A Simple Implementation Technique for
Priority Search Queues

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University
Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/"ralf/

April, 2001

(Pick the slides at .../ ralf/talks.html#T22.)

Aim of the talk

[1 advertize priority search queues
[] describe a new implementation technique for priority search queues

[1 promote views

Recap: views

A view allows any type to be viewed as a free data type. The following
view (minimum view) allows any list to be viewed as an ordered list.

view (Ord a) = |a] = Empty | Min a [a] where
] — Empty
a1 : Empty — Min ay |]
a1 : Min as as
| a1 < ap — Min a1 (az : as)
| otherwise ~ — Min as (a1 : as).

A view declaration for a type T consists of an anonymous data type, the
view type, and an anonymous function, the view transformation, that shows
how to map elements of 7' to the view type.

Recap: views (continued)

The view constructors, Empty and Min, can now be used to pattern match
elements of type [a]| (where a is an instance of Ord).

selection-sort 2 (Ord a) = [a] — [a]
selection-sort Empty
selection-sort (Min a as)

]

a : selection-sort as.

Priority search queues: signature

Priority search queues are conceptually finite maps that support efficient
access to the binding with the minimum value, where a binding is an
argument-value pair and a finite map is a finite set of bindings.

Bindings are represented by the following data type:

datak—p = kr—np

key : (k—p) —k
key (k—p) = k

Prio (ke p)—p
prio (k—p) = p.

data PSQ k p

-- constructors

]
{-}
mnsert
from-ord-list

—- destructors

view PSQ kp =
delete .

—- observers

lookup
to-ord-list

-- modifier

adjust

PSQ k p

(kv—p)— PSQkp
(k+—p)— PSQkp— PSQEkp
[k —p]— PSQkp

Empty | Min (k — p) (PSQ k p)
k— PSQkp— PSQEkp

k— PSQ k p — Maybe p
PSQ k p — [k — p]

(p—p) =k —PSQkp— P5QFkp

Application: single-source shortest path

Dijkstra’s algorithm maintains a queue that maps each vertex to its estima-
ted distance from the source and works by repeatedly removing the vertex
with minimal distance and updating the distances of its adjacent vertices.

The update operation is typically called decrease:

decrease 2 (k—p)—> PSQkp— PSQkp
decrease (k — p) q adjust (min p) k g

decrease-list k= p]l— PSQkp— PSQEkp
decrease-list bs q = foldr decrease q bs.

Application: single-source shortest path (continued)

type Weight = Vertex — Vertex — Double
digkstra .. Graph — Weight — Vertex
— [Vertex — Double]
digkstra g w s = loop (decrease (s + 0) qp)
where
q0 = from-ord-list |v — +o00 | v <« vertices g|
loop Empty =[]

loop (Min (u+— d) q)
= (u+ d): loop (decrease-list bs q)
where bs = [v—d+wuv | v+« adjacent g u]

Implementation: tournament trees

=
l@m

Lennart 1
|

[

Lennart 1

.
o
=
l@m

Lennart 1

O
1@&3

Erik 4 John 2 Lennart 1 Mark 6 Paul 3 Richard 7 Simon 5 Thomas 8

Heaps — priority search trees

-
l@m
Lennart 1

|

Erik 4 Mark 6 Richard 7 Simon 5

Thomas 8

Semi-heaps — priority search pennants

f B)
o e
l@m

Lennart 1

Erik 4 Mark 6 Richard 7 Thomas 8

10

Priority search pennants: adding split keys

11

Priority search pennants: data types

The Haskell data type for priority search pennants is a direct implementation
of these ideas.

data PSQ k p
data LTree k p

Void | Winner (k — p) (LTree k p) k
Start | Loser (k +— p) (LTree k p) k (LTree k p)

NB. Winner bt m = Loser bt m Start.

The maximum key is accessed using the function max-key.

mazx-key

maz-key (Winner bt m) = m

12

Priority search pennants: invariants

Semi-heap conditions: 1) Every priority in the pennant must be less than
or equal to the priority of the winner. 2) For all nodes in the loser
tree, the priority of the loser's binding must be less than or equal to the
priorities of the bindings of the subtree, from which the loser originates.
The loser originates from the left subtree if its key is less than or equal
to the split key, otherwise it originates from the right subtree.

Search-tree condition: For all nodes, the keys in the left subtree must be
less than or equal to the split key and the keys in the right subtree must
be greater than the split key.

Key condition: The maximum key and the split keys must also occur as
keys of bindings.

Finite map condition: The pennant must not contain two bindings with
the same key.

13

Constructors: () and {-}

PSQ k p
Void

(k+ p) — PSQ k p
Winner b Start (key b).

14

Playing a match

(i)

NB. b; < by is shorthand for prio by < prio bs.

b1>0b2

A

15

Playing a match (continued)

(X) . PSQkp— PSQkp— PSQEkp
Void At =
t X Void = 1
Winner b t m X Winner b t' m/
| prio b < prio b = Winner b (Loser b’ t m t') m/

| otherwise = Winner b’ (Loser bt m t') m’

16

Constructors: from-ord-list

from-ord-list :: [k~ p|— PSQkp

from-ord-list = foldm (X) 0 - map (Ab — {b})

NB. foldm folds a list in a binary-sub-division fashion.

17

Destructors

view PSQ k p = Empty | Min (k — p) (PSQ k p) where
Void — Empty
Winner bt m — Min b (second-best t m)

The function second-best determines the second-best player by replaying
the tournament without the champion.

second-best : LTreekp —k— PSQ kp
second-best Start m = Void
second-best (Loser bt k u) m
| key b < k = Winner bt k X second-best u m
| otherwise = second-bestt k X Winner b u m

18

A second view: priority search pennants as tournaments

view PSQ k p = O|{k—p}|PSQkp APSQEkp
where
Void — 0

Winner b Start m — {b}

Winner b (Loser b’ t; k t.) m
| key b < k — Winner b’ t; k X Winner b t, m
| otherwise — Winner b t; k X Winner b t, m

NB. We have taken the liberty of using (), {-} and ‘A’ also as constructors.

19

Observers: to-ord-list

to-ord-list
to-ord-list ()
to-ord-list {b}
to-ord-list (t; X t,)

ﬁSQkpe[ka]
(0]

= to-ord-list t; H to-ord-list t,

20

Observers: lookup

lookup

lookup k ()

lookup k {b}

k ==key b
otherwise
lookup k (t; X t,)

k < max-key
otherwise

k— PSQ k p — Maybe p
Nothing

Just (prio b)
Nothing

lookup k 1,
lookup k t,

21

Modifier: adjust

adj
adj
adj

adj

ust

ust f k0
ust f k{b}
k ==key b

otherwise

ust f k (tl ﬂ tr)

k < max-key
otherwise

(p—p)—k—PSQkp— PSQkp
0

{k — f (prio b)}
{0}

adjust f k t; X t,
4t N adjust f k t,

22

Constructors: insert

insert : (k—p)—> PSQkp— PSQkp
insert b () = {b}

insert b {b’}

key b < key b’ {o} X A{b'}

key b == key b’ = {b} —- update
key b > key b’ {v'} X {b}

insert b (4 X t,)

key b < max-keyt, = insert bt X t,
4t N insert b t,

otherwise

23

Destructors: delete

delete

delete k ()

delete k {b}

k ==key b
otherwise
delete k (4 X t,)

k < max-key
otherwise

k— PSQ kp— PSQEkp
0

0
b}

delete k t; X t,
4 X delete k t,

24

Adding a balancing scheme

One of the strengths of priority search pennants as compared to priority
search trees is that a balancing scheme can be easily added.

Most balancing schemes use rotations to restore balancing invariants. Ho-
wever, rotations do not preserve the semi-heap property:

25

A

A

(b

(b1 A bo)

Single rotation

-

b A (b1 A —00)

bo 62

b1 A (ba A —00)

26

Single rotation (continued)

z"\ £, %

(ba A —00) A by ba X (—oo X b1)

A . \A &

A f

—o0 A (b2 X b1) (—oo X b2) X by —o0 A (b2 X b1)

27

Summary

[1 Priority search queues are a versatile ADT.

[1 They can be easily implemented by priority search pennants—using an
arbitrary balancing scheme.

[1 Views were very helpful:

e they provide a convenient interface to the ADT and
e they enhance both the readability and the modularity of the code.

28

Appendix

foldm 2 (a—a—a)—a—lal—a
foldm (%) e as

| null as = e

| otherwise = fst (rec (length as) as)

where rec 1 (a : as) = (a,as)

rec n as = (a1 * ag, ass)
where m = n‘dw' 2
(a1,as1) = rec (n—m) as

(ag, as2) = rec m asy

29

A programming challenge

Improve the following code which implements the first-fit heuristics for the
bin packing problem.

pack-first-fit = |Item| — [Bin]|
pack-first-fit = foldl first-fit |]
first-fit . |Bin] — Item — [Bin]
first-fit |] i =[]
first-fit (b : bs) i

| b4+i<1 = b+i:bs

| otherwise = b : first-fit bs i

30

Solution to the programming challenge

Priority search queues not only support dictionary and priority queue opera-
tions. As a little extra they also allow for so-called range queries:

at-most : p— PSQkp— [k— p]

at-most-range = p — (k, k) — PSQ k p — [k — p].

The call at-most p; q returns a list of bindings ordered by key whose priorities
are at most py; at-most-range p; (k;, k) q returns a list of bindings ordered
by key whose priorities are at most p; and whose keys lie between £; and k,.

Priority search pennants support both operations in ©(r(logn —logr)) time
where r is the length of the output list.

31

Solution to the programming challenge (continued)

Using at-most we can quickly determine the first bin that can accommodate
a given item (the bins are numbered consecutively).

type No = Int
pack-first-fit o |[Item] — [Bin]
pack-first-fit is = [prio b | b « to-ord-list q|

where (¢,) = foldl first-fit ((,0) is
first-fit . (PSQ No Bin, No) — Item
— (PSQ No Bin, No)
first-fit (¢, n) i = case at-most (1 — 1) q of

|| — (insert (n— i) ¢,n+ 1)
(k+—) : _ — (adjust (+1i) k q,n)

32

