〉 mop) · (mapE 〈F 〉 mop → mapE 〈G〉 m)
= { (mop)op = m }

(mapE 〈F 〉 m → mapE 〈G〉 mop) · (mapE 〈F 〉 mop → mapE 〈G〉 m)
= { (→) difunctor }

(mapE 〈F 〉 mop ·mapE 〈F 〉 m)→ (mapE 〈G〉 mop ·mapE 〈G〉 m)
= { ex hypothesi }

id → id
= { (→) difunctor }

id .

110 Examples

Using similar calculations we can furthermore show that

mapE 〈T 〉 m ·mapE 〈T 〉 mop v id .

Both laws imply that ep{from = mapE 〈T 〉 m, to = mapE 〈T 〉 mop } is again an
embedding-projection pair. Furthermore, one can show that the mapping function
λm . ep{from = mapE 〈T 〉 m, to = mapE 〈T 〉 mop } is the functorial action of T
in the category Cpoe of complete partial orders and embedding-projection pairs.

MPC-style definition The analysis above suggests that we can turn mapE into
a MPC-style definition if we make mapE itself return an embedding-projection
pair, rather than just the from function.

MapE 〈T :: 2〉 :: T→ T→ ?
MapE 〈?〉 T1 T2 = EP T1 T2

MapE 〈T × U〉 T1 T2 = MapE 〈T〉 (Outl T1) (Outl T2) × MapE 〈U〉 (Outr T1) (Outr T2)
MapE 〈T→ U〉 T1 T2 = ∀A1 A2 .MapE 〈T〉 A1 A2 → MapE 〈U〉 (T1 A1) (T2 A2)
mapE 〈〈T :: T〉〉 :: MapE 〈T〉 T T
mapE 〈〈1〉〉 = idE
mapE 〈〈Char〉〉 = idE
mapE 〈〈Int〉〉 = idE
mapE 〈〈+〉〉 mA mB = ep{from = from mA + from mB , to = to mA + to mB }
mapE 〈〈×〉〉 mA mB = ep{from = from mA × from mB , to = to mA × to mB }
mapE 〈〈→〉〉 mA mB = ep{from = to mA→ from mB , to = from mA→ to mB }

Note that mapE 〈F 〉 m = from (mapE 〈〈F 〉〉 m).

Properties Let us briefly sketch the proof that mapE 〈〈F 〉〉 is indeed the functo-
rial action of F in the category Cpoe. First, we have to show that mapE 〈〈F 〉〉 takes
embedding-projection pairs to embedding-projection pairs. The logical relation
EP generalizes this property to types of arbitrary kinds.

EP〈T〉 T1 T2 ⊆ MapE 〈T〉 T1 T2

m ∈ EP〈?〉 T1 T2 ≡ to m · from m = id :: T1 → T1 ∩ from m · to m v id :: T2 → T2

We have mapE 〈〈T :: T〉〉 ∈ EP〈T〉 T T . Second, we have to prove that mapE 〈〈F 〉〉
preserves identity. The generic version of this law states mapE 〈〈T :: T〉〉 ∈ Id〈T〉 T
where Id is given by

Id〈T〉 T ⊆ MapE 〈T〉 T T
m ∈ Id〈?〉 T ≡ m = idE :: EP T T .

Third, it remains to prove that mapE 〈〈F 〉〉 respects composition. In general, we
have (mapE 〈〈T :: T〉〉,mapE 〈〈T :: T〉〉,mapE 〈〈T :: T〉〉) ∈ Comp〈T〉 T T T where

Comp〈T〉 T1 T2 T3 ⊆ MapE 〈T〉 T2 T3 × MapE 〈T〉 T1 T2 × MapE 〈T〉 T1 T3

(m1,m2,m3) ∈ Comp〈?〉 T1 T2 T3 ≡ m1 ◦m2 = m3 :: EP T1 T3.

Her is the proof of the last law (we confine ourselves to the interesting case):

• Case T = (→): We have to show that

(mapE 〈〈→〉〉,mapE 〈〈→〉〉,mapE 〈〈→〉〉) ∈ Comp〈?→ ?→ ?〉 (→) (→) (→)
≡ mA1 ◦mA2 = mA3 ⊃ mB1 ◦mB2 = mB3

⊃ mapE 〈〈→〉〉 mA1 mB1 ◦mapE 〈〈→〉〉 mA2 mB2 = mapE 〈〈→〉〉 mA3 mB3

5.2 Mapping functions 111

Note that mA1 ◦mA2 = mA3 implies to mA2 · to mA1 = to mA3 (mA1 and
mA2 are swapped) and from mA1 · from mA2 = from mA3. We reason

mapE 〈〈→〉〉 mA1 mB1 ◦mapE 〈〈→〉〉 mA2 mB2

= { definition of mapE }
ep{from = to mA1 → from mB1, to = } ◦ ep{from = to mA2 → from mB2, to = }

= { definition of (◦) }
ep{from = (to mA1 → from mB1) · (to mA2 → from mB2), to = }

= { (→) difunctor }
ep{from = (to mA2 · to mA1)→ (from mB1 · from mB2), to = }

= { assumptions: to mA2 · to mA1 = to mA3 and from mB1 · from mB2 = from mB3 }
ep{from = to mA3 → from mB3, to = }

= { definition of mapE }
mapE 〈〈→〉〉 mA3 mB3.

5.2.2 Monadic maps

Recall the definition of monads given in Section 2.2.2. Each monad gives rise to a
category, the so-called Kleisli category of a monad, whose arrows are procedures.
The identity arrow of the Kleisli category is given by return and composition is
given by ‘3’. To define the monadic mapping functions it is useful to lift (+) and
(×) to procedures. The pendant of (+) is given by

(�) :: ∀M . (Monad M)⇒ ∀A1 A2 . (A1 → M A2)
→ ∀B1 B2 . (B1 → M B2)

→ ((A1 + B1)→ M (A2 + B2))
(m � n) (inl a1) = m a1 >>= λa2 → return (inl a2)
(m � n) (inr b1) = n b1 >>= λb2 → return (inr b2)

It easy to see that

return � return = return (5.1)
(m1 3 m2) � (n1 3 n2) = (m1 � n1) 3 (m2 � n2). (5.2)

Thus, (+) is a bifunctor over the Kleisli category. For products there is a choice
to be made.
(�), (�) :: ∀M . (Monad M)⇒ ∀A1 A2 . (A1 → M A2)

→ ∀B1 B2 . (B1 → M B2)
→ ((A1 × B1)→ M (A2 × B2))

(m � n) (a1, b1) = m a1 >>= λa2 → n b1 >>= λb2 → return (a2, b2)
(m � n) (a1, b1) = n b1 >>= λb2 → m a1 >>= λa2 → return (a2, b2)

We can either execute m a1 first and then n b1 or vice versa. The symbols, ‘�’
and ‘�’, have been chosen to indicate which component of the tuple is executed
first. Again, it is straightforward to show that

return � return = return (5.3)
return � return = return. (5.4)

However, both (�) and (�) fail to preserve monadic composition, which implies
that (×) is not a bifunctor.

112 Examples

POPL-style definition We have two monadic ‘mapping functions’, one which
traverses the data structure from left to right, mapMl , and one which traverses
the data structure from right to left, mapMr .

mapMl〈T :: ?→ ?〉 :: ∀M . (Monad M)⇒ ∀A1 A2 . (A1 → M A2)→ (T A1 → M (T A2))
mapMl〈Id〉 m = m
mapMl〈1〉 m = return
mapMl〈Char〉 m = return
mapMl〈Int〉 m = return
mapMl〈F + G〉 m = mapMl〈F 〉 m � mapMl〈G〉 m
mapMl〈F × G〉 m = mapMl〈F 〉 m � mapMl〈G〉 m

The definition of mapMr is identical to mapMl except for the ‘×’ case:

mapMr〈F × G〉 m = mapMl〈F 〉 m � mapMl〈G〉 m.

A special case of mapMl is threadl , which threads a monad through a structure.

threadl〈F :: ?→ ?〉 :: ∀M . (Monad M)⇒ ∀A .F (M A)→ M (F A)
threadl〈F 〉 = mapMl〈F 〉 id

An application Using the two monadic mapping functions we can, for instance,
separate a container into its shape and its contents, see, (Jansson and Jeuring
2000). Briefly, a container of type F A can be uniqely represented by its shape
of type F () and its contents of type [A]. Separating into shape and contents
may be useful, for instance, prior to data compression. Instead of compression a
value of type, say, F String directly, we first separate it and then compress the
shape and the contents separately, the former possibly using structured methods
(for instance, encode) and the latter using statistical methods.

To implement separate and combine, we use the state transformer monad de-
fined in Section 2.2.2.

separate〈F :: ?→ ?〉 :: ∀A .F A→ StateT [A] (F ())
separate〈F 〉 = mapMr〈F 〉 put
combine〈F :: ?→ ?〉 :: ∀A .F ()→ StateT [A] (F A)
combine〈F 〉 = mapMl〈F 〉 get

The helper functions put and get are given by

put :: ∀A .A→ StateT [A] ()
put a = StateT (λs → ((), a : s))
get :: ∀A . ()→ StateT [A] A
get () = StateT (λ(a : s)→ (a, s)).

Thus, separate traverses a given container of type F A, replaces every element
of type A by () and additionally adds the element as a side-effect to the list of
elements that is maintained as the state. Its inverse, combine, puts the elements
from the list into the slots of the container. Note that separate uses mapMr
while combine uses mapMl . Since they use opposite traversals, we can prove that
separate〈F 〉 3 combine〈F 〉 = return. We will show below that

mr 3 ml = return ⊃ mapMr〈F 〉 mr 3 mapMl〈F 〉 ml = return.

5.2 Mapping functions 113

Consequently, it suffices to establish that put 3 get = return.

(put 3 get) a
= { definition of (3) }

put a >>= get
= { definition of (>>=) }

StateT (λs → let (x , s ′) = applyST (put a) s in applyST (get x) s ′)
= { definition of applyST and put }

StateT (λs → applyST (get ()) (a : s))
= { definition of applyST and get }

StateT (λs → (a, s))
= { definition of return }

return a.

MPC-style definition The generalization of mapMl and mapMr to types of
arbitrary kinds is straightforward.

MapMM 〈T :: 2〉 :: T→ T→ ?
MapMM 〈?〉 T1 T2 = T1 → M T2

MapMM 〈T × U〉 T1 T2 = MapMM 〈T〉 (Outl T1) (Outl T2)
× MapMM 〈U〉 (Outr T1) (Outr T2)

MapMM 〈T→ U〉 T1 T2 = ∀A1 A2 .MapMM 〈T〉 A1 A2

→ MapMM 〈U〉 (T1 A1) (T2 A2)
mapMl〈〈T :: T〉〉 :: ∀M . (Monad M)⇒ MapMM 〈T〉 T T
mapMl〈〈1〉〉 = return
mapMl〈〈Char〉〉 = return
mapMl〈〈Int〉〉 = return
mapMl〈〈+〉〉 mA mB = mA � mB
mapMl〈〈×〉〉 mA mB = mA � mB

The type of the monadic mapping function makes use of a simple extension: MapM
takes an additional type parameter, the underlying monad M , that is passed
unchanged to the base case. One can safely think of M as a type parameter
that is global to the definition.

A property Strictly speaking, mapMl and mapMr do not classify as mapping
functions as they fail to preserve composition (recall that (×) is not a bifunctor).
They satisfy, however, the following inversion law :

mr 3 ml = return ⊃ mapMr〈〈F 〉〉 mr 3 mapMl〈〈F 〉〉 ml = return.

The generalization of the inversion law to types of arbitrary kinds states that
(mapMr〈〈T :: T〉〉,mapMl〈〈T :: T〉〉) ∈MInvM 〈T〉 T T where MInv is given by

MInvM 〈T〉 T1 T2 ⊆ MapMM 〈T〉 T1 T2 × MapMM 〈T〉 T2 T1

(mr ,ml) ∈MInvM 〈?〉 T1 T2 ≡ mr 3 ml = return :: T1 → M T1.

Note that the relation MInv is pointed if return and (>>=) are strict: we have
⊥ 3 ⊥ = return :: 0→ M 0 ≡ ⊥>>=⊥ = return ⊥ :: M 0.

114 Examples

• Case T = C ∈ {1,Char , Int }: We have to show that

(mapMr〈〈C 〉〉,mapMl〈〈C 〉〉) ∈MInvM 〈?〉 C C
≡ return 3 return = return,

which holds.

• Case T = (+): We have to show that

(mapMr〈〈+〉〉,mapMl〈〈+〉〉) ∈MInvM 〈?→ ?→ ?〉 (+) (+)
≡ mrA 3 mlA = return ⊃ mrB 3 mlB = return

⊃ (mrA � mrB) 3 (mlA � mlB) = return.

We reason as follows:

(mrA � mrB) 3 (mlA � mlB)
= { property (5.2): (�) preserves (3) }

(mrA 3 mlA) � (mrB 3 mlB)
= { assumptions: mrA 3 mlA = return and mrB 3 mlB = return }

return � return
= { property (5.1): (�) preserves return }

return.

• Case T = (×): We have to show that

(mapMr〈〈×〉〉,mapMl〈〈×〉〉) ∈MInvM 〈?→ ?→ ?〉 (×) (×)
≡ mrA 3 mlA = return ⊃ mrB 3 mlB = return

⊃ (mrA � mrB) 3 (mlA � mlB) = return

This statement is most conveniently shown if we rephrase it using the so-
called do-notation, see, for instance (Bird 1998). As an example, using the
do-notation mr 3 ml = return reads

do {p; y ← mr x ; z ← ml y ; q ; r } = do {p; q [z := x]; r [z := x]},

provided y is not free in q or r . Now, we reason:

do {((mrA � mrB) 3 (mlA � mlB)) (a1, a2)}
= { definition of (3) and monad laws }

do {b ← (mrA � mrB) (a1, a2); (mlA � mlB) b}
= { definition of (�) and monad laws }

do {b2 ← mrB a2; b1 ← mrA a1; (mlA � mlB) (b1, b2)}
= { definition of (�) and monad laws }

do {b2 ← mrB a2; b1 ← mrA a1; c1 ← mlA b1; c2 ← mlB b2; return (c1, c2)}
= { assumption: mrA 3 mlA = return }

do {b2 ← mrB a2; c2 ← mlB b2; return (a1, c2)}
= { assumption: mrB 3 mlB = return }

do {return (a1, a2)}.

5.3 Zipping functions 115

Remark 5.1 The development above can be generalized even further using the
framework of arrows introduced by Hughes (2000). Though more abstract arrows
simplify the calculations as demonstrated convincingly by Jansson and Jeuring
(2000). ut

5.3 Zipping functions

POPL-style definitions Closely related to mapping functions are zipping func-
tions. A binary zipping function takes two structures of the same shape and com-
bines them into a single structure. For instance, the list zip takes two lists of type
List A1 and List A2 and pairs corresponding elements producing a list of type
List (A1 × A2). The definition of zip is similar to that of equal .

zip〈T :: ?→ ?〉 :: ∀A B .T A × T B → T (A × B)
zip〈Id〉 (a, b) = (a, b)
zip〈1〉 ((), ()) = ()
zip〈Char〉 (c1, c2) = zipChar (c1, c2)
zip〈Int〉 (i1, i2) = zipInt (i1, i2)
zip〈F + G〉 (inl f1, inl f2) = inl (zip〈F 〉 (f1, f2))
zip〈F + G〉 (inl f1, inr g2) = error "zip"
zip〈F + G〉 (inr g1, inl f2) = error "zip"
zip〈F + G〉 (inr g1, inr g2) = inr (zip〈G〉 (g1, g2))
zip〈F × G〉 ((f1, g1), (f2, g2)) = (zip〈F 〉 (f1, f2), zip〈G〉 (g1, g2))

The helper functions zipChar and zipInt are defined

zipChar :: Char × Char → Char
zipChar (c1, c2) = if equalChar c1 c2 then c1 else error "zipChar"

zipInt :: Int × Int → Int
zipInt (i1, i2) = if equalInt i1 i2 then i1 else error "zipInt".

Since zip has a polymorphic type, it satisfies a naturality law, in fact, a generic
naturality law.

zip〈F 〉 · (map〈F 〉 m1 × map〈F 〉 m2) = map〈F 〉 (m1 × m2) · zip〈F 〉 (5.5)

A colleague of zip is zipWith, which enjoys the following specification:

zipWith〈F 〉 z = map〈F 〉 z · zip〈F 〉. (5.6)

The zipWith function captures the common idiom of composing a map with a zip.
The derivation of zipWith is left as an exercise to the reader; we present only the
final result:

zipWith〈T :: ?→ ?〉 :: ∀A B C . (A × B → C)→ (T A × T B → T C)
zipWith〈Id〉 z (a, b) = z (a, b)
zipWith〈1〉 z ((), ()) = ()
zipWith〈Char〉 z (c1, c2) = zipChar (c1, c2)
zipWith〈Int〉 z (i1, i2) = zipInt (i1, i2)
zipWith〈F + G〉 z (inl f1) (inl f2) = inl (zipWith〈F 〉 z (f1, f2))
zipWith〈F + G〉 z (inl f1) (inr g2) = error "zipWith"
zipWith〈F + G〉 z (inr g1) (inl f2) = error "zipWith"
zipWith〈F + G〉 z (inr g1) (inr g2) = inr (zipWith〈G〉 z (g1, g2))
zipWith〈F × G〉 z (f1, g1) (f2, g2) = (zipWith〈F 〉 z (f1, f2), zipWith〈G〉 z (g1, g2)).

116 Examples

Note that we can define zip in terms of zipWith:

zip〈F 〉 = zipWith〈F 〉 id .

The zipWith function satisfies two general fusion laws: map-zipWith-fusion and
zipWith-map-fusion.

map〈F 〉 m · zipWith〈F 〉 z = zipWith〈F 〉 (m · z)
zipWith〈F 〉 z · (map〈F 〉 m1 × map〈F 〉 m2) = zipWith〈F 〉 (z · (m1 × m2)).

The first law is a simple consequence of the specification (5.6). The second law is
a consequence of the naturality law (5.5). Conversely, the zipWith laws imply the
zip laws.

MPC-style definitions The zipWith function can be easily generalized to higher-
order kinds. Its type is essentially a three parameter variant of Map.

ZipWith〈T :: 2〉 :: T→ T→ T→ ?
ZipWith〈?〉 T1 T2 T3 = T1 × T2 → T3

ZipWith〈T × U〉 T1 T2 T3 = ZipWith〈T〉 (Outl T1) (Outl T2) (Outl T3)
× ZipWith〈U〉 (Outr T1) (Outr T2) (Outr T3)

ZipWith〈T→ U〉 T1 T2 T3 = ∀A1 A2 A3 .ZipWith〈T〉 A1 A2 A3

→ ZipWith〈U〉 (T1 A1) (T2 A2) (T3 A3)
zipWith〈〈T :: T〉〉 :: ZipWith〈T〉 T T T
zipWith〈〈1〉〉 ((), ()) = ()
zipWith〈〈Char〉〉 (c1, c2) = zipChar (c1, c2)
zipWith〈〈Int〉〉 (i1, i2) = zipInt (i1, i2)
zipWith〈〈+〉〉 zA zB (inl a1, inl a2) = inl (zA (a1, a2))
zipWith〈〈+〉〉 zA zB (inl a1, inr b2) = error "zipWith"
zipWith〈〈+〉〉 zA zB (inr b1, inl a2) = error "zipWith"
zipWith〈〈+〉〉 zA zB (inr b1, inr b2) = inr (zB (b1, b2))
zipWith〈〈×〉〉 zA zB ((a1, b1), (a2, b2)) = (zA (a1, a2), zB (b1, b2))

Properties The generalized version of zipWith satisfies generalized versions of
the two fusion laws. The first law states that

(map〈〈T :: T〉〉, zipWith〈〈T :: T〉〉, zipWith〈〈T :: T〉〉) ∈ Fuse1〈T〉 T T T T

where Fuse1 is given by

Fuse1〈T〉 T1 T2 T3 T4 ⊆ Map〈T〉 T3 T4 × ZipWith〈T〉 T1 T2 T3 × ZipWith〈T〉 T1 T2 T4

(m, z , z ′) ∈ Fuse1〈?〉 T1 T2 T3 T4

≡ m · z = z ′ :: T1 × T2 → T4.

Similarly, the second law formalizes that

(zipWith〈〈T :: T〉〉,map〈〈T :: T〉〉,map〈〈T :: T〉〉, zipWith〈〈T :: T〉〉) ∈ Fuse2〈T〉 T T T T T

where Fuse2 is defined

Fuse2〈T〉 T1 T2 T3 T4 T5 ⊆ ZipWith〈T〉 T3 T4 T5 × Map〈T〉 T1 T3

× Map〈T〉 T2 T4 × ZipWith〈T〉 T1 T2 T5

(z ,m1,m2, z ′) ∈ Fuse2〈?〉 T1 T2 T3 T4 T5

≡ z · (m1 × m2) = z ′ :: T1 × T2 → T5.

5.3 Zipping functions 117

We only show the first fusion law, the proof of the second law is left as an exercise
to the reader. For the calculations it is helpful to rephrase zipWith in a point-free
style (we abbreviate error "zipWith" by ⊥):

zipWith〈〈T :: T〉〉 :: ZipWith〈T〉 T T T
zipWith〈〈1〉〉 = unit
zipWith〈〈Char〉〉 = zipChar
zipWith〈〈Int〉〉 = zipInt
zipWith〈〈+〉〉 zA zB = (((inl · zA) O ⊥) O (⊥ O (inr · zB))) · dist
zipWith〈〈×〉〉 zA zB = (zA × zB) · transpose

The function dist combines distr and distl defined in Section 2.3.7.

dist :: ∀A B C D . (A + B) × (C + D)→ ((A × C) + (A × D)) + ((B × C) + (B × D))
dist = (distr + distr) · distl

The function transpose transposes a 2 × 2 matrix.

transpose :: ∀A B C D . (A × B) × (C × D)→ (A × C) × (B × D)
transpose ((a, b), (c, d)) = ((a, c), (b, d))

Now, for the proof:

• Case T = C ∈ {1, Int ,Char }: We have to show that

(map〈〈C 〉〉, zipWith〈〈C 〉〉, zipWith〈〈C 〉〉) ∈ Fuse1〈?〉 C C C C
≡ map〈〈C 〉〉 · zipWith〈〈C 〉〉 = zipWith〈〈C 〉〉,

which holds since map〈〈C 〉〉 = id .

• Case T = (+): We have to show that

(map〈〈+〉〉, zipWith〈〈+〉〉, zipWith〈〈+〉〉) ∈ Fuse1〈T〉 (+) (+) (+) (+)
≡ mA · zA = zA′ ⊃ mB · zB = zB ′

⊃ map〈〈+〉〉 mA mB · zipWith〈〈+〉〉 zA zB = zipWith〈〈+〉〉 zA′ zB ′.

We reason:

map〈〈+〉〉 mA mB · zipWith〈〈+〉〉 zA zB
= { definition of map and definition of zipWith }

(mA + mB) · (((inl · zA) O ⊥) O (⊥ O (inr · zB))) · dist
= { O-fusion law and f · ⊥ = ⊥ }

((((mA + mB) · inl · zA) O ⊥) O (⊥ O ((mA + mB) · inr · zB))) · dist
= { +-computation law }

(((inl ·mA · zA) O ⊥) O (⊥ O (inr ·mB · zB))) · dist
= { assumptions: mA · zA = zA′ and mB · zB = zB ′ }

(((inl · zA′) O ⊥) O (⊥ O (inr · zB ′))) · dist
= { definition of zipWith }

zipWith〈〈+〉〉 zA′ zB ′.

118 Examples

• Case T = (×): We have to show that

(map〈〈×〉〉, zipWith〈〈×〉〉, zipWith〈〈×〉〉) ∈ Fuse1〈T〉 (×) (×) (×) (×)
≡ mA · zA = zA′ ⊃ mB · zB = zB ′

⊃ map〈〈×〉〉 mA mB · zipWith〈〈×〉〉 zA zB = zipWith〈〈×〉〉 zA′ zB ′.

We reason:

map〈〈×〉〉 mA mB · zipWith〈〈×〉〉 zA zB
= { definition of map and definition of zipWith }

(mA × mB) · (zA × zB) · transpose
= { (×) bifunctor }

((mA · zA) × (mB · zB)) · transpose
= { assumptions: mA · zA = zA′ and mB · zB = zB ′ }

(zA′ × zB ′) · transpose
= { definition of zipWith }

zipWith〈〈×〉〉 zA′ zB ′.

Remark 5.2 The Haskell Prelude defines curried versions of zip and zipWith:

zip :: ∀A B . [A]→ [B]→ [A × B]
zipWith :: ∀A B C . (A→ B → C)→ [A]→ [B]→ [C].

The curried versions are usually preferable for programming while the uncurried
versions are preferable for conducting proofs. ut

A variation The result of zip is a partial structure if the two arguments have
not the same shape. Alternatively, one can define a zipping function of type
∀A B .T A → T B → Maybe (T (A × B)), which uses the exception monad
Maybe to signal incompatibility of the argument structures.

zip〈T :: ?→ ?〉 :: ∀A B .T A→ T B → Maybe (T (A × B))
zip〈Id〉 a b = return (a, b)
zip〈1〉 () () = return ()
zip〈Char〉 c1 c2 = zipChar c1 c2

zip〈Int〉 i1 i2 = zipInt i1 i2
zip〈F + G〉 (inl f1) (inl f2) = mmap inl (zip〈F 〉 f1 f2)
zip〈F + G〉 (inl f1) (inr g2) = fail "zip"
zip〈F + G〉 (inr g1) (inl f2) = fail "zip"
zip〈F + G〉 (inr g1) (inr g2) = mmap inr (zip〈G〉 g1 g2)
zip〈F × G〉 (f1, g1) (f2, g2) = zip〈F 〉 f1 f2 >>= λx1 →

zip〈G〉 g1 g2 >>= λx2 →
return (x1, x2)

Note that this version of zip is curried. The helper functions zipChar and zipInt
are now given by

zipChar :: Char → Char → Maybe Char
zipChar c1 c2 = if equalChar c1 c2 then return c1 else fail "zipChar"
zipInt :: Int → Int → Maybe Int
zipInt i1 i2 = if equalInt i1 i2 then return i1 else fail "zipInt".

The MPC-style definition of zip is left as an exercise to the reader.

5.4 Reductions 119

5.4 Reductions

A reduction or a crush (Meertens 1996) is a function that collapses a structure of
values of type A into a single value of type A. This section explains how to define
reductions generically.

5.4.1 POPL-style reductions

We have already encountered a special instance of a reduction: the size function.
Here is another instance: the flatten function that flattens a structure into a list
of elements.

flatten〈T :: ?→ ?〉 :: ∀A .T A→ [A]
flatten〈Id〉 a = [a]
flatten〈1〉 () = []
flatten〈Char〉 c = []
flatten〈Int〉 i = []
flatten〈F + G〉 (inl f) = flatten〈F 〉 f
flatten〈F + G〉 (inr g) = flatten〈G〉 g
flatten〈F × G〉 (f , g) = flatten〈F 〉 f ++ flatten〈G〉 g

Note that flatten〈T 〉 t yields the contents of the container t , see also Section 5.2.2.
The definitions of size and flatten exhibit a common pattern: the elements

of a base type are replaced by a constant (0 and [], respectively) and the pair
constructor is replaced by a binary operator ((+) and (++), respectively). The
generic function reduce abstracts away from these particularities.

reduce〈T :: ?→ ?〉 :: ∀A .A→ (A→ A→ A)→ (T A→ A)
reduce〈Id〉 e op a = a
reduce〈1〉 e op () = e
reduce〈Char〉 e op c = e
reduce〈Int〉 e op i = e
reduce〈F + G〉 e op (inl f) = reduce〈F 〉 e op f
reduce〈F + G〉 e op (inr g) = reduce〈G〉 e op g
reduce〈F × G〉 e op (f , g) = reduce〈F 〉 e op f ‘op‘ reduce〈G〉 e op g

We can define reduce more succinctly using a local definition1 and employing a
point-free style.

reduce〈T :: ?→ ?〉 :: ∀A .A→ (A→ A→ A)→ (T A→ A)
reduce〈T 〉 e op = red〈T 〉

where red〈T :: ?→ ?〉 :: T A→ A
red〈Id〉 = id
red〈K C 〉 = k e
red〈F + G〉 = red〈F 〉 O red〈G〉
red〈F × G〉 = uncurry op · (red〈F 〉 × red〈G〉)

A number of useful functions can be implemented in terms of reduce and map, see
Figure 5.1. Meertens (1996), Jansson and Jeuring (1998) give further applications.

1We assume that type variables appearing in type signatures are scoped, that is, the type
variable A in the signature of red〈T 〉 is not universally quantified but refers to the occurrence
in reduce’s signature.

120 Examples

sum〈F :: ?→ ?〉 :: ∀N . (Num N)⇒ F N → N
sum〈F 〉 = reduce〈F 〉 0 (+)
and〈F :: ?→ ?〉 :: F Bool → Bool
and〈F 〉 = reduce〈F 〉 true (∧)
minimum〈F :: ?→ ?〉 :: ∀A . (Bounded A,Ord A)⇒ F A→ A
minimum〈F 〉 = reduce〈F 〉 maxBound min
size〈F :: ?→ ?〉 :: ∀A . (Num N)⇒ F A→ N
size〈F 〉 = sum〈F 〉 ·map〈F 〉 (k 1)
all〈F :: ?→ ?〉 :: ∀A . (A→ Bool)→ (F A→ Bool)
all〈F 〉 p = and〈F 〉 ·map〈F 〉 p
flatten〈F :: ?→ ?〉 :: ∀A .F A→ [A]
flatten〈F 〉 = reduce〈F 〉 [] (++) ·map〈F 〉 wrap
data Shape A = Empty | Var A | Bin (Shape A) (Shape A)
shape〈F :: ?→ ?〉 :: ∀A .F A→ Shape A
shape〈F 〉 = reduce〈F 〉 Empty Bin ·map〈F 〉 Var

Figure 5.1: Examples of reductions (POPL-style).

5.4.2 MPC-style reductions

The MPC-style variant of flatten is similar to that of size.

FlattenZ 〈T :: 2〉 :: T→ ?
FlattenZ 〈?〉 T = T → [Z]
FlattenZ 〈T × U〉 T = FlattenZ 〈T〉 (Outl T) × FlattenZ 〈U〉 (Outr T)
FlattenZ 〈T→ U〉 T = ∀A .FlattenZ 〈T〉 A→ FlattenZ 〈U〉 (T A)
flatten〈〈T :: T〉〉 :: ∀Z .FlattenZ 〈T〉 T
flatten〈〈1〉〉 () = []
flatten〈〈Char〉〉 c = []
flatten〈〈Int〉〉 i = []
flatten〈〈+〉〉 flA flB (inl a) = flA a
flatten〈〈+〉〉 flA flB (inr b) = flB b
flatten〈〈×〉〉 flA flB (a, b) = flA a ++ flB b

Note that flatten is pointless for types—flatten〈〈T 〉〉 t returns [] for all types T of
kind ? provided t is finite and fully defined— but useful for type constructors. In
particular, we can define the POPL-style flatten in terms of the MPC-style flatten
(recall that wrap a = [a]):

flatten〈F :: ?→ ?〉 :: ∀A .F A→ [A]
flatten〈F 〉 = flatten〈〈F 〉〉 wrap.

5.4 Reductions 121

sum〈F :: ?→ ?〉 :: ∀N . (Num N)⇒ F N → N
sum〈F 〉 = reduce〈〈F 〉〉 0 (+) id
and〈F :: ?→ ?〉 :: F Bool → Bool
and〈F 〉 = reduce〈〈F 〉〉 true (∧) id
minimum〈F :: ?→ ?〉 :: ∀A . (Bounded A,Ord A)⇒ F A→ A
minimum〈F 〉 = reduce〈〈F 〉〉 maxBound min id
size〈F :: ?→ ?〉 :: ∀A . (Num N)⇒ F A→ N
size〈F 〉 = reduce〈〈F 〉〉 0 (+) (k 1)
all〈F :: ?→ ?〉 :: ∀A . (A→ Bool)→ (F A→ Bool)
all〈F 〉 p = reduce〈〈F 〉〉 true (∧) p
flatten〈F :: ?→ ?〉 :: ∀A .F A→ [A]
flatten〈F 〉 = reduce〈〈F 〉〉 [] (++) wrap
biflatten〈G :: ?→ ?→ ?〉 :: ∀A B .G A B → [A + B]
biflatten〈G〉 = reduce〈〈G〉〉 [] (++) (wrap · inl) (wrap · inr)
data Shape A = Empty | Var A | Bin (Shape A) (Shape A)
shape〈F :: ?→ ?〉 :: ∀A .F A→ Tree A
shape〈F 〉 = reduce〈〈F 〉〉 Empty Bin Var

Figure 5.2: Examples of reductions (MPC-style).

Here is the generalized version of reduce.

ReduceZ 〈T :: 2〉 :: T→ ?
ReduceZ 〈?〉 T = T → Z
ReduceZ 〈T × U〉 T = ReduceZ 〈T〉 (Outl T) × ReduceZ 〈U〉 (Outr T)
ReduceZ 〈T→ U〉 T = ∀A .ReduceZ 〈T〉 A→ ReduceZ 〈U〉 (T A)
reduce〈〈T :: T〉〉 :: ∀Z .Z → (Z → Z → Z)→ ReduceZ 〈T〉 T
reduce〈〈T 〉〉 e op = red〈〈T 〉〉

where
red〈〈T :: T〉〉 :: ReduceZ 〈T〉 T
red〈〈1〉〉 = k e
red〈〈Char〉〉 = k e
red〈〈Int〉〉 = k e
red〈〈+〉〉 redA redb = redA O redb
red〈〈×〉〉 redA redb = uncurry op · (redA × redb)

The type of reduce〈〈F 〉〉 where F is a unary type constructor is quite general.

reduce〈〈F :: ?→ ?〉〉 :: ∀Z .Z → (Z → Z → Z)→ (∀A . (A→ Z)→ (F A→ Z))

Again, we can define the POPL-style reduce in terms of the MPC-style reduce.

reduce〈F :: ?→ ?〉 :: ∀A .A→ (A→ A→ A)→ (F A→ A)
reduce〈F 〉 e op = reduce〈〈F 〉〉 e op id

Figure 5.2 lists some typical applications of reduce〈〈F 〉〉 and reduce〈〈G〉〉 where G
is a binary type constructor. Most of the definitions are obtained from Figure 5.1
using reduce〈F 〉 e op · map〈F 〉 m = reduce〈〈F 〉〉 e op m. A generalization of this
property will be proved in the following section.

122 Examples

5.4.3 Properties

Reductions satisfy two general fusion laws. The first law shows how to fuse a
reduction with a map. The second law states conditions under which we can fuse
an ‘ordinary’ function with a reduction.

The first law uses a logical relation that is a minor variant of Comp.

CompZ 〈T〉 T1 T2 ⊆ ReduceZ 〈T〉 T2 × Map〈T〉 T1 T2 × ReduceZ 〈T〉 T1

(r ,m, r ′) ∈ CompZ 〈?〉 T1 T2 ≡ r ·m = r ′ :: T1 → Z

Given an element e :: Z and an operation op :: Z → Z → Z , we have

(reduce〈〈T :: T〉〉 e op,map〈〈T :: T〉〉, reduce〈〈T :: T〉〉 e op) ∈ CompZ 〈T〉 T T .

An immediate consequence of this property is (here T :: ? → ? is a unary type
constructor)

reduce〈〈T 〉〉 e op f ·map〈〈T 〉〉 g = reduce〈〈T 〉〉 e op (f · g),

which shows how to fuse a reduction with a map. As usual, to prove the generic
property we merely have to verify that the statement holds for every type constant
C ∈ Const . Using the point-free definitions of map and red this amounts to
showing that

k e · id = k e
(r1 O r2) · (m1 + m2) = (r1 ·m1) O (r2 ·m2)
uncurry op · (r1 × r2) · (m1 × m2) = uncurry op · ((r1 ·m1) × (r2 ·m2)).

All three conditions hold.
Previous approaches to generic programming (Jansson and Jeuring 1997) re-

quired the programmer to specify the action of a generic function for the compo-
sition of two type constructors: for instance, for size the generic programmer had
to supply the equation size〈F1 ·F2〉 = sum〈F1〉 ·map〈F1〉 (size〈F2〉). Interestingly,
using reduce-map fusion this equation can be derived from the definitions of size
and sum given in Figure 5.2.

size〈F1 · F2〉
= { definition of size }

reduce〈〈F1 · F2〉〉 0 (+) (k 1)
= { poly〈〈F1 · F2〉〉 = poly〈〈F1〉〉 · poly〈〈F2〉〉 }

reduce〈〈F1〉〉 0 (+) (reduce〈〈F2〉〉 0 (+) (k 1))
= { definition of size }

reduce〈〈F1〉〉 0 (+) (size〈F2〉)
= { reduce-map fusion }

reduce〈〈F1〉〉 0 (+) id ·map〈F1〉 (size〈F2〉)
= { definition of sum }

sum〈F1〉 ·map〈F1〉 (size〈F2〉)

The second law generalizes the fusion law for reductions given by Meertens
(1996) to higher-order kinds. We have already derived a special instance of this

5.4 Reductions 123

law in Section 4.3.2. For that reason, we confine ourselves to a few remarks. The
law is based on the logical relation Fuse defined by

Fuseh,Z1,Z2〈T〉 T ⊆ ReduceZ1〈T〉 T × ReduceZ2〈T〉 T
(r , r ′) ∈ Fuseh,Z1,Z2〈?〉 T ≡ h · r = r ′ :: T → Z2,

where Z1 and Z2 are fixed types and h :: Z1 → Z2 is a fixed function. The second
fusion law, which gives conditions for fusing the function h with a reduction, then
takes the following form:

h ⊥ = ⊥
∩ h e = e ′

∩ h (op x y) = op′ (h x) (h y)
⊃ (reduce〈〈T :: T〉〉 e op, reduce〈〈T :: T〉〉 e ′ op′) ∈ Fuseh,Z1,Z2〈T〉 T .

We can apply this law, for instance, to prove that length · flatten〈F 〉 = size〈F 〉,
that is, length · reduce〈〈F 〉〉 [] (++) wrap = reduce〈〈F 〉〉 0 (+) (k 1).

5.4.4 Right and left reductions

The implementations of flatten given in the previous sections have a quadratic
running time since the computation of x ++y takes time proportional to the length
of x . Using the well-known technique of accumulation (Bird 1998) we can improve
the running time to O(n). We have already used accumulation in Section 4.2 to
derive an efficient implementation of encode. The following derivation is slightly
more general in that it works for arbitrary operations under the proviso that op
is associative and e is the unit of op.

The basic idea is to define a function redr〈F 〉 such that

op (red〈F 〉 x) a = redr〈F 〉 x a.

In a point-free style this condition can be written more succinctly as

op · red〈F 〉 = redr〈F 〉.

Now, assuming that redr itself can be expressed as a reduction we invoke the
second fusion law for reductions:

op · reduce〈〈F 〉〉 e op id = reduce〈〈F 〉〉 e ′ op′ (op · id).

Let us try to determine e ′ and op′. The fusion law requires them to satisfy
op e = e ′ and op (op a b) = op′ (op a) (op b). To derive e ′ we reason:

op e
= { η-conversion }

λx . op e x
= { e is the unit of op: op e x = x }

λx . x
= { definition of id }

id .

124 Examples

For op′ we calculate:

op (op a b)
= { η-conversion }

λx . op (op a b) x
= { op is associative: op (op x y) z = op x (op y z) }

λx . op a (op b x)
= { definition of (·) }

op a · op b.

We have e ′ = id and op′ = (·). Consequently, we can define a more efficient
POPL-style variant of reduce as follows:

reduce〈F 〉 e op x
= { e is the neutral element of op: op x e = x }

op (reduce〈F 〉 e op x) e
= { definition of reduce }

op (reduce〈〈F 〉〉 e op id x) e
= { fusion, see above }

reduce〈〈F 〉〉 id (·) op x e

To summarize, we have derived the following definition:

reduce ′〈F :: ?→ ?〉 :: ∀A .A→ (A→ A→ A)→ (F A→ A)
reduce ′〈F 〉 e op x = reduce〈〈F 〉〉 id (·) op x e.

The implementation guarantees that applications of op are only nested to the
right. For instance, if x contains from left to right the elements a1, . . . , an, then
reduce ′〈F 〉 e op x evaluates to

(op a1 · op a2 · · · · · op an) e = op a1 (op a2 (. . . (op an e) . . .)).

This property also reveals that the type of reduce ′ is unnecessarily restricted: the
two arguments of op need not have the same type. Therefore, we may generalize
the type signature as follows.

reducer〈F :: ?→ ?〉 :: ∀A B . (A→ B → B)→ (F A→ B → B)
reducer〈F 〉 op = reduce〈〈F 〉〉 id (·) op

Note that we have also rearranged the arguments to emphasize the structure.
Building upon reducer〈F 〉 we can now give a linear-time program for flatten〈F 〉.

flatten〈F :: ?→ ?〉 :: ∀A .F A→ [A]
flatten〈F 〉 f = reducer〈F 〉 (:) f []

Of course, there is also a reduction to the left. We merely have to flip compo-
sition and the binary operation op.

reducel〈F :: ?→ ?〉 :: ∀A B . (B → A→ B)→ (B → F A→ B)
reducel〈F 〉 op = flip (reduce〈〈F 〉〉 id (flip (·)) (flip op))

5.5 Generic dictionaries 125

Writing flip (·) as (;) we have

(flip op a1; flip op a2; . . . ; flip op an) e = op (. . . (op (op e a1) a2) . . .) an.

The workings of reducer and reducel become more apparent if we partially evaluate
the two definitions obtaining the following POPL-style implementations:

reducer〈F :: ?→ ?〉 :: ∀A B . (A→ B → B)→ (F A→ B → B)
reducer〈Id〉 op a b = op a b
reducer〈K C 〉 op c b = b
reducer〈F + G〉 op (inl f) b = reducer〈F 〉 op f b
reducer〈F + G〉 op (inr g) b = reducer〈G〉 op g b
reducer〈F × G〉 op (f , g) b = reducer〈F 〉 op f (reducer〈G〉 op g b)
reducel〈F :: ?→ ?〉 :: ∀A B . (B → A→ B)→ (B → F A→ B)
reducel〈Id〉 op b a = op b a
reducel〈K C 〉 op b c = b
reducel〈F + G〉 op b (inl f) = reducel〈F 〉 op b f
reducel〈F + G〉 op b (inr g) = reducel〈G〉 op b g
reducel〈F × G〉 op b (f , g) = reducel〈F 〉 op (reducel〈G〉 op b f) g .

5.5 Generic dictionaries

A trie is a search tree scheme that employs the structure of search keys to organize
information. Tries were originally devised as a means to represent a collection of
records indexed by strings over a fixed alphabet. Based on work by Wadsworth
and others, Connelly and Morris (1995) generalized the concept to permit indexing
by elements built according to an arbitrary signature. In this section we go one
step further and define tries and operations on tries generically for arbitrary data
types of arbitrary kinds, including parameterized and nested data types.

5.5.1 Introduction

The concept of a trie was introduced by Thue in 1912 as a means to represent a set
of strings, see Knuth (1998). In its simplest form a trie is a multiway branching tree

e

a

r

l

s

t y

y

e

where each edge is labelled with a character. For example, the
set of strings {ear , earl , east , easy , eye } is represented by the
trie depicted on the right. Searching in a trie starts at the
root and proceeds by traversing the edge that matches the first
character, then traversing the edge that matches the second
character, and so forth. The search key is a member of the
represented set if the search stops in a node that is marked—
marked nodes are drawn as filled circles on the right. Tries
can also be used to represent finite maps. In this case marked
nodes additionally contain values associated with the strings.
Interestingly, the move from sets to finite maps is not a mere
variation of the scheme. As we shall see it is essential for the further development.

On a more abstract level a trie itself can be seen as a composition of finite
maps. Each collection of edges descending from the same node constitutes a finite
map sending a character to a trie. With this interpretation in mind it is relatively
straightforward to devise an implementation of string-indexed tries. If strings are
defined by the data type introduced in Section 1.1.1 (page 3)

data String = nilS | consS Char String ,

126 Examples

we can represent string-indexed tries with associated values of type V as follows.

data FMapString V = nullString
| trieString (Maybe V) (FMapChar (FMapString V))

Here, nullString represents the empty trie. The first component of the constructor
trieString contains the value associated with nilS . Its type is Maybe V instead
of V since nilS may not be in the domain of the finite map represented by the
trie. In this case the first component equals nothing . The second component
corresponds to the edge map. To keep the introductory example manageable we
implement FMapChar using ordered association lists.

type FMapChar V = [(Char ,V)]
lookupChar :: ∀V .Char → FMapChar V → Maybe V
lookupChar c [] = nothing
lookupChar c ((c′, v) : x)
| c < c′ = nothing
| c c′ = just v
| c > c′ = lookupChar c x

Note that lookupChar has result type Maybe V . If the key is not in the domain
of the finite map, nothing is returned.

Building upon lookupChar we can define a look-up function for strings. To
look up the empty string we access the first component of the trie. To look up a
non-empty string, say, consS c s we look up c in the edge map obtaining a trie,
which is then recursively searched for s.

lookupString :: ∀V .String → FMapString V → Maybe V
lookupString s nullString = nothing
lookupString nilS (trieString tn tc) = tn
lookupString (consS c s) (trieString tn tc) = (lookupChar c 3 lookupString s) tc

In the last equation we use monadic composition to take care of the error signal
nothing .

Based on work by Wadsworth and others, Connelly and Morris (1995) have
generalized the concept of a trie to permit indexing by elements built according
to an arbitrary signature, that is, by elements of an arbitrary non-parameterized
data type. The definition of lookupString already gives a clue what a suitable
generalization might look like: the trie trieString tn tc contains a finite map
for each constructor of the data type String ; to look up consS c s the look-up
functions for the components, c and s, are composed. Generally, if we have a
data type with k constructors, the corresponding trie has k components. To look
up a constructor with n fields, we must select the corresponding finite map and
compose n look-up functions of the appropriate types. If a constructor has no
fields such as nilS , we extract the associated value.

As a second example, consider the data type of external search trees (a para-
metric version of this type was introduced in Section 2.1.2 on page 17):

data Dict = leaf String | node Dict String Dict .

A trie for external search trees represents a finite map from Dict to some value
type V . It is an element of FMapDict V given by

data FMapDict V = nullDict
| trieDict (FMapString V) (FMapDict (FMapString (FMapDict V))).

5.5 Generic dictionaries 127

Note that FMapDict is a nested data type, since the recursive call on the right
hand side, FMapDict (FMapString (FMapDict V)), is a substitution instance of
the left hand side. Consequently, the look-up function on external search trees
requires polymorphic recursion.

lookupDict :: ∀V .Dict → FMapDict V → Maybe V
lookupDict d nullDict = nothing
lookupDict (leaf s) (trieDict tl tn) = lookupString s tl
lookupDict (node l s r) (trieDict tl tn) = (lookupDict l 3 lookupString s 3 lookupDict r) tn

Looking up a node involves two recursive calls. The first, lookupDict l , is of type
Dict → FMapDict X → Maybe X where X = FMapString (FMapDict V), which
is a substitution instance of the declared type.

Note that it is absolutely necessary that FMapDict and lookupDict are para-
metric with respect to the codomain of the finite maps. Had we restricted the type
of lookupDict to Dict → FMapDict T → T for some fixed type T , the definition
would have no longer type-checked. This also explains why the construction does
not work for the finite set abstraction.

Remark 5.3 Looking up a constructed value boils down to composing look-up
functions. Interestingly, the order of composition is completely arbitrary: we are
free to use either textual order or reverse textual order. For instance, FMapString
and lookupString can alternatively be defined by

data FMapString V = nullString
| trieString (Maybe V) (FMapString (FMapChar V))

lookupString :: ∀V .String → FMapString V → Maybe V
lookupString s nullString = nothing
lookupString nilS (trieString tn tc) = tn
lookupString (consS c s) (trieString tn tc)

= (lookupString s 3 lookupChar c) tc.

These definitions employ reverse textual order—s is looked up first and then c—
and correspond to the textual order implementation of tries for ‘snoc’ strings given
by data Gnirts = lin | snoc Gnirts Char . That said, it becomes clear that both
orders must work equally well. As an aside, note that FMapString is now a nested
data type and lookupString requires polymorphic recursion. ut

Generalized tries make a particularly interesting application of generic pro-
gramming. The central insight is that a trie can be considered as a type-indexed
data type. This makes it possible to define tries and operations on tries generically
for arbitrary data types. We already have the necessary prerequisites at hand: we
know how to define tries for sums and for products. A trie for a sum is essentially
a product of tries and a trie for a product is a composition of tries. The exten-
sion to arbitrary data types is then uniquely defined. Mathematically speaking,
generalized tries are based on the following isomorphisms.

1→fin V ∼= V
(K1 + K2)→fin V ∼= (K1 →fin V) × (K2 →fin V)
(K1 × K2)→fin V ∼= K1 →fin (K2 →fin V)

Here, K →fin V denotes the set of all finite maps from K to V . Note that
K →fin V is sometimes written V [K], which explains why these equations are also
known as the ‘laws of exponentials’, see also Section 2.3.7.

128 Examples

5.5.2 Signature

To put the above idea in concrete terms we will define a scheme for constructing
data types

FMap〈K :: ?〉 :: ?→ ?,

which assigns a type constructor of kind ?→ ? to each key type K of kind ?.
The type FMap〈K 〉 V represents the set K →fin V of finite maps from K

to V . It is worth noting that the two arguments of ‘→fin’ are treated in a different
way: the key type K is used as a type index, that is, FMap will be defined by
induction on the structure of K , whereas V is a type parameter, that is, FMap will
be parametric in the value type V and the operations on tries will be polymorphic
with respect to V .

We will implement the following operations on tries.

empty〈K 〉 :: ∀V .FMap〈K 〉 V
single〈K 〉 :: ∀V .K × V → FMap〈K 〉 V
lookup〈K 〉 :: ∀V .K → FMap〈K 〉 V → Maybe V
insert〈K 〉 :: ∀V . (V → V → V)→ K × V → (FMap〈K 〉 V → FMap〈K 〉 V)
merge〈K 〉 :: ∀V . (V → V → V)→ (FMap〈K 〉 V → FMap〈K 〉 V → FMap〈K 〉 V)

The value empty〈K 〉 is the empty trie; single〈K 〉 (k , v) constructs a trie that
contains the binding (k , v) as the single element. The function lookup〈K 〉 takes
a key and a trie and looks up the value associated with the key. The function
insert〈K 〉 inserts a new binding into a trie and merge〈K 〉 combines two tries. The
two latter functions take as a first argument a so-called combining function, which
is applied whenever two bindings have the same key. For instance, λnew old →
new is used as the combining function for insert〈K 〉 if the new binding is to
override an old binding with the same key. For finite maps of type FMap〈K 〉 Int
addition may also be a sensible choice. Interestingly, we will see that the combining
function is not only a convenient feature for the user; it is also necessary for defining
insert〈K 〉 and merge〈K 〉 generically for all types!

5.5.3 Type-indexed tries

We have already noted that generalized tries are based on the laws of exponentials.

1→fin V ∼= V
(K1 + K2)→fin V ∼= (K1 →fin V) × (K2 →fin V)
(K1 × K2)→fin V ∼= K1 →fin (K2 →fin V)

In order to define the notion of finite map it is customary to assume that each value
type V contains a distinguished element or base point ⊥V , see Connelly and Morris
(1995). A finite map is then a function whose value is ⊥V for all but finitely many
arguments. For the implementation of tries it is, however, inconvenient to make
such a strong assumption (though one could use type classes for this purpose).
Instead, we explicitly add a base point when necessary motivating the following
definition of FMap:

FMap〈K :: ?〉 :: ?→ ?
FMap〈1〉 = ΛV .Maybe V
FMap〈Char〉 = ΛV .FMapChar V
FMap〈Int〉 = ΛV .Patricia.Dict V
FMap〈K1 + K2〉 = ΛV .FMap〈K1〉 V ×• FMap〈K2〉 V
FMap〈K1 × K2〉 = ΛV .FMap〈K1〉 (FMap〈K2〉 V).

5.5 Generic dictionaries 129

Here, (×•) is the type of optional pairs (see Section 2.1.1).

data A ×• B = null | pair A B .

We take for granted the existence of a suitable library implementing finite maps
with integer keys. Such a library could be based, for instance, on a data struc-
ture known as a Patricia tree (Okasaki and Gill 1998). This data structure fits
particularly well in the current setting since Patricia trees are a variety of tries.
For clarity, we will use qualified names when referring to entities defined in the
hypothetical module Patricia.

Note that FMap〈K 〉 is a unary functor. Using functorial notation we can define
FMap more succinctly as

FMap〈1〉 = Maybe
FMap〈Char〉 = FMapChar
FMap〈Int〉 = Patricia.Dict
FMap〈K1 + K2〉 = FMap〈K1〉 ×• FMap〈K2〉
FMap〈K1 × k2〉 = FMap〈K1〉 · FMap〈K2〉.

We will show that a trie is a functor for a slight variation of FMap in Section 5.6.6.
Since the trie for the unit type is given by Maybe rather than Id , tries for

isomorphic types are, in general, not isomorphic. We have, for instance, 1 ∼=
1 × 1 but FMap〈1〉 = Maybe 6∼= Maybe ·Maybe = FMap〈1 × 1〉. The trie type
Maybe ·Maybe has two different representations of the empty trie: nothing and
just nothing . However, only the first one will be used in our implementation.
Similarly, Maybe ×• Maybe has two elements, null and pair nothing nothing , that
represent the empty trie. Again, only the first one will be used.

Remark 5.4 Instead of optional pairs we can also use ordinary pairs in the defi-
nition of FMap:

FMap〈K1 + K2〉 = ΛV .FMap〈K1〉 V × FMap〈K2〉 V .

This representation has, however, two major drawbacks: (i) it relies in an essential
way on lazy evaluation and (ii) it is inefficient, see Hinze (2000b). ut

Building upon the techniques developed in Section 3.1.3 we can now specialize
FMap〈T 〉 for a given instance of T . That is, for each type constructor T of kind T
we define a higher-order type constructor FMap〈〈T 〉〉. For T = ?→ ? we have, for
instance,

FMap〈〈F :: ?→ ?〉〉 :: (?→ ?)→ (?→ ?).

The type constructor FMap〈〈F 〉〉 is the generalized trie of the unary type construc-
tor F . It takes as argument the generalized trie of the base type, say, A and yields
the generalized trie of F A. It may come as a surprise that the framework for spe-
cializing type-indexed values is also applicable to type-indexed data types. The
following equations show how to extend FMap to arbitrary type terms of arbitrary

130 Examples

kinds.
FMap〈T :: 2〉 :: 2

FMap〈?〉 = ?→ ?
FMap〈A × B〉 = FMap〈A〉 × FMap〈B〉
FMap〈A→ B〉 = FMap〈A〉 → FMap〈B〉
FMap〈〈T :: T〉〉 :: FMap〈T〉 T
FMap〈〈A〉〉 = FMapA

FMap〈〈(T1,T2)〉〉 = (FMap〈〈T1〉〉,FMap〈〈T2〉〉)
FMap〈〈Outl T 〉〉 = Outl (FMap〈〈T 〉〉)
FMap〈〈Outr T 〉〉 = Outr (FMap〈〈T 〉〉)
FMap〈〈ΛA .T 〉〉 = ΛFMapA .FMap〈〈T 〉〉
FMap〈〈T U 〉〉 = (FMap〈〈T 〉〉) (FMap〈〈U 〉〉)
FMap〈〈Fix T 〉〉 = Fix (FMap〈〈T 〉〉)

Note that the kind of FMap〈〈T 〉〉 depends on the kind of T . Consequently, FMap
is a kind-indexed kind.

Example 5.5 Let us specialize FMap to the following data types introduced in
Sections 1.1 and 2.1.

data List A = nil | cons A (List A)
data Tree A B = leaf A | node (Tree A B) B (Tree A B)
data Fork A = fork A A
data Sequ A = endS | zeroS (Sequ (Fork A)) | oneS A (Sequ (Fork A))

Recall that these types are represented by

List = Fix (ΛList .ΛA . 1 + A × List A)
Tree = Fix (ΛTree .ΛA B .A + Tree A B × B × Tree A B)
Fork = ΛA .A × A
Sequ = Fix (ΛSequ .ΛA . 1 + Sequ (Fork A) + A × Sequ (Fork A)).

Consequently, the corresponding trie types are

FMapList = Fix (ΛFMapList .ΛFA .Maybe ×• FA · FMapList FA)
FMapTree = Fix (ΛFMapTree .ΛFA FB .

FA ×•
FMapTree FA FB · FB · FMapTree FA FB)

FMapFork = ΛFA .FA · FA
FMapSequ = Fix (ΛFMapSequ .ΛFA .

Maybe ×•
FMapSequ (FMapFork FA) ×•
FA · FMapSequ (FMapFork FA)).

As an aside, note that we interpret A1 ×• A2 ×• A3 as the type of optional triples
and not as nested optional pairs:

data A1 ×• A2 ×• A3 = null | triple A1 A2 A3.

Now, since Haskell permits the definition of higher-order kinded data types,
the second-order type constructors above can be directly coded as data types. All
we have to do is to bring the equations into an applicative form.

5.5 Generic dictionaries 131

data FMapList FA V = nullList
| trieList (Maybe V)

(FA (FMapList FA V))
data FMapTree FA FB V = nullTree

| trieTree (FA V)
(FMapTree FA FB

(FB (FMapTree FA FB V)))

These types are the parametric variants of FMapString and FMapDict defined
in Section 5.5.1: we have FMapString ≈ FMapList FMapChar (corresponding
to String ≈ List Char) and FMapDict ≈ FMapTree FMapString FMapString
(corresponding to Dict ≈ Tree String String). Things become interesting if we
consider nested data types.

data FMapFork FA V = trieFork (FA (FA V))
data FMapSequ FA V = nullSequ

| trieSequ (Maybe V)
(FMapSequ (FMapFork FA) V)
(FA (FMapSequ (FMapFork FA) V))

The generalized trie of a nested data type is a second-order nested data type!
A nest is termed second-order, if a parameter that is instantiated in a recursive
call ranges over type constructors of first-order kind. The trie FMapSequ is a
second-order nest since the parameter FA of kind ? → ? is changed in the re-
cursive calls. By contrast, FMapTree is a first-order nest since its instantiated
parameter V has kind ?. It is quite easy to produce generalized tries that are
both first- and second-order nests. If we swap the components of Sequ’s third
constructor—oneS a (Sequ (Fork a)) becomes oneS (Sequ (Fork a)) a—then the
third component of FMapSequ has type FMapSequ (FMapFork FA) (FA V) and
since both FA and V are instantiated, FMapSequ is consequently both a first- and
a second-order nest. ut

5.5.4 Empty tries

The empty trie is defined as follows.

empty〈K 〉 :: ∀V .FMap〈K 〉 V
empty〈1〉 = nothing
empty〈Char〉 = []
empty〈Int〉 = Patricia.empty
empty〈K1 + K2〉 = null
empty〈K1 × K2〉 = empty〈K1〉

The definition already illustrates several interesting aspects of programming with
generalized tries. To begin with the polymorphic type of empty is necessary to
make the definition work. Consider the last equation: empty〈K1 × K2〉, which is
of type ∀V .FMap〈K1〉 (FMap〈K2〉 V), is defined in terms of empty〈K1〉, which is
of type ∀V .FMap〈K1〉 V . That means that empty〈K1〉 is used polymorphically.
In other words, empty makes use of polymorphic recursion!

The specialization of empty works essentially as before. Applying the scheme

132 Examples

of Section 3.1.3 we obtain

Empty〈T :: 2〉 :: T→ ?
Empty〈?〉 T = ∀V .FMap〈T 〉 V
Empty〈A × B〉 T = Empty〈A〉 (Outl T) × Empty〈B〉 (Outr T)
Empty〈A→ B〉 T = ∀A .Empty〈A〉 A→ Empty〈B〉 (T A)
empty〈〈T :: T〉〉 :: Empty〈T〉 T
empty〈〈C 〉〉 = emptyC

empty〈〈A〉〉 = emptyA

empty〈〈(T1,T2)〉〉 = (empty〈〈T1〉〉, empty〈〈T2〉〉)
empty〈〈Outl T 〉〉 = outl (empty〈〈T 〉〉)
empty〈〈Outr T 〉〉 = outr (empty〈〈T 〉〉)
empty〈〈ΛA .T 〉〉 = λemptyA . empty〈〈T 〉〉
empty〈〈T U 〉〉 = (empty〈〈T 〉〉) (empty〈〈U 〉〉)
empty〈〈Fix T 〉〉 = fix (empty〈〈T 〉〉).

There is one small glitch, however. Consider the type signature of empty〈〈F 〉〉
where F is a type constructor of kind ?→ ?.

empty〈〈F 〉〉 :: ∀A . (∀W .FMap〈A〉W)→ (∀V .FMap〈F A〉 V)

The type signature contains two occurrences of FMap. Of course, if we want to
specialize empty for a given F , we must specialize its type signature, as well. To
this end we replace FMap〈F A〉 by FMap〈F 〉 (FMap〈A〉) and generalize FMap〈A〉
to a fresh type variable, say, FA.

empty〈〈F 〉〉 :: ∀FA . (∀W .FA W)→ (∀V .FMap〈F 〉 FA V)

The following refined definition of Empty captures this generalization.

Empty〈T :: 2〉 :: FMap〈T〉 → ?
Empty〈?〉 FT = ∀V .FT V
Empty〈A × B〉 FT = Empty〈A〉 (Outl FT) × Empty〈B〉 (Outr FT)
Empty〈A→ B〉 FT = ∀FA .Empty〈A〉 FA→ Empty〈B〉 (FT FA)

It is not hard to see that Empty〈T〉 (FMap〈T 〉) is a valid type of empty〈〈T :: T〉〉.

Example 5.6 Let us specialize empty to lists and binary random-access lists.

emptyList :: ∀FA . (∀W .FA W)→ (∀V .FMapList FA V)
emptyList eA = nullList
emptyFork :: ∀FA . (∀W .FA W)→ (∀V .FMapFork FA V)
emptyFork eA = trieFork eA
emptySequ :: ∀FA . (∀W .FA W)→ (∀V .FMapSequ FA V)
emptySequ eA = nullSequ

The second function, emptyFork , illustrates the polymorphic use of the parameter:
eA has type ∀W .FA W but is used as an element of FA (FA W). The functions
emptyList and emptySequ show that the ‘mechanically’ generated definitions can
sometimes be slightly improved: the argument eA is not needed. ut

5.5 Generic dictionaries 133

5.5.5 Singleton tries

The singleton trie, which contains only a single binding, is defined as follows.

single〈K 〉 :: ∀V .K × V → FMap〈K 〉 V
single〈1〉 ((), v) = just v
single〈Char〉 (k , v) = [(k , v)]
single〈Int〉 (k , v) = Patricia.single (k , v)
single〈K1 + K2〉 (inl k1, v) = pair (single〈K1〉 (k1, v)) (empty〈K2〉)
single〈K1 + K2〉 (inr k2, v) = pair (empty〈K1〉) (single〈K2〉 (k2, v))
single〈K1 × K2〉 ((k1, k2), v) = single〈K1〉 (k1, single〈K2〉 (k2, v))

The definition of single is interesting because it falls back on empty in the fourth
and the fifth equation. This requires a small extension of the theory: the special-
ization must be parameterized both with single and with empty . In fact, empty
and single can be seen as being defined by mutual recursion (ignoring the fact that
empty does not call single).

Example 5.7 Let us again specialize the generic function to lists and binary
random-access lists.

singleList :: ∀K FA . (∀W .FA W)→ (∀W .K ×W → FA W)
→ (∀V . (List K × V → FMapList FA V))

singleList eA sA (nil , v) = trieList (just v) eA
singleList eA sA (cons k ks, v) = trieList nothing (sA (k , singleList eA sA (ks, v)))
singleFork :: ∀K FA . (∀W .FA W)→ (∀W .K ×W → FA W)

→ (∀V . (Fork K × V → FMapFork FA V))
singleFork eA sA (fork k1 k2, v) = trieFork (sA (k1, sA (k2, v)))
singleSequ :: ∀K FA . (∀W .FA W)→ (∀W .K ×W → FA W)

→ (∀V . (Sequ K × V → FMapSequ FA V))
singleSequ eA sA (endS , v) = trieSequ (just v) nullSequ eA
singleSequ eA sA (zeroS s, v)

= trieSequ nothing (singleSequ (emptyFork eA) (singleFork eA sA) (s, v)) eA
singleSequ eA sA (oneS k s, v)

= trieSequ nothing nullSequ (sA (k , singleSequ (emptyFork eA) (singleFork eA sA) (s, v)))

Again, we can simplify the ‘mechanically’ generated definitions: since the definition
of Fork does not involve sums, singleFork does not require its first argument, eA,
which can be safely removed. ut

5.5.6 Look up

The look-up function implements the scheme discussed in Section 5.5.1.

lookup〈K 〉 :: ∀V .K → FMap〈K 〉 V → Maybe V
lookup〈1〉 () t = t
lookup〈Char〉 k t = lookupChar k t
lookup〈Int〉 k t = Patricia.lookup k t
lookup〈K1 + K2〉 k null = nothing
lookup〈K1 + K2〉 (inl k1) (pair t1 t2) = lookup〈K1〉 k1 t1
lookup〈K1 + K2〉 (inr k2) (pair t1 t2) = lookup〈K2〉 k2 t2
lookup〈K1 × K2〉 (k1, k2) t1 = (lookup〈K1〉 k1 3 lookup〈K2〉 k2) t1

134 Examples

On sums the look-up function selects the appropriate map; on products it ‘com-
poses’ the look-up functions for the components. Since lookup has result type
Maybe v , we use the monadic composition.

Example 5.8 Specializing lookup〈K 〉 to concrete instances of K is by now prob-
ably a matter of routine. We obtain

lookupList :: ∀K FA . (∀W .K → FA W → Maybe W)
→ (∀V .List K → FMapList FA V → Maybe V)

lookupList lA ks nullList = nothing
lookupList lA nil (trieList tn tc) = tn
lookupList lA (cons k ks) (trieList tn tc) = (lA k 3 lookupList lA ks) tc
lookupFork :: ∀K FA . (∀W .K → FA W → Maybe W)

→ (∀V .Fork K → FMapFork FA V → Maybe V)
lookupFork lA (fork k1 k2) (trieFork tf) = (lA k1 3 lA k2) tf
lookupSequ :: ∀FA K . (∀W .K → FA W → Maybe W)

→ (∀V .Sequ K → FMapSequ FA V → Maybe V)
lookupSequ lA s nullSequ = nothing
lookupSequ lA endS (trieSequ te tz to) = te
lookupSequ lA (zeroS s) (trieSequ te tz to) = lookupSequ (lookupFork lA) s tz
lookupSequ lA (oneS a s) (trieSequ te tz to) = (lA a 3 lookupSequ (lookupFork lA) s) to

The function lookupList generalizes lookupString defined in Section 5.5.1; we have
lookupString ≈ lookupList lookupChar . ut

5.5.7 Inserting and merging

Insertion is defined in terms of merge and single.

insert〈K 〉 :: ∀V . (V → V → V)→ K × V → (FMap〈K 〉 V → FMap〈K 〉 V)
insert〈K 〉 c (k , v) t = merge〈K 〉 c (single〈K 〉 (k , v)) t

Merging two tries is surprisingly simple. Given an auxiliary function for com-
bining two values of type Maybe

combine :: ∀V . (V → V → V)→ (Maybe V → Maybe V → Maybe V)
combine c nothing nothing = nothing
combine c nothing (just v2) = just v2

combine c (just v1) nothing = just v1

combine c (just v1) (just v2) = just (c v1 v2)

and a function for merging two association lists

mergeChar :: ∀V . (V → V → V)
→ (FMapChar V → FMapChar V → FMapChar V)

mergeChar c [] x ′ = x ′

mergeChar c x [] = x
mergeChar c ((k , v) : x) ((k ′, v ′) : x ′)

| k < k ′ = (k , v) : mergeChar c x ((k ′, v ′) : x ′)
| k k ′ = (k , c v v ′) : mergeChar c x x ′

| k > k ′ = (k ′, v ′) : mergeChar c ((k , v) : x) x ′,

we can define merge as follows.

5.5 Generic dictionaries 135

merge〈K 〉 :: ∀V . (V → V → V)
→ (FMap〈K 〉 V → FMap〈K 〉 V → FMap〈K 〉 V)

merge〈1〉 c t t ′ = combine c t t ′

merge〈Char〉 c t t ′ = mergeChar c t t ′

merge〈Int〉 c t t ′ = Patricia.merge c t t ′

merge〈K1 + K2〉 c null t ′ = t ′

merge〈K1 + K2〉 c t null = t
merge〈K1 + K2〉 c (pair t1 t2) (pair t ′1 t ′2)

= pair (merge〈K1〉 c t1 t ′1) (merge〈K2〉 c t2 t ′2)
merge〈K1 × K2〉 c t t ′ = merge〈K1〉 (merge〈K2〉 c) t t ′

The most interesting equation is the last one. The tries t and t ′ are of type
FMap〈K1 × K2〉 V = FMap〈K1〉 (FMap〈K2〉 V). To merge them we can re-
cursively call merge〈K1〉; we must, however, supply a combining function of type
∀V .FMap〈K2〉 V → FMap〈K2〉 V → FMap〈K2〉 V . A moment’s reflection
reveals that merge〈K2〉 c is the desired combining function. Using functional
composition we can write the last equation quite succinctly as

merge〈K1 × K2〉 = merge〈K1〉 ·merge〈K2〉.

The definition of merge〈K 〉 shows that it is sometimes necessary to implement
operations more general than immediately needed. If merge〈K 〉 had the simplified
type ∀V .FMap〈K 〉 V → FMap〈K 〉 V → FMap〈K 〉 V , then we would not be
able to give a defining equation for K = K1 × K2.

Example 5.9 To complete the picture let us again specialize the merging opera-
tion for lists and binary random-access lists. The different instances of merge are
surprisingly concise (only the types look complicated).

mergeList :: ∀FA . (∀W . (W →W →W)→ (FA W → FA W → FA W))
→ (∀V . (V → V → V)
→ (FMapList FA V → FMapList FA V → FMapList FA V))

mergeList mA c nullList t = t
mergeList mA c t nullList = t
mergeList mA c (trieList tn tc) (trieList tn ′ tc′)

= trieList (combine c tn tn ′) (mA (mergeList mA c) tc tc′)
mergeFork :: ∀FA . (∀W . (W →W →W)→ (FA W → FA W → FA W))

→ (∀V . (V → V → V)
→ (FMapFork FA V → FMapFork FA V → FMapFork FA V))

mergeFork mA c (trieFork tf) (trieFork tf ′)
= trieFork (mA (mA c) tf tf ′)

mergeSequ :: ∀FA . (∀W . (W →W →W)→ (FA W → FA W → FA W))
→ (∀V . (V → V → V)
→ (FMapSequ FA V → FMapSequ FA V → FMapSequ FA V))

mergeSequ mA c nullSequ t = t
mergeSequ mA c t nullSequ = t
mergeSequ mA c (trieSequ te tz to) (trieSequ te ′ tz ′ to′)

= trieSequ (combine c te te ′)
(mergeSequ (mergeFork mA) c tz tz ′)
(mA (mergeSequ (mergeFork mA) c) to to′) ut

136 Examples

5.5.8 Properties

The functions on tries enjoy several properties which hold generically for all in-
stances of K and which can be proved by fixed point induction.

lookup〈K 〉 k (empty〈K 〉) = nothing
lookup〈K 〉 k (single〈K 〉 (k1, v1)) = if k k1 then just v1 else nothing
lookup〈K 〉 k (merge〈K 〉 c t1 t2) = combine c (lookup〈K 〉 k t1) (lookup〈K 〉 k t2)

The last law, for instance, states that looking up a key in the merge of two tries
yields the same result as looking up the key in each trie separately and then
combining the results. If the combining form c is associative,

c v1 (c v2 v3) = c (c v1 v2) v3,

then merge〈K 〉 c is associative, as well. Furthermore, empty〈K 〉 is the left and
the right unit of merge〈K 〉 c:

merge〈K 〉 c (empty〈K 〉) t = t
merge〈K 〉 c t (empty〈K 〉) = t
merge〈K 〉 c t1 (merge〈K 〉 c t2 t3) = merge〈K 〉 c (merge〈K 〉 c t1 t2) t3.

5.5.9 Related work

Knuth (1998) attributes the idea of a trie to Thue who introduced it in a paper
about strings that do not contain adjacent repeated substrings (1912). De la
Briandais recommended tries for computer searching (1959). The generalization
of tries from strings to elements built according to an arbitrary signature was
discovered by Wadsworth (1979) and others independently since. Connelly and
Morris (1995) formalized the concept of a trie in a categorical setting: they showed
that a trie is a functor and that the corresponding look-up function is a natural
transformation.

The first implementation of generalized tries was given by Okasaki in his recent
textbook on functional data structures (1998). Tries for parameterized types like
lists or binary trees are represented as Standard ML functors. While this approach
works for regular data types, it fails for nested data types such as Sequ. In the
latter case data types of second-order kind are indispensable.

5.6 Generic memo tables

This section presents a generic implementation of memo functions that is based
on a variation of digital search trees. A memo function can be seen as the compo-
sition of a tabulation function that creates a memo table and a look-up function
that queries the table. We show that tabulation can be derived from look-up by
inverse function construction. A memo table for a fixed argument type is a functor
and look-up and tabulation are natural isomorphisms. We provide simple generic
proofs of these properties. Contrary to the preceding section the implementation
of memo table relies in a essential way on lazy evaluation.

5.6 Generic memo tables 137

5.6.1 Introduction

A memo function (Michie 1968) is like an ordinary function except that it caches
previously computed values. If it is applied a second time to a particular argument,
it immediately returns the cached result, rather than recomputing it. For storing
arguments and results a memo function internally employs an index structure, the
so-called memo table. In fact, a memo function can be seen as the composition
of a tabulation function that creates a memo table and a look-up function that
queries the table.

A memo table can be implemented in a variety of ways using, for instance,
hashing or comparison-based search tree schemes. These approaches, however,
have their drawbacks if the argument to a memo function is a compound value
such as a list or a tree. Since comparing compound values is expensive, search tree
schemes based on ordering are prohibitive. Hash tables are no viable alternative
as hashing compound values is difficult. Furthermore, in case of collisions values
must be checked for equality (though a hash-consing garbage collector (Appel and
Goncalves 1993) may alleviate this problem). For memo functions with compound
argument types tries are again the data structure of choice. Looking up a value in
a trie takes time proportional to the size of the value. In particular, the running
time is independent of the number of memoized values. In combination with lazy
evaluation tries provide an elegant and efficient implementation of memo functions.

5.6.2 Signature

The signature of trie-based memo tables with associated look-up and tabulation
functions is given by

Table〈K :: ?〉 :: ?→ ?

apply〈K 〉 :: ∀V .Table〈K 〉 V → (K → V)
tabulate〈K 〉 :: ∀V . (K → V)→ Table〈K 〉 V .

The type Table〈K 〉 V represents memo tables that are indexed by values of type K
and store values of type V . The function apply〈K 〉 is the associated look-up func-
tion: it takes a memo table and a key of type K and returns the associated value
of type V . Its converse, tabulate〈K 〉, tabulates a given function with argument
type K . Given this interface we can easily memoize a function of type K → V :

memo〈K 〉 :: ∀V . (K → V)→ (K → V)
memo〈K 〉 f = apply〈K 〉 (tabulate〈K 〉 f).

The memoized version of f is simply memo〈K 〉 f . It is worth noting that this
technique depends in an essential way on lazy evaluation: if the type of keys is
infinite, then tabulate〈K 〉 f produces a potentially infinite tree. We also require
full laziness so that tabulate〈K 〉 f is evaluated only once even if it is queried several
times. Haskell meets both requirements.

5.6.3 Memo tables

Memo tables are a simple variant of tries (for simplicity, we ignore the type con-
stants Char and Int):

Table〈K :: ?〉 :: ?→ ?
Table〈1〉 = ΛV .V
Table〈K1 + K2〉 = ΛV .Table〈K1〉 V × Table〈K2〉 V
Table〈K2 × K2〉 = ΛV .Table〈K1〉 (Table〈K2〉 V).

138 Examples

The type constructor Table〈K 〉 has kind ?→ ?. In fact, we will see in Section 5.6.6
that Table〈K 〉 satisfies the properties of a functor. In particular, the trie for the
unit type is the identity functor, the trie for sums is a product of functors, and
the trie for products is a composition of functors.

Example 5.10 The memo table for the type of natural numbers is an infinite list.

Nat = Fix (ΛNat . 1 + Nat)
TableNat = Fix (ΛTableNat .ΛV .V × TableNat V)

In Haskell notation TableNat reads

data TableNat V = nodeNat V (TableNat V).

If we replace nodeNat by cons and add a case for nil , we obtain the familiar type
of lists. Note that this instance, the use of infinite lists for memoizing functions
on the natural numbers, already appears in Turner (1981). ut

Example 5.11 The memo table for binary numbers is an infinite binary tree

BNat = Fix (ΛBNat . 1 + BNat + BNat)
TableBNat = Fix (ΛTableBNat .ΛV .V × TableBNat V × TableBNat V)

and the corresponding Haskell type is given by

data TableBNat V = nodeBNat V (TableBNat V) (TableBNat V) ut

Example 5.12 Finally, let us consider a parameterized data type, the ubiquitous
data type of lists. Since List is a type constructor, TableList is a ‘higher-order’
memo table that takes a trie for the base type A and yields a trie for List A.

List = Fix (ΛList .ΛA . 1 + A × List A)
TableList = Fix (ΛTableList .ΛTableA .ΛV .V × TableA (TableList TableA V))

Surprisingly, the type constructor TableList is isomorphic to the type of generalized
rose trees. The corresponding Haskell type reads

data TableList TableA V = nodeList V (TableA (TableList TableA V)) ut

5.6.4 Table look-up

The look-up function is given by the following generic definition.

apply〈K 〉 :: ∀V .Table〈K 〉 V → (K → V)
apply〈1〉 t () = t
apply〈K1 + K2〉 (t1, t2) (inl k1) = apply〈K1〉 t1 k1

apply〈K1 + K2〉 (t1, t2) (inr k2) = apply〈K2〉 t2 k2

apply〈K1 × K2〉 t (k1, k2) = apply〈K2〉 (apply〈K1〉 t k1) k2

Note that apply is essentially the function lookup of Section 5.5.6 with the two
arguments reversed:

lookup〈K 〉 :: ∀V .K → Table〈K 〉 V → V
lookup〈1〉 () = id
lookup〈K1 + K2〉 (inl k1) = lookup〈K1〉 k1 · outl
lookup〈K1 + K2〉 (inr k2) = lookup〈K2〉 k2 · outr
lookup〈K1 × K2〉 (k1, k2) = lookup〈K2〉 k2 · lookup〈K1〉 k1.

5.6 Generic memo tables 139

Thus, on the unit type the look-up function is the identity, on sums it selects the
appropriate memo table, and on products it composes the look-up functions for
the components.

Example 5.13 Querying a memo table for the natural numbers works as follows.

applyNat :: ∀V .TableNat V → (Nat → V)
applyNat (nodeNat tz ts) zero = tz
applyNat (nodeNat tz ts) (succ n) = applyNat ts n

Recall that elements of TableNat are infinite lists. Consequently, applyNat corre-
sponds to list indexing, written (!!) in Haskell. ut

Example 5.14 The look-up function for binary numbers corresponds to tree in-
dexing (a binary number is interpreted as a path into a binary tree).

applyBin :: ∀V .TableBNat V → (BNat → V)
applyBin (nodeBNat tn to tt) endB = tn
applyBin (nodeBNat tn to tt) (zeroB b) = applyBin to b
applyBin (nodeBNat tn to tt) (oneB b) = applyBin tt b ut

Example 5.15 As the final example, consider the look-up function for lists.
applyList :: ∀TA A . (∀V .TA V → (A→ V))

→ (∀W .TableList TA W → (List A→W))
applyList applyA (nodeList tn tc) nil = tn
applyList applyA (nodeList tn tc) (cons a as)

= applyList applyA (applyA tc a) as

Since List is a parametric type, applyList is a ‘higher-order’ look-up function that
takes a look-up function for the base type A and yields a lookup function for
List A. ut

5.6.5 Tabulation

Tabulation is the inverse of look-up and, in fact, we can derive its definition by
inverse function construction. For the derivation we use a slight reformulation of
apply that allows for more structured calculations.

apply〈K 〉 :: ∀V .Table〈K 〉 V → (K → V)
apply〈1〉 t = λ() . t
apply〈K1 + K2〉 t = apply〈K1〉 (outl t) O apply〈K2〉 (outr t)
apply〈K1 × K2〉 t = uncurry (apply〈K2〉 · apply〈K1〉 t)

We specify tabulate as the right inverse of apply :

apply〈K 〉 (tabulate〈K 〉 f) = f .

As usual, we proceed by case analysis on K .

• Case K = 1:

apply〈1〉 (tabulate〈1〉 f) = f
≡ { definition of apply }

λ() . tabulate〈1〉 f = f
≡ { extensionality: f1 = f2 :: 1→ A ≡ f1 () = f2 () :: A }

tabulate〈1〉 f = f ().

140 Examples

• Case K = K1 + K2: let t = tabulate〈K1 + K2〉 f , then

apply〈K1 + K2〉 t = f
≡ { definition of apply }

apply〈K1〉 (outl t) O apply〈K2〉 (outr t) = f
≡ { universal property of coproducts }

apply〈K1〉 (outl t) = f · inl ∧ apply〈K2〉 (outr t) = f · inr
⊂ { specification }

outl t = tabulate〈K1〉 (f · inl) ∧ outr t = tabulate〈K2〉 (f · inr)
≡ { surjective pairing: z = (x1, x2) ≡ outl z = x1 ∧ outr z = x2 }

t = (tabulate〈K1〉 (f · inl), tabulate〈K2〉 (f · inr)).

Note that we use both the universal property of coproducts and the universal
property of products (of which surjective pairing is a special case).

• Case K = K1 × K2: let t = tabulate〈K1 × K2〉 f , then

apply〈K1 × K2〉 t = f
≡ { definition of apply }

uncurry (apply〈K2〉 · apply〈K1〉 t) = f
⊂ { exponentials: uncurry · curry = id }

apply〈K2〉 · apply〈K1〉 t = curry f
⊂ { specification }

apply〈K1〉 t = tabulate〈K2〉 · curry f
⊂ { specification }

t = tabulate〈K1〉 (tabulate〈K2〉 · curry f).

To summarize, we have calculated the following definition of tabulate.

tabulate〈K 〉 :: ∀V . (K → V)→ Table〈K 〉 V
tabulate〈1〉 f = f ()
tabulate〈K1 + K2〉 f = (tabulate〈K1〉 (f · inl), tabulate〈K2〉 (f · inr))
tabulate〈K1 × K2〉 f = tabulate〈K1〉 (tabulate〈K2〉 · curry f)

The last equation becomes more readable if we convert it into a pointwise style.

tabulate〈K1 × K2〉 f = tabulate〈K1〉 (λk1 . tabulate〈K2〉 (λk2 . f (k1, k2)))

Two points are in order.
First, the second calculation makes essential use of the universal property of

coproducts. Alas, Haskell’s natural semantic model, the category Cpo of pointed,
complete partial orders and continuous functions, has no categorical coproduct.
In other words, in Haskell apply〈K 〉 (tabulate〈K 〉 f) = f is only valid for so-called
hyper-strict functions that completely evaluate their arguments. In the context of
a lazy language this need for hyper-strictness is somewhat ironic. The intuition
is that all information about the result of a memoized function is in the leaves of
the corresponding trie.

Note that an appropriate theoretical setting for the calculations is the category
Cpo⊥ of pointed, complete partial orders and strict continuous functions, which

5.6 Generic memo tables 141

has categorical products (the cartesian product ‘×’), categorical coproducts (the
coalesced sum ‘⊕’) and is monoidally closed (the smash product ‘⊗’ and the space
‘◦→’ of strict continuous functions form a monoidal closure). Thus, memo tables
are actually based on the following isomorphisms:

1⊥ ◦→V ∼= V
(K1 ⊕K2) ◦→V ∼= (K1 ◦→V) × (K2 ◦→V)
(K1 ⊗K2) ◦→V ∼= K1 ◦→(K2 ◦→V),

where 1⊥ = {⊥, ()}. The isomorphisms make precise that memoization operates
on strict functions but its implementation requires lazy evaluation: a trie for a
‘strict’ sum is a ‘lazy’ pair of tries. We could maintain this distinction in Haskell
using strictness annotations (TNat is really the memo table for the flat domain N⊥
given by data Nat = zero | succ ! Nat) but we refrain from being that pedantic.

Second, the calculations show that tabulation is the right inverse of look-up.
The converse can be shown using a straightforward fixed point induction. That
said, we notice that the case K = 0, where 0 = {⊥} is the ‘bottom’ type, is missing
in the derivation above. Fortunately, apply〈0〉 (tabulate〈0〉 f) = f holds trivially
since ‘0’ is the initial object in Cpo⊥, that is, for each type V there is a unique
strict function of type 0→ V .

Example 5.16 The tabulation function for natural numbers is a one-liner.

tabulateNat :: ∀V . (Nat → V)→ TableNat V
tabulateNat f = nodeNat (f zero) (tabulateNat (f · succ))

The standard toy example of memoization is the Fibonacci function.

fib :: Nat → Nat
fib zero = zero
fib (succ zero) = succ zero
fib (succ (succ n)) = fib n + fib (succ n)

Its time complexity can be improved from exponential to quadratic if the recursive
calls are replaced by table lookups.

fib :: Nat → Nat
fib zero = zero
fib (succ zero) = succ zero
fib (succ (succ n)) = memo-fib n + memo-fib (succ n)
memo-fib :: Nat → Nat
memo-fib = applyNat (tabulateNat fib) ut

Example 5.17 Tabulating a function of type Bin → V is equally easy.

tabulateBin :: ∀V . (BNat → V)→ TableBNat V
tabulateBin f = nodeBNat (f endB) (tabulateBin (f · zeroB)) (tabulateBin (f · oneB)) ut

Example 5.18 Finally, for parametric lists we obtain a ‘higher-order’ tabulation
function.

tabulateList :: ∀TA A . (∀V . (A→ V)→ TA V)
→ (∀W . (List A→W)→ TableList TA W)

tabulateList tabulateA f = nodeList (f nil) (tabulateA (λa →
tabulateList tabulateA (λas → f (cons a as))))

142 Examples

Using TableList we can memoize functions that operate on lists. The following
dynamic programming problem, optimal matrix multiplication, may serve as an
example. Given a sequence of matrix dimensions [d0, . . . , dn], the problem is to
find the least cost for multiplying out a sequence of matrices M1 ∗ · · · ∗Mn where
the dimension of Mi is di−1 × di. We assume that multiplying an i× j matrix by
an j × k matrix costs i × j × k . The following Haskell program implements a
straightforward, but exponential solution.

cost :: List Nat → Nat
cost d
| n 6 1 = 0
| otherwise = minimum [cost (take (k + 1) d)

+d !! 0 × d !! k × d !! n
+cost (drop k d) | k ← [1 . .n − 1]]

where n = length d − 1

Memoizing the recursive calls improves the complexity from exponential to poly-
nomial in the size of the input.

memo-cost :: List Nat → Nat
memo-cost = (applyList applyNat) ((tabulateList tabulateNat) cost)
cost :: List Nat → Nat
cost d
| n 6 1 = 0
| otherwise = minimum [memo-cost (take (k + 1) d)

+d !! 0 × d !! k × d !! n
+memo-cost (drop k d) | k ← [1 . .n − 1]]

where n = length d − 1

An ad-hoc variant of this code appears in O’Donnell (1985). ut

Example 5.19 The function memo-cost defined in the previous example main-
tains a global memo table. This comes at a considerable cost: recall that functions
on the natural numbers are memoized using infinite lists and note that the matrix
dimensions d0, . . . , dn index these lists. A more efficient alternative both in time
and in space is to maintain a local memo table.

cost :: List Int → Int
cost d = memo-c (0,n)

where
n = length d − 1
c :: (Nat ,Nat)→ Int
c (i , j)
| i + 1 > j = 0
| otherwise = minimum [memo-c (i , k)

+ d !! i × d !! k × d !! j
+ memo-c (k , j) | k ← [i + 1 . . j − 1]]

memo-c :: (Nat ,Nat)→ Int
memo-c (i , j) = applyNat (applyNat (

tabulateNat (λi ′ → tabulateNat (λj ′ → c (i ′, j ′)))) i) j

Since the sequence of matrix dimensions d is fixed in the body of cost , sublists
of d can be represented by pairs of list indices. Consequently, a much smaller

5.6 Generic memo tables 143

memo table suffices: memo-c uses a table of type TableNat (TableNat Int) that
is indexed by pairs of list indices (which are small) rather than by sequences of
matrix dimensions (which may be be very large). The resulting code corresponds
closely to the standard dynamic programming solution, see, for instance, Rabhi
and Lapalme (1999). ut

5.6.6 Properties

For a fixed K , the type constructor Table〈K 〉 satisfies the properties of a functor
(it is an endo functor of Cpo⊥). Its functorial action on arrows is given by

table〈K 〉 :: ∀V W . (V →W)→ (Table〈K 〉 V → Table〈K 〉W)
table〈1〉 f = f
table〈K1 + K2〉 f = table〈K1〉 f × table〈K2〉 f
table〈K1 × K2〉 f = table〈K1〉 (table〈K2〉 f).

The functor laws

table〈K 〉 id = id
table〈K 〉 (f · g) = table〈K 〉 f · table〈K 〉 g

can be shown using straightforward fixed point inductions.
The functions apply〈K 〉 and tabulate〈K 〉 are then natural isomorphisms be-

tween (−)K and Table〈K 〉. Note that the functorial action of (−)K is postcom-
position given by post f = curry (f · eval) where eval is function application. The
naturality conditions are

apply〈K 〉 · table〈K 〉 f = post f · apply〈K 〉
tabulate〈K 〉 · post f = table〈K 〉 f · tabulate〈K 〉.

The proofs below are based on the following pointwise variants.

apply〈K 〉 (table〈K 〉 f t) = f · apply〈K 〉 t
tabulate〈K 〉 (f · g) = table〈K 〉 f (tabulate〈K 〉 g)

An immediate consequence of the second naturality property is, for instance,

tabulate〈K 〉 f = table〈K 〉 f (tabulate〈K 〉 id).

Thus, instead of tabulating f we can tabulate id and then map f on the re-
sulting memo table. Since some types allow for a more efficient implementation
of tabulate〈K 〉 id , applying the law from left to right may be an optimization.
We prove apply〈K 〉 (table〈K 〉 f t) = f · apply〈K 〉 t by fixed point induction
on K . The second naturality property then follows immediately since apply〈K 〉
and tabulate〈K 〉 are mutually inverse.

• Case K = 0: the proposition holds trivially for strict f since generic func-
tions are strict in their type arguments.

• Case K = 1:

apply〈1〉 (table〈1〉 f t)
= { definition of apply }

144 Examples

λ() . table〈1〉 f t
= { definition of table }

λ() . f t
= { extensionality: g1 = g2 :: 1→ A ≡ g1 () = g2 () :: A }

f · (λ() . t)
= { definition of apply }

f · apply〈1〉 t .

• Case K = K1 + K2:

apply〈K1 + K2〉 (table〈K1 + K2〉 f t)
= { definition of apply }

apply〈K1〉 (outl (table〈K1 + K2〉 f t)) O apply〈K2〉 (outr (table〈K1 + K2〉 f t))
= { definition of table and ×-computation laws }

apply〈K1〉 (table〈K1〉 f (outl t)) O apply〈K2〉 (table〈K2〉 f (outr t))
= { ex hypothesi }

(f · apply〈K1〉 (outl t)) O (f · apply〈K2〉 (outr t))
= { O-fusion law }

f · (apply〈K1〉 (outl t) O apply〈K2〉 (outr t))
= { definition of apply }

f · apply〈K1 + K2〉 t .

• Case K = K1 × K2:

apply〈K1 × K2〉 (table〈K1 × K2〉 f t)
= { definition of apply }

uncurry (apply〈K2〉 · apply〈K1〉 (table〈K1 × K2〉 f t))
= { definition of table }

uncurry (apply〈K2〉 · apply〈K1〉 (table〈K1〉 (table〈K2〉 f) t))
= { ex hypothesi }

uncurry (apply〈K2〉 · table〈K2〉 f · apply〈K1〉 t)
= { ex hypothesi }

uncurry (post f · apply〈K2〉 · apply〈K1〉 t)
= { proof obligation, see below }

f · uncurry (apply〈K2〉 · apply〈K1〉 t)
= { definition of apply }

f · apply〈K1 × K2〉 t .

It remains to show f · uncurry g = uncurry (post f · g), which is equivalent
to curry (f · uncurry g) = post f · g .

curry (f · uncurry g)
= { definition of uncurry }

curry (f · eval · (g × id))

5.6 Generic memo tables 145

= { curry fusion law: curry h · k = curry (h · (k × id)) }
curry (f · eval) · g

= { definition of post }
post f · g

146 Examples

Chapter 6

Generic Haskell

This chapter is concerned with the details and pragmatics of adding generic pro-
gramming to Haskell. Interestingly, Haskell already provides a rudimentary form
of genericity in form of the deriving mechanism—for a discussion of this feature
and of Haskell’s class system in general, see Section 2.2. By attaching a deriving
clause to a data type declaration instance declarations are generated automati-
cally by the compiler. Unfortunately, this feature is rather ad-hoc: the derived
code is specified only informally in an appendix of the language definition (Peyton
Jones and Hughes 1999) and more severely the deriving mechanism is restricted
to a fixed set of built-in classes. Both problems can be overcome using generic
definitions for default method declarations. An extension of Haskell along these
lines is described in (Hinze and Peyton Jones 2000). In the sequel we discuss a less
tight integration: we show how to translate instances of generic definitions into
ordinary Haskell definitions. Overall, we are more concerned with implementation
techniques and less with language design issues.

This chapter is organized as follows. Section 6.1 discusses the specialization of
generic values using Haskell as a target language. Thereby we restrict ourselves
to MPC-style definitions as they are more general than POPL-style definitions
(nonetheless, we will use POPL-style definitions for the examples). Section 6.2
introduces two extensions to generic definitions that are useful or even necessary
in a concrete implementation: ad-hoc definitions to cope with abstract data types
and provisions for accessing constructor names and record labels.

6.1 Implementation

The polymorphic λ-calculus is the language of choice for the theoretical treat-
ment of generic definitions as it offers rank-n polymorphism, which is required
for specializing higher-order kinded data types. We additionally equipped it with
a liberal notion of type equivalence so that we can interpret the type definition
List A = 1 + A × List A as an equality rather than as an isomorphism.

Haskell—or rather, extensions of Haskell come quite close to this ideal lan-
guage. The Glasgow Haskell Compiler, GHC, (Team 2000), the Haskell B. Com-
piler, HBC, (Augustsson 1998) and the Haskell interpreter Hugs (Jones and Peter-
son 1999) provide rank-2 type signatures and local universal quantification in data
types. We will see in Section 6.1.4 that the latter feature can be used to encode
rank-n types. There is, however, one fundamental difference between Haskell and
(our presentation) of the polymorphic λ-calculus: Haskell’s notion of type equiv-
alence is based on name equivalence while the polymorphic λ-calculus employs
structural equivalence. Sections 6.1.1–6.1.3 explain how to adapt the techniques
of Chapter 3 to type systems that are based on name equivalence.

148 Generic Haskell

6.1.1 Generic representation types

Consider the Haskell data type of parametric lists:

data List A = nil | cons A (List A).

We have modelled this declaration (see Section 2.5.1) by the type term

Fix (ΛList .ΛA . 1 + A × List A).

Since the equivalence of type terms is based on structural equivalence, captured
by the relation ‘≈’, we have, in particular, that List A ≈ 1 + A × List A. It is im-
portant to note that the specialization of generic values described in Section 3.1.3
makes essential use of this fact: the List instance of poly given by (omitting type
abstractions and type applications)

fix (λpolyList . λpolyA . poly+ poly1 (poly× polyA (polyList polyA)))

only works under the proviso that List A ≈ 1 + A × List A. Alas, in Haskell
List A is not equivalent to 1 + A × List A as each data declaration introduces a
new distinct type. Even the type Liste defined by

data Liste A = Vide | Constructeur A (Liste A)

is not equivalent to List . Furthermore, Haskell’s data construct works with n-ary
sums and products whereas generic definitions operate on binary sums and prod-
ucts. The bottom line of all this is that when generating instances we additionally
have to introduce conversion functions which perform the impedance-matching.
This and the next two sections explain how to do this in a systematic way.

To begin with we introduce so-called generic representation types, which me-
diate between the two representations. For instance, the generic representation
type for List , which we will call List◦, is given by

type List◦ A = 1 + A × List A.

As to be expected our generic representation type constructors are just unit, sum
and product. In particular, there is no recursion operator. Thus, we observe that
List◦ is a non-recursive type synonym: List (not List◦) appears on the right-hand
side. So List◦ is not a recursive type; rather, it expresses the ‘top layer’ of a list
structure, leaving the original List to do the rest.

The type constructor List◦ is (more or less) isomorphic to List . To make the
isomorphism explicit, let us write functions that convert to and fro:

fromList :: ∀A .List A→ List◦ A
fromList nil = inl ()
fromList (cons x xs) = inr (x , xs)
toList :: ∀A .List◦ A→ List A
toList (inl ()) = nil
toList (inr (x , xs)) = cons x xs.

Though these are non-generic functions, it is not hard to generate them mechani-
cally. That is what we turn our attention to now.

Since the generic definitions work with binary sums and products, algebraic
data types with many constructors, each of which has many fields, must be encoded

6.1 Implementation 149

as nested uses of sum and product. There are many possible encodings. For
concreteness, we use a simple linear encoding : for

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn

we generate:

type B◦ A1 . . . Am = Σ (Π T11 . . . T1m1) · · · (Π Tn1 . . . Tnmn)

where ‘Σ’ and ‘Π’ are defined

Σ T1 . . . Tn =
{

T1 if n = 1
T1 + Σ T2 . . . Tn if n > 1

Π T1 . . . Tn =

 1 if n = 0
T1 if n = 1
T1 × Π T2 . . . Tn if n > 1.

Note that this encoding corresponds closely to the scheme introduced in Sec-
tion 2.5.1 except that here the argument types of the constructors are not re-
cursively encoded. The conversion functions fromB and toB are then given by

fromB :: ∀A1 . . . Am .B A1 . . . Am → B◦ A1 . . . Am

fromB (k1 x11 . . . x1m1) = inn
1 (tuple x11 . . . x1m1)

. . .
fromB (kn xn1 . . . xnmn

) = inn
n (tuple xn1 . . . xnmn

)
toB :: ∀A1 . . . Am .B◦ A1 . . . Am → B A1 . . . Am

toB (inn
1 (tuple x11 . . . x1m1)) = k1 x11 . . . x1m1

. . .
toB (inn

n (tuple xn1 . . . xnmn
)) = kn xn1 . . . xnmn

where

inn
i t =

t if n = 1
inl t if n > 1 ∧ i = 1
inr (inn−1

i−1 t) if n > 1 ∧ i > 1

tuple t1 . . . tn =

 () if n = 0
t1 if n = 1
(t1, tuple t2 . . . tn) if n > 1.

Remark 6.1 An alternative encoding, which is based on a binary sub-division
scheme, is given in Hinze (1999). Most generic functions are insensitive to the
translation of sums and products. Two notable exceptions are encode and decodes,
for which the binary sub-division scheme is preferable (the linear encoding aggra-
vates the compression rate). ut

6.1.2 Specializing generic values

Assume for the sake of example that we want to specialize the generic functions
encode and decodes introduced in Section 1.1.1 to the List data type. Recall the
types of the generic values (here expressed as type synonyms):

type Encode A = A→ Bin
type Decodes A = Bin → (A,Bin).

150 Generic Haskell

Since List◦ involves only the type constants ‘1’, ‘+’ and ‘×’ (and the type vari-
ables List and A), we can easily specialize encode and decodes to List◦ A: the
instances have types Encode (List◦ A) and Decodes (List◦ A), respectively. How-
ever, we require functions of type Encode (List A) and Decodes (List A). Now,
we already know how to convert between List◦ A and List A. So it remains to lift
fromList and toList to functions of type Encode (List A)→ Encode (List◦ A) and
Encode (List◦ A) → Encode (List A). But this lifting is exactly what a mapping
function does! In particular, since Encode and Decodes involve functional types,
we can use the embedding-projection maps of Section 5.2.1 for this purpose.

For mapE we have to package the two conversion functions into a single value:

convList :: ∀A .EP (List A) (List◦ A)
convList = ep{from = fromList , to = toList }.

Then encodeList and decodesList are given by

encodeList encodeA = to (mapE Encode convList) (encode〈〈List◦ A〉〉)
decodesList decodeA = to (mapE Decodes convList) (decodes〈〈List◦ A〉〉).

Consider the definition of encodeList . The specialization encode〈〈List◦ A〉〉 yields a
function of type Encode (List◦ A); the call to (mapE Encode convList) then converts
this function into a value of type Encode (List A) as desired.

In general, the translation proceeds as follows. For each generic definition we
generate the following.

• A type synonym Poly = Poly〈?〉 for the type of the generic value.

• An embedding-projection map, mapE Poly , see Section 6.1.3.

• Generic instances for ‘1’, ‘+’, ‘×’ and possibly other primitive types.

For each data type declaration B we generate the following.

• A type synonym, B◦, for B ’s generic representation type, see Section 6.1.1.

• An embedding-projection pair convB that converts between B A1 . . . Am

and B◦ A1 . . . Am .

convB :: ∀A1 . . . Am .EP (B A1 . . . Am) (B◦ A1 . . . Am)
convB = ep{from = fromB , to = toB }

The functions fromB and toB are defined in Section 6.1.1.

An instance of poly for type B :: B is then given by (using Haskell syntax)

polyB :: Poly〈B〉 B . . . B
polyB polyA1

. . . polyAm
= to (mapE Poly convB . . . convB) (poly〈〈B◦ A1 . . . Am〉〉).

If Poly〈B〉 B . . . B has a rank of 2 or below, we can express polyB directly
in Haskell. Section 6.1.4 explain the necessary amendments for general rank-n
types. Figures 6.1 and 6.2 show several examples of specializations all expressed
in Haskell.

6.1 Implementation 151

{- binary encoding -}
type Encode A = A→ Bin
encode1 :: Encode 1
encode1 = λ()→ []
encode+ :: ∀A .Encode A→ ∀B .Encode B → Encode (A + B)
encode+ encodeA encodeB = λs → case s of {inl a → 0 : encodeA a;

inr b → 1 : encodeB b}
encode× :: ∀A .Encode A→ ∀B .Encode B → Encode (A × B)
encode× encodeA encodeB = λ(a, b)→ encodeA a ++ encodeB b
mapE Encode :: ∀A B .EP A B → EP (Encode A) (Encode B)
mapE Encode m = ep{from = λh → h · to m, to = λh → h · from m }
{- equality -}

type Equal A1 A2 = A1 → A2 → Bool
equal1 :: Equal 1 1
equal1 = λ() ()→ true
equal+ :: ∀A1 A2 .Equal A1 A2 → ∀B1 B2 .Equal B1 B2

→ Equal (A1 + B1) (A2 + B2)
equal+ equalA equalB = λs1 s2 → case (s1, s2) of {(inl a1, inl a2)→ equalA a1 a2;

(inl a1, inr b2)→ false;
(inr b1, inl a2)→ false;
(inr b1, inr b2)→ equalB b1 b2}

equal× :: ∀A1 A2 .Equal A1 A2 → ∀B1 B2 .Equal B1 B2

→ Equal (A1 × B1) (A2 × B2)
equal× equalA equalB = λ(a1, b1) (a2, b2)→ equalA a1 a2 ∧ equalB b1 b2

mapE Equal :: ∀A1 B1 .EP A1 B1 → ∀A2 B2 .EP A2 B2

→ EP (Equal A1 A2) (Equal B1 B2)
mapE Equal m1 m2 = ep{from = λh → λa1 a2 → h (to m1 a1) (to m2 a2),

to = λh → λb1 b2 → h (from m1 b1) (from m2 b2)}
{- generic representation types -}

type Maybe◦ A = 1 + A
fromMaybe :: ∀A .Maybe A→ Maybe◦ A
fromMaybe nothing = inl ()
fromMaybe (just a) = inr a
toMaybe :: ∀A .Maybe◦ A→ Maybe A
toMaybe (inl ()) = nothing
toMaybe (inr a) = just a
convMaybe :: ∀A .EP (Maybe A) (Maybe◦ A)
convMaybe = ep{from = fromMaybe , to = toMaybe }

Figure 6.1: Specializing generic values in Haskell (part 1).

152 Generic Haskell

type List◦ A = 1 + A × List A
fromList :: ∀A .List A→ List◦ A
fromList [] = inl ()
fromList (a : as) = inr (a, as)
toList :: ∀A .List◦ A→ List A
toList (inl ()) = []
toList (inr (a, as)) = a : as
convList :: ∀A .EP (List A) (List◦ A)
convList = ep{from = fromList , to = toList }
type GRose◦ F A = A × F (GRose F A)
fromGRose :: ∀F A .GRose F A→ GRose◦ F A
fromGRose (gbranch a ts) = (a, ts)
toGRose :: ∀F A .GRose◦ F A→ GRose F A
toGRose (a, ts) = gbranch a ts
convGRose :: ∀F A .EP (GRose F A) (GRose◦ F A)
convGRose = ep{from = fromGRose , to = toGRose }

{- specializing binary encoding -}
encodeMaybe :: ∀A .Encode A→ Encode (Maybe A)
encodeMaybe encodeA = to (mapE Encode convMaybe) (encode+ encode1 encodeA)
encodeList :: ∀A .Encode A→ Encode (List A)
encodeList encodeA = to (mapE Encode convList) (

encode+ encode1 (encode× encodeA (encodeList encodeA)))
encodeGRose :: ∀F . (∀B .Encode B → Encode (F B))

→ (∀A .Encode A→ Encode (GRose F A))
encodeGRose encodeF encodeA

= to (mapE Encode convGRose) (
encode× encodeA (encodeF (encodeGRose encodeF encodeA)))

{- specializing equality -}
equalMaybe :: ∀A1 A2 .Equal A1 A2 → Equal (Maybe A1) (Maybe A2)
equalMaybe equalA = to (mapE Equal convMaybe convMaybe) (equal+ equal1 equalA)
equalList :: ∀A1 A2 .Equal A1 A2 → Equal (List A1) (List A2)
equalList equalA = to (mapE Equal convList convList) (

equal+ equal1 (equal× equalA (equalList equalA)))
equalGRose :: ∀F1 F2 . (∀B1 B2 .Equal B1 B2 → Equal (F1 B1) (F2 B2))

→ (∀A1 A2 .Equal A1 A2

→ Equal (GRose F1 A1) (GRose F2 A2))
equalGRose equalF equalA

= to (mapE Equal convGRose convGRose) (
equal× equalA (equalF (equalGRose equalF equalA)))

Figure 6.2: Specializing generic values in Haskell (part 2).

6.1 Implementation 153

6.1.3 Generating embedding-projection maps

We are in a peculiar situation: in order to specialize a generic value poly to some
data type B , we have to specialize another generic value, namely, mapE to poly ’s
type Poly . This works fine if Poly like Encode only involves primitive types. So
let us make this assumption for the moment. Here is a version of mapE tailored
to Haskell’s set of primitive types:

mapE 〈〈T :: T〉〉 :: MapE 〈T〉 T T
mapE 〈〈Char〉〉 = idE
mapE 〈〈Int〉〉 = idE
mapE 〈〈→〉〉 mA mB = ep{from = to mA→ from mB , to = from mA→ to mB }
mapE 〈〈IO〉〉 mA = ep{from = fmap (from mA), to = fmap (to mA)}.

Note that in the last equation mapE falls back on an ‘ordinary’ mapping function.
In fact, we can alternatively define

mapE 〈〈IO〉〉 = liftE

where

liftE :: ∀F . (Functor F)⇒ ∀A A◦ .EP A A◦ → EP (F A) (F A◦)
liftE mA = ep{from = fmap (from mA), to = fmap (to mA)}.

Now, the Poly :: POLY instance of mapE is given by

mapE Poly :: MapE 〈 POLY 〉 Poly Poly
mapE Poly mapE A1

. . . mapE Ak
= mapE 〈〈Poly A1 . . . Ak〉〉%.

where % = (A1 := mapE A1
, . . . ,Ak := mapE Ak

) is an environment mapping type
variables to terms. We use an explicit environment (actually, for the first time)
in order to deal with polymorphic types. Recall that the specialization of generic
values as described in Section 3.1.3 does not work for polymorphic types. However,
we allow polymorphic types to occur in the type signature of a generic value. Now,
the extension of mapE to arbitrary Haskell type terms is given by

mapE 〈〈C 〉〉% = mapE 〈〈C 〉〉
mapE 〈〈A〉〉% = %(A)
mapE 〈〈T U 〉〉% = (mapE 〈〈T 〉〉%) (mapE 〈〈U 〉〉%)
mapE 〈〈∀A :: ? .T 〉〉% = mapE 〈〈T 〉〉%(A := idE)
mapE 〈〈∀F :: ?→ ? . (Functor F)⇒ T 〉〉% = mapE 〈〈T 〉〉%(F := liftE).

Two remarks are in order.
Haskell has neither type abstractions nor an explicit recursion operator, so

these cases can be omitted from the definition.
Unfortunately, we cannot deal with polymorphic types in general. Consider,

for instance, the type Poly A = ∀F .F A → F A. There is no mapping function
that works uniformly for all F . For that reason we have to restrict F to instances
of Functor so that we can use the overloaded liftE function. For polymorphic
types where the type variable ranges over types of kind ? things are simpler: since
the mapping function for a manifest type is always the identity, we can use idE .

Now, what happens if Poly involves a user-defined data type, say B? In this
case we have to specialize mapE to B . It seems that we are trapped in a vicious
circle. To break the spell we have to implement mapE for the B data type ‘by

154 Generic Haskell

hand’. Fortunately mapE is very well-behaved, so the code generation is relatively
straightforward. The embedding-projection map for the data type B :: B

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn

is given by

mapE B :: MapE 〈B〉 B B
mapE B mapEA1

. . . mapEAm
= ep{from = fromB , to = toB }

where
fromB (k1 x11 . . . x1m1) = k1 (from (mapE 〈〈T11〉〉%) x11) . . . (from (mapE 〈〈T1m1〉〉%) x1m1)
. . .
fromB (kn xn1 . . . xnmn

) = kn (from (mapE 〈〈Tn1〉〉%) xn1) . . . (from (mapE 〈〈Tnmn
〉〉%) xnmn

)
toB (k1 x11 . . . x1m1) = k1 (to (mapE 〈〈T11〉〉%) x11) . . . (to (mapE 〈〈T1m1〉〉%) x1m1)
. . .
toB (kn xn1 . . . xnmn) = kn (to (mapE 〈〈Tn1〉〉%) xn1) . . . (to (mapE 〈〈Tnmn 〉〉%) xnmn)

where % = (A1 := mapEA1
, . . . ,Am := mapEAm). For example, for Encode and

Decodes we obtain

mapE Encode :: ∀A A◦ .EP A A◦ → EP (Encode A) (Encode A◦)
mapE Encode mapE A = mapE→ mapE A idE
mapE Decodes :: ∀A A◦ .EP A A◦ → EP (Decodes A) (Decodes A◦)
mapE Decodes mapE A = mapE→ idE (mapE (,) mapE A idE)

where mapE (,) is generated according to the scheme above:

mapE (,) :: ∀A A◦ .EP A A◦ → ∀B B◦ .EP B B◦ → EP (A,B) (A◦,B◦)
mapE (,) mapE A mapE B = ep{from = from(,), to = to(,)}

where from(,) (a, b) = (from mapE A a, from mapE B b)
to(,) (a, b) = (to mapE A a, to mapE B b).

6.1.4 Encoding rank-n types

The translation described in Section 6.1.2 can be used as a source-to-source trans-
lation provided the types of the functions involved have a rank of 2 or below. In
this section we close the gap and show how to encode rank-n types using ‘wrapper’
data types with polymorphic fields. Note that polymorphic fields are an extension
to Haskell 98 implemented in GHC, HBC and Hugs. Now, the basic idea is very
simple: instead of passing a polymorphic value directly as an argument we pass a
‘box’ that contains the value as the single component.

Assume for the sake of example that only rank-0 or rank-1 type signatures are
admissible and consider specializing encode to GRose. In this case we have to pass
the first argument of encodeGRose as a boxed value. A suitable data type for this
purpose is

newtype Boxed?→? F = box?→?{unbox?→? :: ∀A .Encode A→ Encode (F A)}.

The instance encodeGRose then takes the following form

encodeGRose :: ∀F A .Boxed?→? F → Encode A→ Encode (GRose F A)
encodeGRose encodeF encodeA

= to (mapE Encode convGRose) (
encode× encodeA (unbox?→? encodeF (encodeGRose encodeF encodeA))).

6.1 Implementation 155

Note that we have to unbox the boxed value encodeF before we can apply it.
Now, how can we introduce the wrapper data types BoxedT and the conversion

functions unboxT and boxT in a systematic way? It appears that this is most
easily accomplished by introducing a new constructor on the kind level : we use
� T to indicate that the corresponding instance must be boxed. At first, it may
seem bizarre that this information is introduced on the kind level. But recall
that the type of an instance is defined by induction on the structure of kinds,
that is, the kind of the type T determines the type of the instance poly〈〈T 〉〉.
For instance, if we specialize poly to GRose we assign poly〈〈GRose〉〉 the type
Poly〈� (? → ?) → ? → ?〉 indicating that the first argument of poly〈〈GRose〉〉
must be boxed.

Now, we extend the language of kind terms as follows.

T,U ∈ Kind ::= ? kind of types
| T × U product kind
| T→ U function kind
| � T boxed kind

Furthermore, we introduce two kinding rules that allow to introduce and to elim-
inate boxed kinds.

T :: T

T ::� T
(t-�-intro)

T ::� T

T :: T
(t-�-elim)

Note that we do not introduce any constructors on the type level, so just think of
� T and T as two isomorphic kinds without the need to explicitly coerce to and
fro.

Turning to the specialization we have to extend the definition of Poly〈−〉.

type Poly〈?〉 T1 . . . Tn = Poly T1 . . . Tn
type Poly〈� T〉 T1 . . . Tn = BoxedT T1 . . . Tn
type Poly〈A→ B〉 T1 . . . Tn = ∀A1 . . . An .Poly〈A〉 A1 . . . An

→ Poly〈B〉 (T1 A1) . . . (Tn An)
newtype BoxedT T1 . . . Tn = boxT{unboxT :: Poly〈T〉 T1 . . . Tn}

Note that BoxedT and Poly〈T〉 are isomorphic type constructors. We can use
boxT and unboxT to convert to and fro. Next, we have to extend the definition
of poly〈〈−〉〉. Recall that poly〈〈−〉〉 is defined by induction on the structure of the
kinding derivations (this is why we do not need coercions on the type level).

poly〈〈T :: T〉〉 = unboxT (poly〈〈T ::� T〉〉)
poly〈〈T ::� T〉〉 = boxT (poly〈〈T :: T〉〉)

Using boxed kinds we can now easily tailor the code generation towards a par-
ticular target language. Assume, as before, that the target language only admits
rank-0 and rank-1 type signatures (but, of course, it must offer local universal
quantification in data types) and that we want to specialize poly〈〈T :: T〉〉. In this
case we specialize poly〈〈T :: wrap1 T〉〉 where wrap1 is given by

wrap1 :: 2→ 2

wrap1(?) = ?
wrap1(T→ U)
| order(T) > 1 = � (wrap1 T)→ wrap1 U
| otherwise = T→ wrap1 U.

156 Generic Haskell

The function wrap1 introduces boxed kinds for higher-order type arguments, for
example, wrap1 ((? → ?) → ? → ?) = � (? → ?) → ? → ?. Now, reconsider the
definition of encodeGRose and note the first argument, encodeF , appears twice on
the right-hand side. Furthermore, note that only the first occurrence is unboxed.
The kinding derivation of GRose◦ F A :: ? with F :: � (? → ?) and A :: ? shows
why.

(1) ` (×) A (F (GRose◦ F A)) :: ? t-→-elim(2, 3)
(2) ` (×) A :: ?→ ? t-→-elim(4, 5)
(3) ` F (GRose◦ F A) :: ? t-→-elim(6, 7)
(4) ` (×) :: ?→ (?→ ?) t-const

(5) ` A :: ? t-var

(6) ` F :: ?→ ? t-�-elim(8)
(7) ` GRose◦ F A :: ? t-→-elim(9, 10)
(8) ` F ::� (?→ ?) t-var

(9) ` GRose◦ F :: ?→ ? t-→-elim(11, 12)
(10) ` A :: ? t-var

(11) ` GRose◦ ::� (?→ ?)→ (?→ ?) t-var

(12) ` F ::� (?→ ?) t-var

In line (6) we require F :: ? → ? but F has kind � (? → ?), so that we have to
invoke (t-�-elim). Consequently, we obtain

encode〈〈F :: ?→ ?〉〉 = unbox?→? (encode〈〈F ::� (?→ ?)〉〉)
= unbox?→? encodeF .

By contrast, in line (12) we require F ::� (?→ ?). Since F has exactly this kind,
we obtain encode〈〈F ::� (?→ ?)〉〉 = encodeF .

Now, GHC, HBC and Hugs also offer rank-2 type signatures. In this case,
there is no need to box first-order kinded type arguments. The wrapper function
wrap2 takes this into account:

wrap2 :: 2→ 2

wrap2(?) = ?
wrap2(T→ U)
| order(T) > 2 = � (wrap1 T)→ wrap2 U
| otherwise = T→ wrap2 U.

Note that the argument of ‘�’ is boxed using wrap1 (not wrap2) since arguments
of value constructors may only have rank-1 type signatures.

6.2 Extensions

This section discusses two extensions that make generic definitions more useful in
practice.

6.2.1 Ad-hoc definitions

A generic function solves a problem in a uniform way for all types. Sometimes it
is, however, desirable to use a different approach for some data types. Consider,
for instance, the function encode instantiated to lists over some base type. To
encode the structure of an n-element list n + 1 bits are used. For large lists this
is clearly wasteful. A more space-efficient scheme stores the length of the list in a

6.2 Extensions 157

header followed by the encodings of the elements. We can specify this compression
scheme for lists using a so-called ad-hoc definition.

encode〈List A〉 as = encodeInt (sizeList as) ++ encodeListBin (mapList (encode〈A〉) as).

Ad-hoc definitions specify exceptions to the general rule and may be given for all
predefined and for all user-defined data types. Note that this ability is absolutely
crucial to support abstract data types. For example, a set may be represented as
a balanced tree in more than one way, and equality must take account of this fact.
Simply using a generic equality function would take equality of representations,
which is simply wrong in this case.

In general, generic definitions can be handled very much like class- and in-
stance declarations. The type signature of a generic definition together with the
equations for ‘1’, ‘+’, and ‘×’ plays the rôle of a class definition. Ad-hoc defi-
nitions are akin to instance declarations. This suggests, for instance, that in a
concrete implementation ad-hoc definitions should be allowed to be spread over
several modules. This is vital, because a data type might not even be defined in
the scope where the generic value is declared.

6.2.2 Constructor names and record labels

Generic definitions are defined by induction on the structure of types. Annoyingly,
this is not quite enough. Consider, for example, the method showsPrec of the
standard Haskell class Show . To be able to give a generic definition for showsPrec,
the names of the constructors, and their fixities, must be made accessible.

To this end we provide an additional type pattern, of the form c of A where c
is a value variable of type ConDescr and A is a type variable. The type ConDescr
is a new primitive type that comprises all constructor names. To manipulate
constructor names the following operations among others can be used — for an
exhaustive list see Hinze (1999).

data ConDescr -- abstract
data Fixity = Nofix | Infix Int | Infixl Int | Infixr Int
conName :: ConDescr → String -- primitive
conArity :: ConDescr → Int -- primitive
conFixity :: ConDescr → Fixity -- primitive

Using conName and conArity we can implement a simple variant of the showsPrec
function — for a full-fledged version see Hinze (1999). The generic function
showPrec〈T 〉 d t takes a precedence level d (a value from 0 to 10), a value t
of type T and returns a String .

showPrec〈T :: ?〉 :: Int → T → String
showPrec〈Char〉 d c = showChar c
showPrec〈Int〉 d i = showInt i
showPrec〈A + B〉 d (inl a) = showPrec〈A〉 d a
showPrec〈A + B〉 d (inr b) = showPrec〈B〉 d b
showPrec〈c of A〉 d a
| conArity c 0 = conName c
| otherwise = showParen (d > 10) (conName c ++ " " ++ showPrec〈A〉 10 a)

showPrec〈A × B〉 d (a, b) = showPrec〈A〉 d a ++ " " ++ showPrec〈B〉 d b

The third and the fourth equation discard the binary constructors inl and inr .
They are not required since the constructor names are accessible via the type

158 Generic Haskell

pattern c of A. If the constructor is nullary, its string representation is emitted.
Otherwise, the constructor name is printed followed by a space followed by the
representation of its arguments. If the precedence level is 10, the output is addi-
tionally parenthesized. The last equation applies if a constructor has more than
one component. In this case the components are separated by a space.

It should be noted that constructor names appear only on the type level; they
have no counterpart on the value level as value constructors are encoded using inl
and inr . If a generic definition does not include a case for the type pattern c of A,
then we tacitly assume that poly〈c of A〉 = poly〈A〉. Now, why does the type
c of A incorporate information about c? One might suspect that it is sufficient
to supply this information on the value level. Doing so would work for show , but
would fail for read :

read〈T :: ?〉 :: String → [(T ,String)]
. . .
read〈c of A〉 s = [(x , s3) | (s1, s2)← lex s, s1 conName c,

(x , s3)← read〈A〉 s2].

The important point is that read produces (not consumes) the value, and yet it
requires access to the constructor name.

Haskell allows the programmer to assign labels to the components of a construc-
tor, and these, too, are needed by read and show . For the purpose of presentation,
however, we choose to ignore field names. In fact, they can be handled completely
analogously to constructor names, see Hinze (1999).

It remains to extend the definition of generic representation types to include
c of A patterns: for

data B A1 . . . Am = k1 T11 . . . T1m1 | · · · | kn Tn1 . . . Tnmn

we generate:

type B◦ A1 . . . Am = Σ (descrk1 of (Π T11 . . . T1m1)) · · · (descrkn
of (Π Tn1 . . . Tnmn

))

where descrk1 , . . . , descrkn are elements of type ConDescr . In fact, for each
constructor in a data type declaration, we produce a value of type ConDescr that
gives information about the constructor:

data ConDescr = ConDescr{conName :: String ,
conArity :: Int ,
conFixity :: Fixity }.

As an example, for the List data type we generate:

descrnil , descrcons :: ConDescr
descrnil = ConDescr "Nil" 0 Nofix
descrcons = ConDescr "Cons" 2 Nofix .

Let us conclude the section by giving a further example of a generic definition
that uses c of A patterns. The generic function layn〈T 〉 off t displays the value t

References 159

of type T in a tree-like fashion.

layn〈T :: ?〉 :: Int → T → String
layn〈1〉 off () = ""
layn〈Int〉 off i = line off (showInt i)
layn〈A + B〉 off (inl a) = layn〈A〉 off a
layn〈A + B〉 off (inr b) = layn〈B〉 off b
layn〈c of A〉 off a = line off (conName c) ++ layn〈A〉 (off + 2) a
layn〈A × B〉 off (a, b) = layn〈A〉 off a ++ "\n" ++ layn〈B〉 off b
line :: Int → String → String
line off s = replicate off ’ ’ ++ s ++ "\n"

A constructed value of the form k t1 . . . tn is displayed as follows.

 . . . k
 . . . t1

 . . . tn

The constructor name k is printed on a separate line using an offset of off spaces;
its components t1, . . . , tn are recursively displayed using an offset of off +2 spaces.

160 References

References

Amadio, R., K. B. Bruce, and G. Longo (1986, June). The finitary projection
model for second order lambda calculus and solutions to higher order domain
equations. In Proceedings of the Symposium on Logic in Computer Science,
Cambridge, Massachusetts, pp. 122–130. IEEE Computer Society.

Appel, A. W. and M. J. R. Goncalves (1993, February). Hash-consing garbage
collection. Technical Report CS-TR-412-93, Princeton University, Computer
Science Department.

Augustsson, L. (1998). The HBC compiler. Available from
http://www.cs.chalmers.se/~augustss/hbc/hbc.html.

Augustsson, L. (1999, January). Cayenne – a language with dependent types.
SIGPLAN Notices 34 (1), 239–250.

Backhouse, R., P. Jansson, J. Jeuring, and L. Meertens (1999). Generic Pro-
gramming — An Introduction —. In S. D. Swierstra, P. R. Henriques, and
J. N. Oliveira (Eds.), 3rd International Summer School on Advanced Func-
tional Programming, Braga, Portugal, Volume 1608 of Lecture Notes in Com-
puter Science, pp. 28–115. Berlin: Springer-Verlag.

Barendregt, H. P. (1984). The Lambda Calculus — Its Syntax and Semantics
(revised ed.). North-Holland, Amsterdam New York Oxford.

Bird, R. (1998). Introduction to Functional Programming using Haskell (2nd
ed.). London: Prentice Hall Europe.

Bird, R. and O. de Moor (1997). Algebra of Programming. London: Prentice
Hall Europe.

Bird, R., O. de Moor, and P. Hoogendijk (1996, January). Generic functional
programming with types and relations. Journal of Functional Program-
ming 6 (1), 1–28.

Bird, R. and L. Meertens (1998, June). Nested datatypes. In J. Jeuring (Ed.),
Fourth International Conference on Mathematics of Program Construction,
MPC’98, Marstrand, Sweden, Volume 1422 of Lecture Notes in Computer
Science, pp. 52–67. Springer-Verlag.

Bird, R. and R. Paterson (1999). Generalised folds for nested datatypes. Formal
Aspects of Computing 11 (2), 200–222.

Bird, R. S. (1984, October). The promotion and accumulation strategies in
transformational programming. ACM Transactions on Programming Lan-
guages and Systems 6 (4), 487–504.

Cockett, R. and T. Fukushima (1992, June). About Charity. Yellow Series Re-
port 92/480/18, Dept. of Computer Science, Univ. of Calgary.

162 REFERENCES

Connelly, R. H. and F. L. Morris (1995, September). A generalization of the trie
data structure. Mathematical Structures in Computer Science 5 (3), 381–418.

Courcelle, B. (1983, March). Fundamental properties of infinite trees. Theoret-
ical Computer Science 25 (2), 95–169.

Crary, K., S. Weirich, and G. Morrisett (1999). Intensional polymorphism in
type-erasure semantics. ACM SIGPLAN Notices 34 (1), 301–312.

Danvy, O. (1999, November). An extensional characterization of lambda-lifting
and lambda-dropping. In A. Middeldorp and T. Sato (Eds.), 4th Fuji In-
ternational Symposium on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan, Volume 1722 of Lecture Notes in Computer Science, pp.
241–250. Springer-Verlag.

de la Briandais, R. (1959). File searching using variable length keys. In Proc.
Western Joint Computer Conference, Volume 15, pp. 295–298. AFIPS Press.

de Moor, O. and J. Gibbons (2000, May). Pointwise relational programming. In
T. Rus (Ed.), Proceedings of Algebraic Methodology and Software Technology
(AMAST 2000), Iowa, Volume 1816 of Lecture Notes in Computer Science,
pp. 371–390. Springer-Verlag.

Gierz, G., K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott (1980).
A Compendium of Continuous Lattices. Springer-Verlag.

Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures
dans l’arithmétique d’ordre supérieur. Ph. D. thesis, Université Paris VII.

Gunter, C. and D. Scott (1990). Semantic domains. In J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, Chapter 12, pp. 633–674. Elsevier Science Publishers B.V. (North
Holland).

Hagino, T. (1987). Category Theoretic Approach to Data Types. Ph. D. thesis,
University of Edinburgh.

Hallgren, T. and M. Carlsson (1995, May). Programming with Fudgets. In
J. Jeuring and E. Meijer (Eds.), Advanced Functional Programming, First In-
ternational Spring School on Advanced Functional Programming Techniques,
B̊astad, Sweden, Volume 925 of Lecture Notes in Computer Science, pp. 137–
182. Springer-Verlag.

Harper, R. and G. Morrisett (1995). Compiling polymorphism using intensional
type analysis. In ACM (Ed.), Conference record of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’95,
San Francisco, California, pp. 130–141. ACM-Press.

Henglein, F. (1993, April). Type inference with polymorphic recursion. ACM
Transactions on Programming Languages and Systems 15 (2), 253–289.

Hinze, R. (1999, September). A generic programming extension for Haskell. In
E. Meijer (Ed.), Proceedings of the 3rd Haskell Workshop, Paris, France.
The proceedings appeared as a technical report of Universiteit Utrecht, UU-
CS-1999-28.

Hinze, R. (2000a, May). Functional Pearl: Perfect trees and bit-reversal permu-
tations. Journal of Functional Programming 10 (3), 305–317.

Hinze, R. (2000b). Generalizing generalized tries. Journal of Functional Pro-
gramming . To appear.

REFERENCES 163

Hinze, R. (2000c). Manufacturing datatypes. Journal of Functional Program-
ming, Special Issue on Algorithmic Aspects of Functional Programming Lan-
guages. To appear.

Hinze, R. (2000d, July). Memo functions, polytypically! In J. Jeuring (Ed.),
Proceedings of the 2nd Workshop on Generic Programming, Ponte de Lima,
Portugal, pp. 17–32. The proceedings appeared as a technical report of Uni-
versiteit Utrecht, UU-CS-2000-19.

Hinze, R. (2000e, January). A new approach to generic functional program-
ming. In T. W. Reps (Ed.), Proceedings of the 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’ 00),
Boston, Massachusetts, January 19-21, pp. 119–132.

Hinze, R. (2000f). Polytypic programming with ease. Journal of Functional and
Logic Programming . To appear.

Hinze, R. (2000g, July). Polytypic values possess polykinded types. In R. Back-
house and J. Oliveira (Eds.), Proceedings of the Fifth International Confer-
ence on Mathematics of Program Construction (MPC 2000), July 3-5, 2000,
Volume 1837 of Lecture Notes in Computer Science, pp. 2–27. Springer-
Verlag.

Hinze, R. and S. Peyton Jones (2000, September). Derivable type classes.
In G. Hutton (Ed.), Proceedings of the 4th Haskell Workshop, Montreal,
Canada. The proceedings will be published as a University of Nottingham
technical report.

Hoogendijk, P. and R. Backhouse (1997). When do datatypes commute? In
E. Moggi and G. Rosolini (Eds.), Proceedings of the 7th International Confer-
ence on Category Theory and Computer Science (Santa Margherita Ligure,
Italy, September 4–6), Volume 1290 of Lecture Notes in Computer Science,
pp. 242–260. Springer-Verlag.

Hoogendijk, P. and O. de Moor (2000). Container types categorically. Journal
of Functional Programming 10 (2), 91–225.

Hudak, P. (2000). The Haskell School of Expression: Learning Functional Pro-
gramming through Multimedia. Cambridge University Press.

Hughes, J. (2000, May). Generalising monads to arrows. Science of Computer
Programmming 37, 67–111.

Huwig, H. and A. Poigné (1990, June). A note on inconsistencies caused by
fixpoints in a Cartesian closed category. Theoretical Computer Science 73 (1),
101–112.

Jansson, P. and J. Jeuring (1997, January). PolyP—a polytypic programming
language extension. In Conference Record 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’97, Paris,
France, pp. 470–482. ACM-Press.

Jansson, P. and J. Jeuring (1998, June). PolyLib—A library of polytypic func-
tions. In R. Backhouse and T. Sheard (Eds.), Informal Proceedings Work-
shop on Generic Programming, WGP’98, Marstrand, Sweden. Department
of Computing Science, Chalmers University of Technology and Göteborg
University.

Jansson, P. and J. Jeuring (1999). Polytypic compact printing and parsing. In
S. D. Swierstra (Ed.), Proceedings European Symposium on Programming,

164 REFERENCES

ESOP’99, Volume 1576 of Lecture Notes in Computer Science, Berlin, pp.
273–287. Springer-Verlag.

Jansson, P. and J. Jeuring (2000). Calculating polytypic data conversion pro-
grams. Science of Computer Programmming . To appear.

Jay, C., G. Bellè, and E. Moggi (1998, November). Functorial ML. Journal of
Functional Programming 8 (6), 573–619.

Jay, C. and J. Cocket (1994, 11–13 April). Shapely types and shape poly-
morphism. In D. Sanella (Ed.), Programming Languages and Systems —
ESOP’94: 5th European Symposium on Programming, Edinburgh, UK, Pro-
ceedings, Volume 788 of Lecture Notes in Computer Science, Berlin, pp.
302–316. Springer-Verlag.

Jeuring, J. and P. Jansson (1996). Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard (Eds.), Tutorial Text 2nd International School on
Advanced Functional Programming, Olympia, WA, USA, Volume 1129 of
Lecture Notes in Computer Science, pp. 68–114. Springer-Verlag.

Jones, M. and J. Peterson (1999, May). Hugs 98 User Manual. Available from
http://www.haskell.org/hugs.

Jones, M. P. (1995, January). A system of constructor classes: overloading
and implicit higher-order polymorphism. Journal of Functional Program-
ming 5 (1), 1–35.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd ed.). Addison-Wesley Publishing Company.

Launchbury, J. and R. Paterson (1996, April). Parametricity and unboxing with
unpointed types. In H. R. Nielson (Ed.), European Symposium on Program-
ming, Linköping, Sweden, Volume 1058 of Lecture Notes in Computer Sci-
ence, pp. 204–218. Springer-Verlag.

MacLane, S. (1998). Categories for the Working Mathematician (2nd ed.). Grad-
uate Texts in Mathematics. Berlin: Springer-Verlag.

McCracken, N. J. (1984). The typechecking of programs with implicit type struc-
ture. In G. Kahn, D. B. MacQueen, and G. D. Plotkin (Eds.), Semantics
of Data Types: International Symposium, Sophia-Antipolis, France, Volume
173 of Lecture Notes in Computer Science, pp. 301–315. Springer-Verlag.

Meertens, L. (1996, September). Calculate polytypically! In H. Kuchen and
S. Swierstra (Eds.), Proceedings 8th International Symposium on Pro-
gramming Languages: Implementations, Logics, and Programs, PLILP’96,
Aachen, Germany, Volume 1140 of Lecture Notes in Computer Science, pp.
1–16. Springer-Verlag.

Meijer, E. and G. Hutton (1995, June). Bananas in space: Extending fold
and unfold to exponential types. In Conference Record 7th ACM SIG-
PLAN/SIGARCH and IFIP WG 2.8 International Conference on Functional
Programming Languages and Computer Architecture, FPCA’95, La Jolla,
San Diego, CA, USA, pp. 324–333. ACM-Press.

Michie, D. (1968, April). “Memo” functions and machine learning. Nature (218),
19–22.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of
Computer and System Sciences 17 (3), 348–375.

REFERENCES 165

Mitchell, J. C. (1996). Foundations for Programming Languages. Cambridge,
MA: The MIT Press.

Moggi, E. (1990). An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, Department of Computer Science, Edinburgh University.

Moggi, E. (1991). Notions of computation and monads. Information and Com-
putation 93 (1), 55–92.

Mycroft, A. (1984). Polymorphic type schemes and recursive definitions. In
M. Paul and B. Robinet (Eds.), Proceedings of the International Sympo-
sium on Programming, 6th Colloquium, Toulouse, France, Volume 167 of
Lecture Notes in Computer Science, pp. 217–228.

O’Donnell, M. J. (1985). Equational Logic as a Programming Language. Foun-
dations of Computing Series. Cambridge, Mass.: MIT Press.

Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University
Press.

Okasaki, C. (1999, September). From fast exponentiation to square matrices: An
adventure in types. In P. Lee (Ed.), Proceedings of the 1999 ACM SIGPLAN
International Conference on Functional Programming, Paris, France, pp.
28–35.

Okasaki, C. and A. Gill (1998). Fast mergeable integer maps. In The 1998 ACM
SIGPLAN Workshop on ML, Baltimore, Maryland, pp. 77–86.

Peyton Jones, S. and J. Hughes (Eds.) (1999, February). Haskell 98
— A Non-strict, Purely Functional Language. Available from
http://www.haskell.org/definition/.

Peyton Jones, S. L. (1996). Compiling Haskell by program transformation: A re-
port from the trenches. In H. R. Nielson (Ed.), Programming Languages and
Systems—ESOP’96, 6th European Symposium on Programming, Linköping,
Sweden, 22–24 April, Volume 1058 of Lecture Notes in Computer Science,
pp. 18–44. Springer-Verlag.

Plotkin, G. (1983). Domains — Pisa notes on domain theory. The notes have
been prepared by Yugo Kashigawa and Hidetaka Kondoh.

Poigné, A. (1992). Basic category theory. In S. Abramsky, D. M. Gabbay, and
T. Maibaum (Eds.), Handbook of Logic in Computer Science, Volume 1,
Background: Mathematical Structures, pp. 413–640. Clarendon Press, Ox-
ford.

Rabhi, F. and G. Lapalme (1999). Algorithms: a Functional Programming Ap-
proach (second ed.). Addison-Wesley Publishing Company.

Reynolds, J. (1974). Towards a theory of type structure. In Proceedings, Col-
loque sur la Programmation, Paris, Volume 19 of Lecture Notes in Computer
Science, pp. 408–425. Springer-Verlag.

Ruehr, F. (1998, June). Structural polymorphism. In R. Backhouse and
T. Sheard (Eds.), Informal Proceedings Workshop on Generic Programming,
WGP’98, Marstrand, Sweden, 18 June 1998. Dept. of Computing Science,
Chalmers Univ. of Techn. and Göteborg Univ.

Ruehr, K. F. (1992). Analytical and Structural Polymorphism Expressed using
Patterns over Types. Ph. D. thesis, University of Michigan.

166 REFERENCES

Sénizergues, G. (1997). The equivalence problem for deterministic pushdown au-
tomata is decidable. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela
(Eds.), Automata, Languages and Programming, 24th International Collo-
quium, Volume 1256 of Lecture Notes in Computer Science, Bologna, Italy,
pp. 671–681. Springer-Verlag.

Sheard, T. (1991, October). Automatic generation and use of abstract struc-
ture operators. ACM Transactions on Programming Languages and Sys-
tems 13 (4), 531–557.

Sheard, T. (1993, November). Type parametric programming. Technical Re-
port CS/E 93-018, Oregon Graduate Institute of Science and Technology,
Department of Computer Science and Engineering, Portland, OR, USA.

Taylor, P. (1999). Practical Foundations of Mathematics. Cambridge Studies in
Advanced Mathematics. Cambridge University Press.

Team, T. G. (2000). The Glasgow Haskell Compiler User’s Guide, Version 4.08.
Available from http://www.haskell.org/ghc/documentation.html.

Thompson, S. (1999). Haskell: The Craft of Functional Programming (second
ed.). Harlow, England: Addison Wesley Longman Limited.

Thue, A. (1912). Über die gegenseitige lage gleicher teile gewisser zeichenrei-
hen. Skrifter udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-
Naturvidenskabelig Klasse 1, 1–67. Reprinted in Thue’s “Selected Mathe-
matical Papers” (Oslo: Universitetsforlaget, 1977), 413–477.

Turner, D. (1981, October). The Semantic Elegance of Applicative Languages.
In Functional Programming Languages and Computer Architecture (FPCA
’81), Portsmouth, New Hampshire, pp. 85–92. ACM, New York.

Wadler, P. (1989, September). Theorems for free! In The Fourth International
Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA’89), London, UK, pp. 347–359. Addison-Wesley Publishing
Company.

Wadler, P. (1990, June). Comprehending monads. In Proceedings of the 1990
ACM Conference on LISP and Functional Programming, Nice, pp. 61–78.
ACM-Press.

Wadler, P. (1992, January). The essence of functional programming. In Pro-
ceedings of the 19th Annual ACM Symposium on Principles of Programming
Languages, Sante Fe, New Mexico, pp. 1–14.

Wadler, P. (1995, May). Monads for functional programming. In J. Jeuring and
E. Meijer (Eds.), Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques, B̊astad,
Sweden, Volume 925 of Lecture Notes in Computer Science, pp. 24–52.
Springer-Verlag.

Wadsworth, C. (1979). Recursive type operators which are more than type
schemes. Bulletin of the EATCS 8, 87–88. Abstract of a talk given at the
2nd International Workshop on the Semantics of Programming Languages,
Bad Honnef, Germany, 19–23 March 1979.

Summary

A generic program is one that the programmer writes once, but which works over
many different data types. A generic proof is one that the programmer shows
once, but which holds for many different data types. This thesis describes a novel
approach to functional generic programming and reasoning that is both simpler
and more general than previous approaches.

Examples of generic functions are parsing, pretty printing, taking equality,
mapping functions, reductions, and so on. We introduce two forms of generic
definitions. Definitions of the first form are restricted to type indices of one fixed
kind and proceed by induction on the structure of types. Definitions of the second
form are more general as they allow the programmer to define values that are
indexed by types of arbitrary kinds. It turns out that these type-indexed values
possess kind-indexed types, that is, types that are defined by induction on the
structure of kinds. Interestingly, to define a kind-indexed type it suffices to specify
the image of the base kind; likewise, to define a type-indexed value it suffices
to specify the images of type constants. The remaining cases are taken care of
automatically, which is one of the strengths of generic programming.

The key idea of our approach is model types by terms of the simply typed
lambda calculus augmented by a family of fixed point combinators. The special-
ization of a generic value can be seen as an interpretation of the simply typed
lambda calculus.

For each of the two forms of generic definitions we provide a corresponding
proof principle. The first method is a variant of fixed point induction. It can
also be used constructively to derive a generic program from its specification. The
second method is based on logical relations, one of the main tools for studying
typed lambda calculi. To prove a generic property it suffices to prove the assertion
for type constants. Again, everything else is taken care of automatically.

We present a multitude of examples of generic values and associated generic
proofs. Among other things, we apply the framework to implement dictionaries
and memo tables in a generic way. These case studies are particularly interesting in
that they make essential use of type-indexed types, that is, types that are defined
by induction on the structure of types.

Finally, we show how to extend the functional programming language Haskell 98
by generic definitions. The implementation of this extension is discussed in detail.

168 Summary

Curriculum Vitæ

Ralf Thomas Walter Hinze
Eudenbergerstraße 13
D-53639 Königswinter

geboren am 2. Juli 1965 in Marl (Westfalen),
Familienstand: ledig, zwei Kinder.

1971 – 1975 August-Döhr-Grundschule in Marl

1975 – 1984 Albert-Schweitzer-Gymnasium in Marl

Apr. 1984 Abschluß mit dem Zeugnis der allgemeinen Hochschulreife

Okt. 1984–Apr. 1990 Studium der Informatik an der Universität Dortmund

Apr. 1990 Abschluß des Studiums als Diplom-Informatiker

Apr. 1990–Sep. 1990 Wissenschaftlicher Angestellter an der Abteilung Infor-
matik der Universität Dortmund

Okt. 1990–Jan. 1996 Wissenschaftlicher Angestellter an der Abteilung Infor-
matik der Universität Bonn

Nov. 1995 Abschluß der Promotion (Dr. rer. nat.) in Informatik an
der Mathematisch-Naturwissenschaftlichen Fakultät der
Universität Bonn

Feb. 1996–Sep. 1996 Wissenschaftlicher Assistent (C1) an der Abteilung Infor-
matik der Universität Bonn

Okt. 1996–Feb. 1997 Wissenschaftlicher Assistent (C1) an der Abteilung Infor-
matik der Technischen Fakultät der Universität Bielefeld

seit März 1997 Wissenschaftlicher Assistent (C1) an der Abteilung Infor-
matik der Universität Bonn

	Introduction
	Generic programming in a nutshell
	Binary encoding
	Size functions

	Overview

	Background
	The type system of Haskell
	Finite types
	Regular types
	Nested types
	Functional types

	The class system of Haskell
	Type classes
	Constructor classes

	Category theory
	Categories, functors and natural transformations
	Initial objects
	Terminal objects
	Products
	Coproducts
	Exponentials
	Isomorphisms
	Fixed points
	A semantics for data declarations

	The simply typed -calculus
	Syntax
	Semantics
	Böhm trees
	Logical relations

	The polymorphic -calculus
	Syntax
	Semantics

	Generic programs
	Type-indexed values
	Normal forms of types
	Defining generic values
	Specializing generic values

	Generalizing to first- and second-order kinds
	Type indices of kind
	Type indices of kind ()
	Normal forms of types
	Defining generic values
	Specializing generic values
	Limitations of the approach

	Type-indexed values with kind-indexed types
	Defining generic values
	Specializing generic values
	Examples

	Related work

	Generic proofs
	Fixed point induction
	Type-indexed values
	Generalizing to first- and second-order kinds

	Deriving generic programs
	Generic logical relations
	Soundness
	Examples

	Examples
	Comparison functions
	Mapping functions
	Embedding-projection maps
	Monadic maps

	Zipping functions
	Reductions
	POPL-style reductions
	MPC-style reductions
	Properties
	Right and left reductions

	Generic dictionaries
	Introduction
	Signature
	Type-indexed tries
	Empty tries
	Singleton tries
	Look up
	Inserting and merging
	Properties
	Related work

	Generic memo tables
	Introduction
	Signature
	Memo tables
	Table look-up
	Tabulation
	Properties

	Generic Haskell
	Implementation
	Generic representation types
	Specializing generic values
	Generating embedding-projection maps
	Encoding rank-n types

	Extensions
	Ad-hoc definitions
	Constructor names and record labels

	References
	Summary
	Curriculum Vitæ

