The Derivative of a Functor

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University
Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/"ralf/

September, 2001

(Pick the slides at .../"ralf/talks.html#T29.)

Motivation

Task: represent a tree together with a focus of interest.

h R

We are seeking a generic definition, that is, one that works for arbitrary
(recursive) data types.

A concrete instance: 2-3 trees

data Tree23

= empty
| node2 Tree23 Int Tree23
|

node3 Tree23 Int Tree23 Int Tree23

node2 (node2 empty 1 empty)
2 (node3 (node2 (node2 empty 3 empty)
4 (node2 empty 5 empty))
6 (node2 empty 7 empty)

8 (node2 empty 9 empty))

A 2-3 tree with a focus of interest consists of the focused tree and a
path leading to the root.

type Focus23 = (Path23, Tree23)
data Path23 = top | step Path23 Seg23

data Seg23 = node2q ® Int Tree23
node2o Tree23 Int e

node31 ® Int Tree23 Int Tree23
node3o Tree283 Int e Int Tree23
node3s Tree283 Int Tree283 Int e

NB. Path23 is a snoc list of Seg23’s.

NB. e is the unit type (representing a hole).

(—- up path
step (step top
(node24 (node2 empty 1 empty)
2e)
(node3 o
6 (node2 empty 7 empty)
8 (node2 empty 9 empty))
-- focused tree
, node2 (node2 empty 3 empty)
4 (node2 empty 5 empty)

)

Making recursive components explicit

We write the type Tree23 as a fixed point of a functor.

Tree23 = I Base23
Base23 = empty (K 1)
+ node2 (Id x Int x Id)
+ node3 (Id x Int x Id x Int x Id)

NB. K T is the constant functor, Id is the identity functor, and "+
and ‘X’ denote lifted sums and pairs.

The fixed point operator, Fiz, is given by

data Fix FF' = in{out:: F (Fiz F)}.

Focus23 = Path23 x Tree23
Path23 = top (1) 4+ step (Path23 x Seg23)

Base23' Tree23

node2, (K o x K Int x Id)
node2s (Id x K Int x K e)

(
(
node3, (K o x K Int x Id x K Int x Id)
(
(

Seg23
Base23’

node3o (Id x K Int x ¢ x K Int x Id)
node3s (Id x K Int x Id x K Int X K e)

+ + + + |

Generic paths and segments

Let T be the fixed point of F', that is, T' = Fixz F. We parameterize
the generic types by the base functor F'.

Focus ' = Path F' x Fiz F
Path ' = top (1) + step (Path F x Seq F)
Seg ' = F' (Fix F)

Now, what is the relationsship between F' and F'?

The derivative of a functor

The functor F’ is the derivative of F'. We define F’ by induction on
the structure of F'.

(K CY = KO
Id’ — K1
(F+ Fo)' = F{+ Fy

F1><F2/ — F/XFQ—l_FlXF/
1 2

NB. Recall that e = 1.

The observation that a one-point context corresponds to the
derivative of a functor is due to McBride (the definition, however, was
given independently by Hinze/Jeuring).

Examples

(Id+1d) = K1+K1

(KnxId) = Kn

(Id x Id)) = KlxId+Idx K1

1d")’ ~ K opx Id"

(

List’ = KO+ (K 1x List + Id x List')
List’ = List x List

The derivative of the list functor is a pair of lists (the prefix and
the suffix of the hole).

The chain rule

From high school math we all know and love the chain rule:

(F-G) = F'-Gx@.

10

Proof of the chain rule

The proof proceeds by fixed point induction on F3.

Case F' = F| X Fb:

((F1 x F2) - G)’
— { composition distributes leftward through ‘x' }
(F1-Gx Fy-G)
{ product rule }
(F1-G) x Fy-G+Fy-Gx (Fy-G)
= { ex hypothesi }
Fl-Gx G xFy-G+F,-GxFy-Gx G

11

12

Fl -Gx G xF-G+F-GxFy,-GxqG

{ swapping: Ax B=EBx A}
Fl-GxFy-GxG +F-GxFy-GxG

{ ‘X" distributes through ‘+' }
(F{-GxFy-G+F,-GxFy-G)x G

{ composition distributes leftward through ‘+'
(F{ x Fo + F1 x Fy) - G x G’

{ product rule }
(F1 x F3)' - G x G’

and ‘x" }

12

Examples

List’ - List x List’
List® - List x List®

(List - List)’
(List - List)’

1211

The chain rule is convenient for calculating the derivatives of so-called
nested data types.

Pair = Id x Id

Perfect = 1Id + Perfect - Pair

Perfect’ = K1 + Perfect’ - Pair x K 2 x Id

Perfect’ = K1 + Perfect’ - Pair x Id + Perfect' - Pair x Id

13

Operations

Moving up a 2-3 tree:

up .. Focus23 — Focus23

up (top,t) = (top,t)

up (step p s, t) = (p, plugin s t)

plugin o Seg28 — Tree23 — Tree23

plugin (node21 () a r) t = node2 t ar
node2 [a t
node3 t a m b r
node3 latbr
node3 la m bt

(
plugin (node2s 1 a ()) t
plugin (node31 () a m b r)t
(
(

plugin (node32 1 a () b r)t
plugin (node33 1 amb())t

NB. Recall that () = e.

14

Generic operations

Up . Focus F' — Focus F
upp (top,t) = (top,t)

upp (step (p,s),t) = (p,in (pluging (s,t)))
plugin : VA.FPAxA—F A
pluging, (e, 1) = 1

inl (pluging, (s1,t))
inr (pluging, (s2,1))
(pluging, (s, t),)

(1, pluging, (s,1)).

pluging , (inl s1,1t)
pluging p, (mr So,)
(in
(in

pluginF]_XFQ mn ()7)
pl/u’gi/n’F1><F2 m

NB. We need not define plugin, o as (K C) = K 0.

15

Future work

[] The definition of (—)" can be easily generalized to arbitrary
types of arbitrary kinds.

[] Open problem: generalization of the chain rule using logical
relations.

16

