The Derivative of a Functor

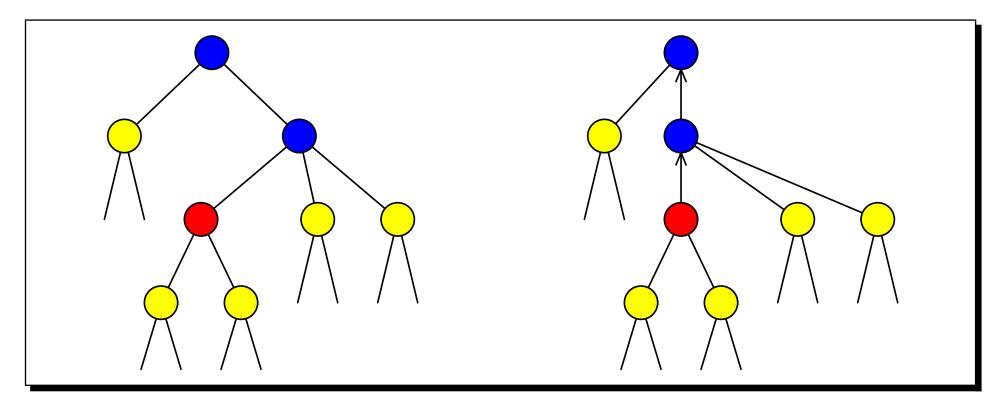
RALF HINZE

September, 2001

(Pick the slides at .../~ralf/talks.html#T29.)

Motivation

Task: represent a tree together with a focus of interest.



We are seeking a *generic definition*, that is, one that works for arbitrary (recursive) data types.

A concrete instance: 2-3 trees

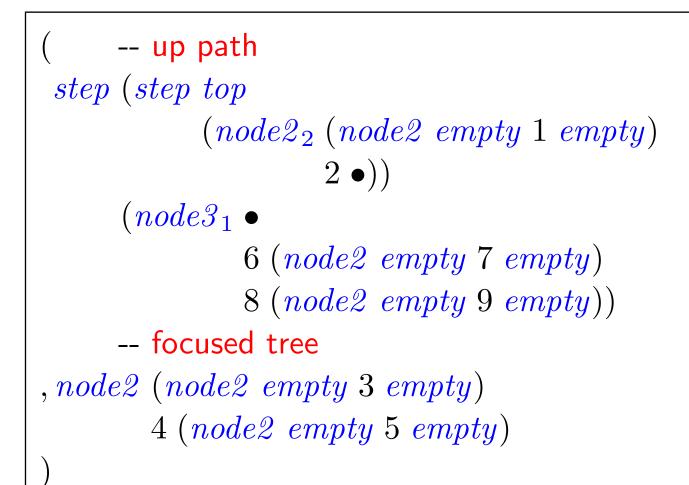
data Tree 23 = empty

node2 Tree23 Int Tree23 node3 Tree23 Int Tree23 Int Tree23

 $node2 \ (node2 \ empty \ 1 \ empty)$ $2 \ (node3 \ (node2 \ (node2 \ empty \ 3 \ empty))$ $4 \ (node2 \ empty \ 5 \ empty))$ $6 \ (node2 \ empty \ 7 \ empty)$ $8 \ (node2 \ empty \ 9 \ empty))$ A 2-3 tree with a focus of interest consists of the focused tree and a path leading to the root.

type Focus23	=	(Path 23, Tree 23)
data Path23	=	top step Path23 Seg23
data Seg23		$node2_1 \bullet Int Tree23$ $node2_2 Tree23 Int \bullet$
	 	node3 ₁ • Int Tree23 Int Tree23 node3 ₂ Tree23 Int • Int Tree23 node3 ₃ Tree23 Int Tree23 Int •

- **NB.** Path23 is a snoc list of Seg23's.
- **NB.** is the unit type (representing a hole).



Making recursive components explicit

We write the type Tree23 as a fixed point of a *functor*.

Tree23	—	Fix Base23
Base23	—	$empty$ $(K \ 1)$
	+	$node2 \ (Id \times Int \times Id)$
	+	$node3 (Id \times Int \times Id \times Int \times Id)$

NB. K T is the constant functor, Id is the identity functor, and '+' and '×' denote lifted sums and pairs.

The fixed point operator, Fix, is given by

data $Fix F = in \{ out :: F (Fix F) \}.$

Focus23	=	$Path23 \times Tree23$
Path23	—	$top (1) + step (Path 23 \times Seg 23)$
Seg23	_	Base23' Tree23
Base23'	=	$node2_1 \ (K \bullet \times K \ Int \times Id)$
	+	$node2_2 (Id \times K Int \times K \bullet)$
	+	$node3_1 (K \bullet \times K Int \times Id \times K Int \times Id)$
	+	$node3_2 (Id \times K Int \times \bullet \times K Int \times Id)$

+ $node3_3$ ($Id \times K Int \times Id \times K Int \times K \bullet$)

Generic paths and segments

Let T be the fixed point of F, that is, T = Fix F. We parameterize the generic types by the base functor F.

Focus $F = Path F \times Fix F$ Path $F = top (1) + step (Path F \times Seg F)$ Seg F = F' (Fix F)

rightarrow Now, what is the relationsship between F and F'?

The derivative of a functor

The functor F' is the derivative of F. We define F' by induction on the structure of F.

 $(K \ C)' = K \ 0$ $Id' = K \ 1$ $(F_1 + F_2)' = F'_1 + F'_2$ $(F_1 \times F_2)' = F'_1 \times F_2 + F_1 \times F'_2$

NB. Recall that $\bullet = 1$.

The observation that a *one-point context* corresponds to the derivative of a functor is due to McBride (the definition, however, was given independently by Hinze/Jeuring).

Examples

$(Id + Id)' (K n \times Id)'$	2	$\begin{array}{c} K \ 1 + K \ 1 \\ K \ n \end{array}$
$(Id \times Id)' \\ (Id^n)'$	2	$K \ 1 \times Id + Id \times K \ 1$ $K \ n \times Id^{n-1}$
List' List'		$K \ 0 + (K \ 1 \times List + Id \times List')$ List × List

The derivative of the list functor is a pair of lists (the prefix and the suffix of the hole).

The chain rule

From high school math we all know and love the *chain rule*:

 $(F \cdot G)' \cong F' \cdot G \times G'.$

Proof of the chain rule

The proof proceeds by fixed point induction on F_1 .

Case $F = F_1 \times F_2$:

 $((F_1 \times F_2) \cdot G)'$

- = { composition distributes leftward through '×' } $(F_1 \cdot G \times F_2 \cdot G)'$
- = { product rule } $(F_1 \cdot G)' \times F_2 \cdot G + F_1 \cdot G \times (F_2 \cdot G)'$
- $= \{ \text{ ex hypothesi } \}$ $F'_1 \cdot G \times G' \times F_2 \cdot G + F_1 \cdot G \times F'_2 \cdot G \times G'$

$$F'_{1} \cdot G \times G' \times F_{2} \cdot G + F_{1} \cdot G \times F'_{2} \cdot G \times G'$$

$$\cong \{ \text{swapping: } A \times B \cong B \times A \}$$

$$F'_{1} \cdot G \times F_{2} \cdot G \times G' + F_{1} \cdot G \times F'_{2} \cdot G \times G'$$

$$= \{ \text{'} \times \text{'} \text{ distributes through '+'} \}$$

$$(F'_{1} \cdot G \times F_{2} \cdot G + F_{1} \cdot G \times F'_{2} \cdot G) \times G'$$

$$= \{ \text{ composition distributes leftward through '+' and '\times' }$$

$$(F'_{1} \times F_{2} + F_{1} \times F'_{2}) \cdot G \times G'$$

$$= \{ \text{ product rule } \}$$

 $(F_1 \times F_2)' \cdot G \times G'$

Examples

$$\begin{array}{rcl} (List \cdot List)' &\cong & List' \cdot List \times List' \\ (List \cdot List)' &\cong & List^2 \cdot List \times List^2 \end{array}$$

The chain rule is convenient for calculating the derivatives of so-called *nested data types*.

Operations

Moving up a 2-3 tree:

up up (top, t) up (step p s, t)	=	$Focus 23 \rightarrow Focus 23$ (top, t) $(p, plugin \ s \ t)$
plugin plugin $(node2_1 () a r) t$ plugin $(node2_2 l a ()) t$ plugin $(node3_1 () a m b r) t$:: 	$Seg23 \rightarrow Tree23 \rightarrow Tree23$ $node2 \ t \ a \ r$ $node2 \ l \ a \ t$ $node3 \ t \ a \ m \ b \ r$ $node3 \ l \ a \ t \ b \ r$

NB. Recall that $() = \bullet$.

Generic operations

up_F	••	Focus $F \to Focus F$
$up_F(top,t)$	=	(top, t)
$up_F (step (p, s), t)$	=	$(p, in (plugin_F (s, t)))$
$plugin_F$	••	$\forall A . F' \; A \times A \to F \; A$
$plugin_{Id} (\bullet, t)$	=	t
$plugin_{F_1+F_2}$ (<i>inl</i> s_1, t)	=	$inl \ (plugin_{F_1} \ (s_1, t))$
$plugin_{F_1+F_2}$ (<i>inr</i> s_2, t)	=	$inr (plugin_{F_2}(s_2, t))$
$plugin_{F_1 \times F_2}$ (<i>inl</i> (s, r), t)	=	$(plugin_{F_1}(s,t),r)$
$plugin_{F_1 \times F_2}$ (<i>inr</i> (l, s), t)	=	$(l, plugin_{F_2}(s, t)).$

NB. We need not define $plugin_{K C}$ as (K C)' = K 0.

Future work

- **X** The definition of (-)' can be easily generalized to arbitrary types of arbitrary kinds.
- **X** Open problem: generalization of the chain rule using logical relations.