
The Derivative of a Functor

RALF HINZE

Institute of Information and Computing Sciences

Utrecht University

Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/~ralf/

September, 2001

(Pick the slides at .../~ralf/talks.html#T29.)

Motivation

Task: represent a tree together with a focus of interest.

We are seeking a generic definition, that is, one that works for arbitrary

(recursive) data types.

1

A concrete instance: 2-3 trees

data Tree23 = empty
| node2 Tree23 Int Tree23
| node3 Tree23 Int Tree23 Int Tree23

node2 (node2 empty 1 empty)
2 (node3 (node2 (node2 empty 3 empty)

4 (node2 empty 5 empty))
6 (node2 empty 7 empty)
8 (node2 empty 9 empty))

2

A 2-3 tree with a focus of interest consists of the focused tree and a

path leading to the root.

type Focus23 = (Path23 ,Tree23)

data Path23 = top | step Path23 Seg23

data Seg23 = node2 1 • Int Tree23
| node2 2 Tree23 Int •
| node3 1 • Int Tree23 Int Tree23
| node3 2 Tree23 Int • Int Tree23
| node3 3 Tree23 Int Tree23 Int •

NB. Path23 is a snoc list of Seg23 ’s.

NB. • is the unit type (representing a hole).

3

(-- up path

step (step top
(node2 2 (node2 empty 1 empty)

2 •))
(node3 1 •

6 (node2 empty 7 empty)
8 (node2 empty 9 empty))

-- focused tree

,node2 (node2 empty 3 empty)
4 (node2 empty 5 empty)

)

4

Making recursive components explicit

We write the type Tree23 as a fixed point of a functor.

Tree23 = Fix Base23

Base23 = empty (K 1)
+ node2 (Id × Int × Id)
+ node3 (Id × Int × Id × Int × Id)

NB. K T is the constant functor, Id is the identity functor, and ‘+’

and ‘×’ denote lifted sums and pairs.

The fixed point operator, Fix , is given by

data Fix F = in{out :: F (Fix F)}.

5

Focus23 = Path23 × Tree23

Path23 = top (1) + step (Path23 × Seg23)

Seg23 = Base23 ′ Tree23

Base23 ′ = node2 1 (K • ×K Int × Id)
+ node2 2 (Id ×K Int ×K •)
+ node3 1 (K • ×K Int × Id ×K Int × Id)
+ node3 2 (Id ×K Int × • ×K Int × Id)
+ node3 3 (Id ×K Int × Id ×K Int ×K •)

6

Generic paths and segments

Let T be the fixed point of F , that is, T = Fix F . We parameterize

the generic types by the base functor F .

Focus F = Path F × Fix F

Path F = top (1) + step (Path F × Seg F)

Seg F = F ′ (Fix F)

☞ Now, what is the relationsship between F and F ′?

7

The derivative of a functor

The functor F ′ is the derivative of F . We define F ′ by induction on

the structure of F .

(K C)′ = K 0
Id ′ = K 1
(F1 + F2)′ = F ′1 + F ′2
(F1 × F2)′ = F ′1 × F2 + F1 × F ′2

NB. Recall that • = 1.

☞ The observation that a one-point context corresponds to the

derivative of a functor is due to McBride (the definition, however, was

given independently by Hinze/Jeuring).

8

Examples

(Id + Id)′ = K 1 + K 1
(K n × Id)′ ∼= K n

(Id × Id)′ = K 1× Id + Id ×K 1
(Idn)′ ∼= K n × Idn−1

List ′ = K 0 + (K 1× List + Id × List ′)
List ′ ∼= List × List

☞ The derivative of the list functor is a pair of lists (the prefix and

the suffix of the hole).

9

The chain rule

From high school math we all know and love the chain rule:

(F ·G)′ ∼= F ′ ·G ×G ′.

10

Proof of the chain rule

The proof proceeds by fixed point induction on F1.

Case F = F1 × F2:

((F1 × F2) ·G)′

= { composition distributes leftward through ‘×’ }
(F1 ·G × F2 ·G)′

= { product rule }
(F1 ·G)′ × F2 ·G + F1 ·G × (F2 ·G)′

= { ex hypothesi }
F ′1 ·G ×G ′ × F2 ·G + F1 ·G × F ′2 ·G ×G ′

11

F ′1 ·G ×G ′ × F2 ·G + F1 ·G × F ′2 ·G ×G ′

∼= { swapping: A× B ∼= B ×A }
F ′1 ·G × F2 ·G ×G ′ + F1 ·G × F ′2 ·G ×G ′

= { ‘×’ distributes through ‘+’ }
(F ′1 ·G × F2 ·G + F1 ·G × F ′2 ·G)×G ′

= { composition distributes leftward through ‘+’ and ‘×’ }
(F ′1 × F2 + F1 × F ′2) ·G ×G ′

= { product rule }
(F1 × F2)′ ·G ×G ′

12

Examples

(List · List)′ ∼= List ′ · List × List ′

(List · List)′ ∼= List2 · List × List2

The chain rule is convenient for calculating the derivatives of so-called

nested data types.

Pair = Id × Id
Perfect = Id + Perfect · Pair

Perfect ′ ∼= K1 + Perfect ′ · Pair ×K 2× Id
Perfect ′ ∼= K1 + Perfect ′ · Pair × Id + Perfect ′ · Pair × Id

13

Operations

Moving up a 2-3 tree:

up :: Focus23 → Focus23
up (top, t) = (top, t)
up (step p s, t) = (p, plugin s t)

plugin :: Seg23 → Tree23 → Tree23
plugin (node2 1 () a r) t = node2 t a r
plugin (node2 2 l a ()) t = node2 l a t
plugin (node3 1 () a m b r) t = node3 t a m b r
plugin (node3 2 l a () b r) t = node3 l a t b r
plugin (node3 3 l a m b ()) t = node3 l a m b t

NB. Recall that () = •.
14

Generic operations

upF :: Focus F → Focus F
upF (top, t) = (top, t)
upF (step (p, s), t) = (p, in (pluginF (s, t)))

pluginF :: ∀A .F ′ A×A → F A
pluginId (•, t) = t
pluginF1+F2

(inl s1, t) = inl (pluginF1
(s1, t))

pluginF1+F2
(inr s2, t) = inr (pluginF2

(s2, t))
pluginF1×F2

(inl (s, r), t) = (pluginF1
(s, t), r)

pluginF1×F2
(inr (l , s), t) = (l , pluginF2

(s, t)).

NB. We need not define pluginK C as (K C)′ = K 0.

15

Future work

✖ The definition of (−)′ can be easily generalized to arbitrary

types of arbitrary kinds.

✖ Open problem: generalization of the chain rule using logical

relations.

16

