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1 Introduction
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The mission of generic programming §1

Many of us (most of us?) will agree that type systems, especially, polymorphic
type systems are a good thing.

A type system is like a suit of armour:

I it shields against the modern dangers of illegal instructions and memory
violations, but

I it also restricts flexibility.

In Haskell 98, for instance, it is not possible to define an equality test that works
for all types.

+ Equality, comparison functions, pretty printers (Haskell’s show), parsers
(Haskell’s read) have to become known as data-generic or polytypic functions.

+ Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour.
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Generic programming in a uni-typed setting §1

In an untyped, or rather, in a uni-typed language, it is straightforward to define a
generic equality test.

-- equal :: Value→ Value→ Value
equal x1 x2
| isChar x1 ∧ isChar x2 = equalChar x1 x2
| isInt x1 ∧ isInt x2 = equal Int x1 x2
| isPair x1 ∧ isPair x2 = equal (fst x1) (fst x2)

∧ equal (snd x1) (snd x2)
| otherwise = false

+ Unfortunately, it is not straightforward to port the code to a typed language.

+ Furthermore, dynamic type tests aren’t helpful for defining generic functions
that construct data.
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A brief history of generic programming §1

I classicism (1990 – ):
strong background in category theory;

I romanticism (1995 – ):
shift towards type-theoretic approaches;

I realism (2000 – ):
compiler and library hacking.
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The purpose of these lectures §1

I In these lectures, we show how to embed generic programming into Haskell.

I The embedding builds upon recent advances in type theory: generalised
algebraic data types and open data types.

I Put differently, we propose and employ language features that are useful for
generic programming.

I We will identify the basic building blocks of generic programming and we will
provide an overview of the overall design space.

I We hope to convince you that generic programming is useful and that you
can use generic programming techniques today!

I Besides, we shall try to establish some terminology . . .
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Terminology: polymorphic functions §1

polymorphic functions. A function of type

poly :: ∀α . Poly α

is called polymorphic or parametrically polymorphic.
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Overview §1

I 1. Introduction

I 2. Preliminaries

I 3. A guided tour

I 4. Type representations

I 5. Views

I 6. Conclusion
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2. Preliminaries
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Overview §2

I 2.1 Values, types and kinds

I 2.2 Generalised algebraic data types

I 2.3 Open data types and open functions
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2.1 Values, types and kinds
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Values, types and kinds §2.1

Haskell has the three level structure depicted below.

kinds: ∗, ∗→ ∗
types: Bool , [α ], ∀α . α→ α

values: False, Nil , λf x → f (f x )

I The lowest level — where computations take place — consists of values.

I The second level, which imposes structure on the value level, is inhabited by
types.

I On the third level, which imposes structure on the type level, we have
so-called kinds. + A kind is simply the ‘type’ of a type constructor.
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Data types: examples §2.1

In Haskell, new data types are declared using the data construct.

data Bool = False | True

data [α ] = Nil | Cons α [α ]

data Pair α β = (α, β )

+ Data constructors are written in blue; type constructors in red .
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Data types: general form §2.1

A data type declaration of the schematic form

data T α1 . . . αs = C 1 τ1,1 . . . τ1,m1
| · · · | Cn τn,1 . . . τn,mn

introduces data constructors C 1, . . . , Cn with signatures

C i :: ∀α1 . . . αs . τi,1→ · · · → τi,mi
→ T α1 . . . αs

+ The data construct is a beast; it combines no less than four features: type
abstraction, n-ary disjoint sums, n-ary cartesian products and type recursion (plus
generation of fresh type names).
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Data types: record syntax §2.1

The following alternative definition of the pair data type

data Pair α β = Pair{fst :: α, snd :: β}

makes use of Haskell’s record syntax: the declaration introduces the data
constructor Pair and two accessor functions

fst :: ∀α β . Pair α β→ α
snd :: ∀α β . Pair α β→ β
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Kinds §2.1

Pairs and lists are examples of type constructors.

I The kind of a type is ∗.

Char :: ∗
Int :: ∗

I The kind of a type constructor is a function of the kind of its parameters to ∗.

Pair :: ∗→ ∗→ ∗
[ ] :: ∗→ ∗

+ Type constructors are written in red ; kinds in purple.
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Kinds: order §2.1

The order of a kind is given by

order (∗) = 0
order (ι→ κ) = max{1 + order (ι), order (κ)}.

+ Haskell supports kinds of arbitrary order.



18 JJ J I II 2

2.2 Generalised algebraic data types
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Generalised algebraic data types §2.2

Using a recent version of GHC, there is an alternative way of defining data types:

data [ ] :: ∗→ ∗ where
Nil :: ∀α . [α ]
Cons :: ∀α . α→ [α ]→ [α ]

The first line declares the kind of the new data type.

The type is then inhabited by listing the signatures of the data constructors.
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Generalised algebraic data types §2.2

Generalised algebraic data types (GADTs) lift the Haskell 98 restriction that the
result type of the constructors must be of the form T α1 . . . αs.

data Expr :: ∗→ ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: ∀α . Expr Bool → Expr α→ Expr α→ Expr α

+ The data type Expr represents typed expressions.



21 JJ J I II 2

Generalised algebraic data types: functions §2.2

An evaluator for the Expr data type:

eval :: Expr α→ α
eval (Num i) = i
eval (Plus e1 e2) = eval e1 + eval e2
eval (Eq e1 e2) = eval e1 = = eval e2
eval (If e1 e2 e3) = if eval e1 then eval e2 else eval e3

+ For functions on GADTs, type signatures are mandatory.

Each equation has a more specific type: the first equation has type
Expr Int → Int as Num constrains α to Int .

The interpreter is quite noticeable in that it is tag free.
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2.3 Open data types and open functions
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Open data types §2.3

In these lectures we make use of open data types and open functions; data types
and functions that can be freely extended.

An open data type is declared as follows:

open data Expr :: ∗→ ∗

Constructors can then be introduced just by providing their type signatures.

Str :: String → Expr String
Show :: Expr Int → Expr String
Cat :: Expr String → Expr String → Expr String



24 JJ J I II 2

Open functions §2.3

An open function is declared as follows:

open eval :: Expr α→ α

The definition of an open function needs not be contiguous; the defining
equations may be scattered around the program.

eval (Str s) = s
eval (Show e) = show Int (eval e)
eval (Cat e1 e2) = eval e1 ++ eval e2

+ The semantics of open data types and open functions is the same as if data
types and functions had been defined closed, in a single place.
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The expression problem §2.3

Open data types and open functions provide two dimensions of extensibility:

I we can add additional sorts of data, by providing new constructors,

I we can add additional operations, by defining new functions:

open string :: Expr α→ String
string (Num i) = "(Num" � show Int i ++ ")"
string (Plus e1 e2) = "(Plus" � string e1 � string e2 ++ ")"
string (Eq e1 e2) = "(Eq" � string e1 � string e2 ++ ")"
string (If e1 e2 e3) = "(If" � string e1 � string e2 � string e3 ++ ")"
string (Str s) = "(Str" � show String s ++ ")"
string (Show e) = "(Show" � string e ++ ")"
string (Cat e1 e2) = "(Cat" � string e1 � string e2 ++ ")"

s1 � s2 = s1 ++ " " ++ s2
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Best-fit left-to-right pattern matching §2.3

For open functions, first-fit pattern matching is not suitable.

string = ""

Using first-fit pattern matching, this equation effectively closes the definition of
string .

+ Instead we use best-fit confluent pattern matching: the most specific match
rather than the first match wins.
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3. A guided tour
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Overview §3

I 3.1 Type-indexed functions

I 3.2 Introducing new data types

I 3.3 Generic functions

I 3.4 Dynamic values

I 3.5 Stocktaking
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3.1 Type-indexed functions



30 JJ J I II 2

Haskell’s deriving clauses §3.1

In Haskell, showing values of a data type is particularly easy:

data Tree α = Empty | Node (Tree α) α (Tree α)
deriving (Show )

The compiler automatically generates a suitable show function.

This function is used, for instance, in interactive sessions:

Now〉 tree [0 . . 3]
Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node Empty 3 Empty)

Here tree :: [α ]→ Tree α transforms a list into a balanced tree.
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The need for a prettier printer §3.1

The function show can be seen as a pretty printer.

The display of larger structures, however, is not especially pretty, due to lack of
indentation.

Now〉 tree [0 . . 9]
Node (Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node (Node Em
pty 3 Empty) 4 Empty)) 5 (Node (Node (Node Empty 6 Empty) 7 Empt
y) 8 (Node Empty 9 Empty))

In the sequel we shall develop a replacement for show , a generic prettier printer.
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A pretty printing library §3.1

We use a basic pretty printing library, which just offers support for indentation.

data Text
text :: String → Text
nl :: Text
indent :: Int → Text → Text
(♦) :: Text → Text → Text

I Text is type of documents with indentation.

I text converts a string to a text.

I The string passed to text must not contain newline characters. The constant
nl has to be used for that purpose.

I indent i adds i spaces after each newline.

I ‘♦’ concatenates two pieces of text.
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Towards a generic prettier printer §3.1

It is a simple exercise to write a prettier printer for trees of integers.

type Pretty α = α→ Text

pretty Int :: Pretty Int
pretty Int n = text (show Int n)

prettyTreeInt :: Pretty (Tree Int)
prettyTreeInt Empty = text "Empty"
prettyTreeInt (Node l x r ) = align "(Node " (prettyTreeInt l ♦ nl ♦

pretty Int x ♦ nl ♦
prettyTreeInt r ♦ text ")")

align :: String → Text → Text
align s d = indent (length s) (text s ♦ d)

+ While the program does the job, it is not very general: we can print trees of
integers, but not, say, trees of characters.
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Towards a generic prettier printer — continued §3.1

Of course, it is easy to add another two ad-hoc definitions.

prettyChar :: Pretty Char
prettyChar c = text (showChar c)

prettyTreeChar :: Pretty (Tree Char )
prettyTreeChar Empty = text "Empty"
prettyTreeChar (Node l x r ) = align "(Node " (prettyTreeChar l ♦ nl ♦

prettyChar x ♦ nl ♦
prettyTreeChar r ♦ text ")")

The code of prettyTreeChar is almost identical to that of prettyTreeInt .

+ We actually need a family of pretty printers. A typical case for type classes?

+ In the lectures we explore a different route!
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Terminology: type-indexed functions §3.1

type-indexed functions. A simple approach to generic programming
defines a family of functions indexed by type.

poly τ :: Poly τ

The family contains a definition of poly τ for each type τ of interest; the
type of poly τ is parametric in the type index τ . For brevity, we call poly a
type-indexed function (omitting the ‘family of’).
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Towards a generic prettier printer — continued §3.1

We could define a single function that receives the type as an additional argument
and suitably dispatches on this type argument.

pretty :: (α :: ∗)→ α→ Text

+ Haskell doesn’t permit the explicit passing of types.

We could pass the pretty printer an additional argument that represents the type.

pretty :: Type→ α→ Text

+ This is too simple-minded: a function of this type must necessarily ignore its
second parameter (parametricity).

pretty :: Type α→ α→ Text

An element of type Type τ is a representation of the type τ .
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A type representation type §3.1

Using a generalised algebraic data type, we can define Type directly in Haskell.

open data Type :: ∗→ ∗ where
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β→ Type (α, β )
List :: Type α→ Type [α ]
Tree :: Type α→ Type (Tree α)

String :: Type String
String = List Char

+ The derived constructor String , defined by a pattern definition, is equal to
List Char in all contexts.
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A type representation type — continued §3.1

Each type has a unique representation:

I the type Int is represented by the constructor Int ,

I the type (String , Int ) is represented by Pair String Int ,

I the type [Tree Char ] is represented by List (Tree Char ).

+ Recall: type constructors are written in red ; data constructors in blue.

+ For any given τ the type Type τ comprises exactly one element: Type τ is a
so-called singleton type.
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Type annotations §3.1

We shall often need to annotate an expression with its type representation.

data Typed α = (:){val :: α, type :: Type α}

The definition, which makes use of Haskell’s record syntax, introduces the colon
‘:’ as an infix data constructor.

I 4711 : Int is an element of Typed Int .

I (47, "hello") : Pair Int String is an element of Typed (Int , String ).

+ Note the difference between x : t and x :: τ .

I x : t is a pair consisting of a value x and a representation t of its type.

I x :: τ is Haskell syntax for ‘x has type τ ’.
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An almost generic prettier printer §3.1

Given these prerequisites, we can finally define the desired pretty printer.

open pretty :: Typed α→ Text
pretty (c : Char ) = prettyChar c
pretty (n : Int) = pretty Int n
pretty ((x , y) : Pair a b) = align "( " (pretty (x : a)) ♦ nl ♦

align ", " (pretty (y : b)) ♦ text ")"
pretty (xs : List a) = bracketed [pretty (x : a) | x ← xs ]
pretty (Empty : Tree a) = text "Empty"
pretty (Node l x r : Tree a)

= align "(Node " (pretty (l : Tree a) ♦ nl ♦
pretty (x : a) ♦ nl ♦
pretty (r : Tree a) ♦ text ")")

We declare pretty to be open so that we can later extend it.

+ Typed α→ Text is an uncurried version of Type α→ α→ Text .
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An example session §3.1

The pretty printer produces output in the following style.

Now〉 pretty (tree [0 . . 3] : Tree Int)
(Node (Node (Node Empty

0
Empty)

1
Empty)

2
(Node Empty

3
Empty))
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Terminology: type-polymorphic functions §3.1

type-polymorphic functions. A function of type

poly :: ∀α . Type α→ Poly α

is called type-polymorphic or intensionally polymorphic. By contrast, a
function of type ∀α . Poly α is called parametrically polymorphic.
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3.2 Introducing new data types
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Extending Type §3.2

We have declared Type to be open so that we can freely add new constructors to
the Type data type and that we can freely add new equations to existing open
functions on Type.

Whenenver we define a new data type

data Perfect α = Zero α | Succ (Perfect (α, α))

we extend Type by a new constructor.

Perfect :: Type α→ Type (Perfect α)

+ Perfect is a so-called nested data type.
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Extending pretty §3.2

Then we extend pretty by suitable equations.

pretty (Zero x : Perfect a)
= align "(Zero " (pretty (x : a) ♦ text ")")

pretty (Succ x : Perfect a)
= align "(Succ " (pretty (x : Perfect (Pair a a)) ♦ text ")")
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An example session §3.2

Now〉 pretty (perfect 4 1 : Perfect Int)
(Succ (Succ (Succ (Succ (Zero ((((1

, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))

, (((1
, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))))))))
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Overloaded versus generic functions §3.2

Whenever we define a new data type,

I we add a constructor of the same name to the type of type representations,

I we add corresponding equations to all generic functions.

Observations:

I the extension of Type is cheap and easy (a compiler could do this for us),

I the extension of all type-indexed functions is laborious and difficult (can you
imagine a compiler doing that?).

+ In the sequel we shall develop a scheme so that it suffices to extend one or
two particular overloaded functions. The remaining functions adapt themselves.
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Terminology: overloaded and generic functions §3.2

overloaded and generic functions. An overloaded function works for
a fixed family of types. By contrast, a generic function works for all types,
including types that the programmer has yet to define.
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3.3 Generic functions



50 JJ J I II 2

A generic view §3.3

+ We need to find a way to treat elements of a data type in a uniform way.

Consider an arbitrary element of some data type:

C e1 · · · en

The idea is to make this applicative structure visible and accessible: we mark the
constructor using Con and each function application using ‘♦’.

I Empty becomes Con empty ,

I Node l a r becomes Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int).

+ The arguments are additionally annotated with their types and the
constructor itself with information on its syntax.
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The Spine data type §3.3

The functions Con and ‘♦’ are constructors of a data type called Spine.

data Spine :: ∗→ ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial spine
of a constructor application.
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Construction of a spine §3.3

The following table illustrates the stepwise construction of a spine.

node :: Constr (Tree Int → Int → Tree Int → Tree Int)
Con node :: Spine (Tree Int → Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)
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The data type Constr §3.3

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus additional information about its syntax.

data Constr α = Descr{constr :: α
, name :: String }
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The function fromSpine §3.3

Given a value of type Spine α, we can easily recover the original value of type α:

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x ) = (fromSpine f ) (val x )

+ fromSpine is parametrically polymorphic.
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The function toSpine §3.3

The inverse of fromSpine is an overloaded function of type Typed α→ Spine α.

Its definition, however, follows a trivial pattern: if the data type comprises a
constructor C

C :: τ1→ · · · → τn→ τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi.
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The function toSpine — continued §3.3

As an example, here is the definition of toSpine for binary trees.

open toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a)

= Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

empty :: Constr (Tree α)
empty = Descr{constr = Empty ,

name = "Empty"}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Descr{constr = Node,

name = "Node"}
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A generic prettier printer §3.3

With all the machinery in place we can now turn pretty into a truly generic
function.

+ The idea is to add a catch-all case to pretty that takes care of all the
remaining type cases in a uniform manner.

pretty x = pretty (toSpine x )

pretty :: Spine α→ Text
pretty (Con c) = text (name c)
pretty (f ♦ x ) = pretty1 f (pretty x )

pretty1 :: Spine α→ Text → Text
pretty1 (Con c) d = align ("(" ++ name c ++ " ") (d ♦ text ")")
pretty1 (f ♦ x ) d = pretty1 f (pretty x ♦ nl ♦ d)
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Stocktaking §3.3

Now, why are we in a better situation than before?

I When we introduce a new data type we still have to extend Type and provide
cases for the data constructors in the toSpine function.

I This has to be done only once per data type.

I The code for the generic functions (of which there can be many) is
completely unaffected by the addition of a new data type.

I As a further plus, the generic functions are unaffected by changes to a given
data type. Only the function toSpine must be adapted to the new definition.
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3.4 Dynamic values
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Dynamic values §3.4

Using Typed we can also represent dynamic values.

data Dynamic :: ∗ where
Dyn :: Typed α→ Dynamic

+ α does not appear in the result type: it is effectively existentially quantified.

+ Dynamic is the union of all typed values.

misc :: [Dynamic ]
misc = [Dyn (4711 : Int),Dyn ("hello world" : String)]

Can we apply pretty to dynamic values? Yes, we only have to turn Dynamic into
a representable type.



61 JJ J I II 2

Making Type and Typed representable §3.4

First, we add Type and Typed to the type of representable types.

Type :: Type α→ Type (Type α)
Typed :: Type α→ Type (Typed α)

The first line exactly follows the scheme for unary type constructors: the
representation of T :: ∗→ ∗ is T :: Type α→ Type (T α).

Furthermore, we provide suitable instances of toSpine.

toSpine (Char : Type Char ) = Con char
toSpine (List t : Type (List a)) = Con list ♦ (t : Type a)
. . .
toSpine ((x : t) : Typed a) = Con hastype ♦ (x : t) ♦ (t : Type t)

+ hastype is the infix operator ‘:’ augmented by additional information.
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Making Dynamic representable §3.4

Second, we extend Type and toSpine by a Dynamic case.

Dynamic :: Type Dynamic

toSpine (Dyn x : Dynamic) = Con dyn ♦ (x : Typed (type x ))

+ This instance does not follow the general pattern for toSpine: Dyn’s
argument is existentially quantified and the general scheme cannot cope with
existentially quantified types.
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Extending pretty §3.4

Finally, we provide an ad-hoc type case for typed values (we want to use infix
rather than prefix notation for ‘:’).

pretty ((x : t) : Typed a) = align "( " (pretty (x : t)) ♦ nl ♦ -- t = a
align ": " (pretty (t : Type t)) ♦ text ")"

Here is an interactive session that illustrates pretty printing dynamic values.

Now〉 pretty (misc : List Dynamic)
[ (Dyn (4711

:Int))
, (Dyn ("hello world"

:(List Char )))]
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A type-safe cast §3.4

The constructor Dyn turns a static into a dynamic value. The other way round
involves a dynamic type check:

open equal :: Type α→ Type β→Maybe (α :=: β)

+ equal is an overloaded function that takes two type representations and
possibly returns a proof of their equality (a simple truth value is not enough).
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The type equality type §3.4

An element of τ1 :=: τ2 is a proof that τ1 and τ2 are equal.

data (:=:) :: ∗→ ∗→ ∗ where Refl :: α :=: α

apply :: (α :=: β)→ (α→ β)
apply Refl x = x

+ This type has the property that it is non-empty if and only if its argument
types are equal.

The type equality type ‘:=:’ has all the properties of a congruence relation.

Refl :: α :=: α

ctx 1 :: (α :=: β)→ (ψ α :=: ψ β)

ctx 2 :: (α1 :=: β1)→ (α2 :=: β2)→ (ψ α1 α2 :=: ψ β1 β2)
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Type equality check §3.4

The type equality check is given by

open equal :: Type α→ Type β→Maybe (α :=: β)
equal Int Int = return Refl
equal Char Char = return Refl
equal (Pair a1 a2) (Pair b1 b2) = liftM2 ctx 2 (equal a1 b1) (equal a2 b2)
equal (List a) (List b) = liftM ctx 1 (equal a b)

Since the equality check may fail, we lift the congruence proofs into the Maybe
monad using return, liftM , and liftM2 .

+ The running time of the cast function that equal returns is linear in the size
of the type (it is independent of the size of its argument structure).
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Type cast §3.4

The cast operation simply calls equal and then applies the conversion function to
the dynamic value.

cast :: Dynamic→ Type α→Maybe α
cast (Dyn (x : a)) t = fmap (λp→ apply p x ) (equal a t)
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An example session §3.4

Here is an interactive session that illustrates the use of cast .

Now〉 let d = Dyn (4711 : Int)
Now〉 pretty (d : Dynamic)
(Dyn (4711

:Int))
Now〉 d ‘cast ‘ Int
Just 4711
Now〉 fromJust (d ‘cast ‘ Int) + 289
5000
Now〉 d ‘cast ‘ Char
Nothing

+ cast can be seen as the dynamic counterpart of the colon operator.
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Terminology: generic functions and dynamic values §3.4

generic functions and dynamic values. Generics and dynamics are
dual concepts:

generic function: ∀α . Type α→ σ
dynamic value: ∃α . Type α× σ

This is analogous to first-order predicate logic where ∀x :T . P(x ) is short-
hand for ∀x . T (x ) ⇒ P(x ) and ∃x :T . P(x ) abbreviates ∃x . T (x ) ∧
P(x ).
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3.5 Stocktaking
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Generic programming: the design space §3.5

Using reflected types we can program overloaded functions. Using a uniform view
on data we can generalise overloaded functions to generic ones.

Support for generic programming consists of three essential ingredients:

I a type reflection mechanism,

I a type representation, and

I a generic view on data.

For each dimension there are several choices: instead of the data type Type we
could use type classes or a type-safe cast. Here we stick to Type.

+ Type representations and generic views are investigated in the next two
sections.
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4. Type representations
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Overview §4

I 4.1 Representation types for types of a fixed kind

I 4.2 Kind-indexed families of representation types

I 4.3 Representations of open type terms
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4.1 Representation types for types of a fixed kind
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Representation type for types of kind ∗ §4.1

Recap: Since type constructors are reflected onto the value level, the type of the
data constructor T depends on the kind of the type constructor T .

Int :: Type Int
Pair :: ∀α . Type α→ (∀β . Type β→ Type (α, β ))
List :: ∀α . Type α→ Type [α ]

+ A type constructor T :: κ of higher kind is represented by a polymorphic
function:

T :: Typeκ T

type Type∗ α = Type α
type Type ι→κ ϕ = ∀α . Type ι α→ Typeκ (ϕ α)
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A second-order type constructor §4.1

So far we have only seen first-order type constructors. Here is a second-order one:

newtype Fix ϕ = In{out :: ϕ (Fix ϕ)}

+ Fix :: (∗→ ∗)→∗ is a fixed point operator on the type level. Consequently,
Fix has a rank-2 type: it takes a polymorphic function as an argument.

Fix :: ∀ϕ . (∀α . Type α→ Type (ϕ α))→ Type (Fix ϕ)

toSpine (In x : Fix f ) = Con in ♦ (x : f (Fix f ))

Here, in is the annotated variant of In. Again, the definition of toSpine
pedantically follows the general scheme.

+ However, we cannot extend equal to Fix as the argument of Fix is a
polymorphic function. Also, Fix List is not a legal pattern.
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Representation type for types of kind ∗→ ∗ §4.1

The generic pretty printer generalises functions of type

Char → Text , String → Text , [ [Int ] ]→ Text

to a single generic function of type

Type α→ α→ Text ∼= Typed α→ Text
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Representation type for types of kind ∗→ ∗ – continued §4.1

+ A generic function may also abstract over a type constructor of higher kind:
a generic size function generalises functions of type

[α ]→ Int , Tree α→ Int , [Tree α ]→ Int

to a single generic function of type

Type ′ ϕ→ ϕ α→ Int ∼= Typed ′ ϕ α→ Int

where Type ′ is a representation type for types of kind ∗→ ∗ and Typed ′ is a
suitable type for annotating values with these representations.
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Introducing Type ′ §4.1

How can we represent type constructors of kind ∗→ ∗?

We define a new tailor-made representation type:

open data Type ′ :: (∗→ ∗)→∗ where
List :: Type ′ [ ]
Tree :: Type ′ Tree

The type Type ′ is only inhabited by two constructors since the other data types
have kinds different from ∗→ ∗.

data Typed ′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type ′ ϕ}

+ Think of the prime as shorthand for the kind index ∗→ ∗.
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An overloaded size function §4.1

An overloaded version of size is now straightforward to define.

size :: Typed ′ ϕ α→ Int
size (Nil :′ List) = 0
size (Cons x xs :′ List) = 1 + size (xs :′ List)
size (Empty :′ Tree) = 0
size (Node l x r :′ Tree) = size (l :′ Tree) + 1 + size (r :′ Tree)

+ However, size is not as flexible as pretty : if x is, say, a list of trees of
integers, we can call pretty (x : List (Tree Int)), but we cannot call size to
count the total number of integers.
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The problem of ambiguity §4.1

Computing the size of a compound data structure is inherently ambiguous: if x is
a list of trees of integers, shall we count the number of integers, the number of
trees or the number of lists?

Formally, we have to solve the type equation ϕ τ = List (Tree Int). The
equation has four principal solutions:

I ϕ = Λα→ α and τ = List (Tree Int),

I ϕ = Λα→ List α and τ = Tree Int ,

I ϕ = Λα→ List (Tree α) and τ = Int , and

I ϕ = Λα→ List (Tree Int) and τ arbitrary.

+ How can we represent these different container types?
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Lifting of types §4.1

To represent the different container types, we can lift the type constructors and
include the identity type Id as a representation of the type variable α:

newtype Id α = In Id{out Id :: α}

Id :: Type ′ Id
Int ′ :: Type ′ Int ′

List ′ :: Type ′ ϕ→ Type ′ (List ′ ϕ)
Tree ′ :: Type ′ ϕ→ Type ′ (Tree ′ ϕ)

+ List ′ takes a type of kind ∗→ ∗ to a type of kind ∗→ ∗.

Using the lifted types we can specify the four different container types:

I Id ,

I List ′ Id ,

I List ′ (Tree ′ Id), and

I List ′ (Tree ′ Int ′).
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Lifted types §4.1

Here are the lifted versions of the type constructors:

newtype Int ′ χ = In Int ′{out Int ′ :: Int }
data List ′ α′ χ = Nil ′ | Cons ′ (α′ χ) (List ′ α′ χ)
data Pair ′ α′ β ′ χ = Pair ′ (α′ χ) (β ′ χ)
data Tree ′ α′ χ = Empty ′ | Node ′ (Tree ′ α′ χ) (α′ χ) (Tree ′ α′ χ)

The lifted data definitions follow a simple scheme: each data constructor C

C :: τ1→ · · · → τn→ τ0

is replaced by a polymorphic data constructor C ′

C ′ :: ∀χ . τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

where τ ′i is the lifted variant of τi.
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Extending size §4.1

The function size can be easily extended to Id and to the lifted types.

size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a ′) = 0
size (Cons ′ x xs :′ List ′ a ′) = size (x :′ a ′) + size (xs :′ List ′ a ′)
size (Empty ′ :′ Tree ′ a ′) = 0
size (Node ′ l x r :′ Tree ′ a ′)

= size (l :′ Tree ′ a ′) + size (x :′ a ′) + size (r :′ Tree ′ a ′)

+ Unfortunately, in Haskell size no longer works on the original data types. We
return to the problem later in Section 5.3.
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Stocktaking §4.1

+ The representation type Type ′ is similar to Type except for the kinds:

T ′ :: Type ′κ T ′

type Type ′∗ α = Type ′ α
type Type ′ι→κ ϕ = ∀α . Type ′ι α→ Type ′κ (ϕ α)

+ Defining a ∗→ ∗-indexed function is similar to defining a ∗-indexed function
except that one has to additionally consider the Id case.
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4.2 Kind-indexed families of representation types
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Motivation §4.2

Type-indexed functions may abstract over arbitrary type constructors: pretty
abstracts over types of kind ∗, size abstracts over types of kind ∗→ ∗.

Sometimes a type-indexed function even makes sense for types of different kinds.
A paradigmatic example is the mapping function:

I the mapping function of a type ϕ of kind ∗→ ∗ lifts a function of type
α1→ α2 to a function of type ϕ α1→ ϕ α2;

I the mapping function of a type ψ of kind ∗→ ∗→ ∗ takes two functions of
type α1→ α2 and β1→ β2 respectively and returns a function of type
ψ α1 β1→ ψ α2 β2;

I the mapping function of a type σ of kind ∗ is the identity of type σ→ σ.
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A kind-indexed family of representation types §4.2

Since the type of the mapping functions depends on the kind of the type
argument, we have, a kind-indexed family of overloaded functions.

We require a kind-indexed family of representation types.

open data Typeκ :: κ→∗ where
T κ :: Typeκ T

+ Int :: ∗ is represented by a data constructor of Type∗; Tree :: ∗→ ∗ is
represented by a data constructor of type Type∗→∗.

+ How can we represent the application of Tree to some type?

We also represent type application syntactically:

Appι,κ :: Type ι→κ ϕ→ Type ι α→ Typeκ (ϕ α)
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A kind-indexed family of representation types — continued §4.2

Theoretically, we need an infinite number of Appι,κ constructors. Practically, only
a few are needed:

open data Type∗ :: ∗→ ∗ where
Int∗ :: Type∗ Int
App∗,∗ :: Type∗→∗ ϕ→ Type∗ α→ Type∗ (ϕ α)

open data Type∗→∗ :: (∗→ ∗)→∗ where
List ∗→∗ :: Type∗→∗ [ ]
Tree∗→∗ :: Type∗→∗ Tree
App∗,∗→∗ :: Type∗→∗→∗ ϕ→ Type∗ α→ Type∗→∗ (ϕ α)

open data Type∗→∗→∗ :: (∗→ ∗→ ∗)→∗ where
Pair ∗→∗→∗ :: Type∗→∗→∗ (, )

For example, Tree Int is represented by Tree∗→∗ ‘App∗,∗‘ Int∗.

+ The family Typeκ is a faithful representation of Haskell’s type system!
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A kind-indexed version of size §4.2

Let’s tackle an example of a type-indexed function that works for types of
different kinds. We re-implement the function size.

size :: Type∗→∗ ϕ→ ϕ α→ Int

How can we generalise size so that it works for types of arbitrary kinds?

The essential step is to abstract away from size’s action on values of type α
turning the action of type α→ Int into an additional argument:

count ∗→∗ :: Type∗→∗ ϕ→ (α→ Int)→ (ϕ α→ Int)

We call size’s kind-indexed generalisation count .
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A kind-indexed version of size — continued §4.2

Since countκ is indexed by kind it also has a kind-indexed type.

countκ :: Typeκ α→ Countκ α

type Count ∗ α = α→ Int
type Count ι→κ ϕ = ∀α . Count ι α→ Countκ (ϕ α)

+ The scheme dictates that countκ maps type application to application of
generic functions:

countκ (Appι,κ f a) = (count ι→κ f ) (count ι a)

This case for Appι,κ is truly generic: it is the same for all kind-indexed generic
functions and for all combinations of ι and κ.
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A kind-indexed version of size — continued §4.2

The type-specific behaviour is solely determined by the cases for the different type
constructors.

open count ∗ :: Type∗ α→ Count ∗ α
count ∗ (f ‘App∗,∗‘ a) = (count ∗→∗ f ) (count ∗ a)
count ∗ t = const 0

open count ∗→∗ :: Type∗→∗ α→ Count ∗→∗ α
count ∗→∗ List ∗→∗ c = sum [ ] . map [ ] c
count ∗→∗ Tree∗→∗ c = count ∗→∗ List ∗→∗ c . inorder
count ∗→∗ (f ‘App∗,∗→∗‘ a) c = (count ∗→∗→∗ f ) (count ∗ a) c

open count ∗→∗→∗ :: Type∗→∗→∗ α→ Count ∗→∗→∗ α
count ∗→∗→∗ (Pair ∗→∗→∗) c1 c2 = λ(x1, x2)→ c1 x1 + c2 x2

+ We have to repeat the generic Appι,κ case for every instance of ι and κ.
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An example session §4.2

Taking the size of a compound data structure such as a list of trees of integers is
now much easier than before:

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9]]
Now〉 (const 1) ts
1
Now〉 count ∗→∗ List ∗→∗ (const 1) ts
10
Now〉 count ∗→∗ List ∗→∗ (count ∗→∗ Tree∗→∗ (const 1)) ts
55
Now〉 count ∗→∗ List ∗→∗ (count ∗→∗ Tree∗→∗ (count ∗ Int∗)) ts
0
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Terminology: kind-indexed functions §4.2

kind-indexed functions. A kind-indexed family of type-polymorphic
functions

polyκ :: ∀α . Typeκ α→ Polyκ α

contains a definition of polyκ for each kind κ of interest. The type rep-
resentation Typeκ and the type Polyκ are indexed by kind, as well. For
brevity, we call polyκ a kind-indexed function (omitting the ‘family of type-
polymorphic’).
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4.3 Representations of open type terms
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Motivation §4.3

Haskell’s type system is somewhat peculiar as it features type application but not
type abstraction.

If Haskell had type-level lambdas, we could determine the instances of
∗→ ∗-indexed functions using suitable type abstractions:

I Λα→ α,

I Λα→ List α,

I Λα→ List (Tree α), or

I Λα→ List (Tree Int).

+ Alternatively, we can represent an anonymous type function by an open type
term: Λα→ List (Tree α), for instance, is represented by List (Tree a) where a
is a suitable representation of α.
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The function count revisited §4.3

To motivate the representation of free type variables, consider the following
version of count that is defined on Type, the original type of type representations.

count :: Type α→ (α→ Int)
count (Int) = const 0
count (Pair a b) = λ(x , y)→ count a x + count b y
count (List a) = sum [ ] . map [ ] (count a)
count (Tree a) = sum [ ] . map [ ] (count a) . inorder

+ count is point-free but also pointless as it always returns the constant 0.

+ We can make count more useful by adding a representation of unbound type
variables to Type.
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Representing unbound type variables §4.3

What constitutes a suitable representation of an unbound type variable?

An intriguing choice is to identify the type variable with its meaning: an unbound
type variable is representated by a constructor that embeds a count instance into
a type representation.

Count :: (α→ Int)→ Type α

Since the ‘type variable’ carries its meaning, the count instance is simple.

count (Count c) = c

+ This approach is an instance of the ‘embedding trick’ for higher-order
abstract syntax: Count is the inverse of count .
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An example session §4.3

Now, we can specify the action on the free type variable when we call count :

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ] ]
Now〉 let a = Count (const 1)
Now〉 count a ts
1
Now〉 count (List a) ts
10
Now〉 count (List (Tree a)) ts
55
Now〉 count (List (Tree Int)) ts
0

The approach would work perfectly well if count were the only generic function.

Now〉 pretty (4711 : a)
*** Exception: Non-exhaustive patterns in function pretty
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A parametric type of type representations §4.3

A safer approach is to parameterise Type by the type of generic functions.

open data PType :: (∗→ ∗)→∗→ ∗ where
PInt :: PType poly Int
PPair :: PType poly α→ PType poly β→ PType poly (α, β )
PList :: PType poly α→ PType poly [α ]
PTree :: PType poly α→ PType poly (Tree α)

A generic function now has type PType Poly α→ Poly α.

An unbound type variable is represented by a constructor of the inverse type:

PVar :: poly α→ PType poly α

+ Since we abstract over Poly , we make do with a single constructor: PVar
can be used to embed instances of arbitrary generic functions.
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The function count revisited §4.3

The definition of count can be easily adapted to the new representation.

newtype Count α = InCount{outCount :: α→ Int }

pcount :: PType Count α→ (α→ Int)
pcount (PVar c) = outCount c
pcount (PInt) = const 0
pcount (PPair a b) = λ(x , y)→ pcount a x + pcount b y
pcount (PList a) = sum [ ] . map [ ] (pcount a)
pcount (PTree a) = sum [ ] . map [ ] (pcount a) . inorder

The code is almost identical to what we have seen before except that the type
signature is more precise.
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An example session §4.3

Now〉 let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ] ]
Now〉 let a = PVar (InCount (const 1))
Now〉 :type a
a :: ∀α . PType Count α
Now〉 pcount (a) ts
1
Now〉 pcount (PList a) ts
10
Now〉 pcount (PList (PTree a)) ts
55
Now〉 pcount (PList (PTree PInt)) ts
0

+ The type of a limits the applicability of the unbound type variable: passing it
to pretty would result in a static type error.
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5. Views
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Overview §5

I 5.1 Spine view

I 5.2 The type spine view

I 5.3 Lifted spine view

I 5.4 Sum of products
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An explicit view type §5

It is useful to make the concept of a view explicit.

data View :: ∗→ ∗ where
View :: Type β→ (α→ β)→ (α← β)→ View α

A view consists of three ingredients: a so-called structure type that constitutes the
actual view on the original data type and two functions that convert to and fro.

To define a view the generic programmer simply provides a view function

view :: Type α→ View α

The view function is then used in the catch-all case of a generic function.

pretty (x : t) = case view t of
View u fromData toData→ pretty (fromData x : u)
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An explicit view type — continued §5

For the type Type ′ of lifted type representations we can set up a similar machinery.

type ϕ →̇ ψ = ∀α . ϕ α→ ψ α

data View ′ :: (∗→ ∗)→∗ where
View ′ :: Type ′ ψ→ (ϕ →̇ ψ)→ (ϕ ←̇ ψ)→ View ′ ϕ

The view function is now of type

view ′ :: Type ′ ϕ→ View ′ ϕ

and is used as follows:

size (x :′ a ′) = case view a ′ of
View ′ b ′ fromData toData→ size (fromData x :′ b ′)
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5.1 Spine view
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Recap: the spine view §5.1

The spine view of the type τ is simply Spine τ :

spine :: Type α→ View α
spine a = View (Spine a) (λx → toSpine (x : a)) fromSpine

+ Recall that fromSpine is parametrically polymorphic, while toSpine is an
overloaded function.
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Recap: the function toSpine §5.1

The definition of toSpine follows a simple pattern: if the data type comprises a
constructor C

C :: τ1→ · · · → τn→ τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi.

+ The equation is only valid if vars (t1) ∪ · · · ∪ vars (tn) ⊆ vars (t0), that is,
if C ’s type signature contains no existentially quantified type variables.
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Discussion §5.1

I The spine view is easy to use: the generic part of a generic function only has
to consider two cases: Con and ‘♦’.

I A further advantage of the spine view is its generality: it is applicable to a
large class of data types including generalized algebraic data types.

I On the other hand, the spine view restricts the class of functions we can
write: one can only define generic functions that consume or transform data
(such as show) but not ones that produce data (such as read).

I Furthermore, functions that abstract over type constructors (such as size) are
out of reach.
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5.2 The type spine view
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Recap: a generic consumer §5.2

A generic consumer is a function of type Type α→ α→ τ . The generic part of a
consumer follows the general pattern:

consume :: Type α→ α→ τ
. . .
consume a x = consume (toSpine (x : a))

consume :: Spine α→ τ
consume . . . = . . .

The element x is converted to the spine representation, over which the helper
function consume then recurses.



113 JJ J I II 2

A generic producer §5.2

By duality, we would expect that a generic producer of type Type α→ τ → α
takes on the following form:

produce :: Type α→ τ → α
. . .
produce a t = fromSpine (produce t)

produce :: τ → Spine α -- this does not work
produce . . . = . . .

The helper function produce generates an element in spine representation, which
fromSpine converts back.

+ Unfortunately, this approach does not work. If it were possible to define
produce :: ∀α . τ→Spine α, then the composition fromSpine . produce would
yield a parametrically polymorphic function of type ∀α . τ → α (an unsafe cast).
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The type spine view §5.2

We require additional information about the data type, information that the spine
view does not provide.

Consider the syntactic form of a GADT: a data type is essentially a sequence of
signatures. This motivates the following definitions.

type Datatype α = [Signature α ]

data Signature :: ∗→ ∗ where
Sig :: Constr α→ Signature α
(@) :: Signature (α→ β)→ Type α→ Signature β

+ The type Signature is almost identical to the Spine type, except for the
second argument of ‘@’, which is of type Type α rather than Typed α.
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Another overloaded function: datatype §5.2

To be able to use the type spine view, we require an overloaded function that
maps a type representation to an element of type Datatype α.

open datatype :: Type α→ Datatype α
datatype (Bool) = [Sig false, Sig true ]
datatype (Char ) = [Sig (char c) | c ← [minBound . .maxBound ] ]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound ] ]
datatype (List a) = [Sig nil , Sig cons @ a @ List a ]
datatype (Pair a b) = [Sig pair @ a @ b ]
datatype (Tree a) = [Sig empty , Sig node @ Tree a @ a @ Tree a ]

+ datatype plays the same role for producers as toSpine plays for consumers.
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Example: a test data generator §5.2

Here is an example of a generic producer: a test-data generator.

generate :: Type α→ Int → [α ]
generate a 0 = Nil
generate a (d + 1) = concat [generate s d | s ← datatype a ]

generate :: Signature α→ Int → [α ]
generate (Sig c) d = [constr c ]
generate (s @ a) d = [f x | f ← generate s d , x ← generate a d ]

The helper function generate constructs all terms that conform to a given
signature.
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Extending datatype to generalised algebraic data types §5.2

The scheme can even be extended to generalised algebraic data types.

Since Datatype α is a homogeneous list, we have to partition the constructors
according to their result types.

datatype (Expr Bool)
= [Sig eq @ Expr Int @ Expr Int ,

Sig if @ Expr Bool @ Expr Bool @ Expr Bool ]
datatype (Expr Int)

= [Sig num @ Int ,
Sig plus @ Expr Int @ Expr Int ,
Sig if @ Expr Bool @ Expr Int @ Expr Int ]

datatype (Expr a)
= [Sig if @ Expr Bool @ Expr a @ Expr a ]

+ The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
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Discussion §5.2

I The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers
or transformers.

I The type spine view shares the major advantage of the spine view: it is
applicable to a large class of data types including generalized algebraic data
types.
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5.3 Lifted spine view
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Motivation §5.3

The spine view is not suitable for defining ∗→ ∗-indexed functions. To illustrate,
consider a variant of Tree whose inner nodes are annotated with a balance factor.

data BalTree α = Empty | Node Int (BalTree α) α (BalTree α)

If we call the generic function on a value of type BalTree Int , then the spine view
handles the two integer components in a uniform way.

+ A generic version of sum, however, must consider the label of type α = Int ,
but ignore the balance factor of type Int .
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Representing lifted constructors §5.3

A constructor of a lifted type has the signature ∀χ . τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ
where χ marks the parametric components.

We can write the signature more perspicuously as
∀χ . (τ ′1 →′ · · · →′ τ ′n →′ τ ′0) χ, using the lifted function space:

newtype (ϕ→′ ψ) χ = Fun{app :: ϕ χ→ ψ χ}

As an example, here are variants of Nil ′ and Cons ′:

nil ′ :: ∀α′ . ∀χ . (List ′ α′) χ
nil ′ = Nil ′

cons ′ :: ∀α′ . ∀χ . (α′ →′ List ′ α′ →′ List ′ α′) χ
cons ′ = Fun (λx → Fun (λxs → Cons ′ x xs))
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The lifted spine view §5.3

+ An element of a lifted type can always be put into the applicative form
c ′ ‘app‘ e1 ‘app‘ · · · ‘app‘ en.

As in the first-order case we can make this structure visible and accessible by
marking the constructor and the function applications.

data Spine ′ :: (∗→ ∗)→∗→ ∗ where
Con ′ :: (∀χ . ϕ χ)→ Spine ′ ϕ α
(♦′) :: Spine ′ (ϕ→′ ψ) α→ Typed ′ ϕ α→ Spine ′ ψ α

+ The structure of Spine ′ is very similar to that of Spine except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ . ϕ χ to an element of Spine ′ ϕ.
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The function fromSpine ′ §5.3

Turning to the conversion functions, fromSpine ′ is again polymorphic.

fromSpine ′ :: Spine ′ ϕ α→ ϕ α
fromSpine ′ (Con ′ c) = c
fromSpine ′ (f ♦′ x ) = fromSpine ′ f ‘app‘ val ′ x
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The function toSpine ′ §5.3

Its inverse is an overloaded function that follows a similar pattern as toSpine:
each constructor C ′

C ′ :: ∀χ . τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′0) = Con c ′ ♦ (x1 : t ′1) ♦ · · · ♦ (xn : t ′n)

where c ′ is the variant of C ′ that uses the lifted function space and t ′i is the type
representation of the lifted type τ ′i .

As an example, here is the instance for lifted lists.

toSpine ′ :: Typed ′ ϕ α→ Spine ′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a ′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a ′) = Con ′ cons ′ ♦′ (x :′ a ′) ♦′ (xs :′ List ′ a ′)
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The lifted spine view §5.3

The lifted spine view of ϕ is simply Spine ′ ϕ.

Spine ′ :: Type ′ ϕ→ Type ′ (Spine ′ ϕ)

spine ′ :: Type ′ ϕ→ View ′ ϕ
spine ′ a ′ = View ′ (Spine ′ a ′) (λx → toSpine ′ (x :′ a ′)) fromSpine ′
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A generic size function §5.3

Given these prerequisites we can turn size into a generic function.

size (x :′ Spine ′ a ′) = size x
size (x :′ a ′) = case spine ′ a ′ of

View ′ b ′ fromData toData→ size (fromData x :′ b ′)

The catch-all case applies the spine view: the argument x is converted to the
structure type, on which size is called recursively.

The implementation of size is entirely straightforward: it traverses the spine
summing up the sizes of the constructors arguments.

size :: Spine ′ ϕ α→ Int
size (Con ′ c) = 0
size (f ♦′ x ) = size f + size x
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Bridging the gap §5.3

Recall: the generic size function does not work on the original, unlifted types as
they are different from the lifted ones.

+ However, both are closely related: if τ ′ is the lifted variant of τ , then

τ ′ Id ∼= τ

+ This relation only holds for Haskell 98 types, not for GADTs.
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Bridging the gap — continued §5.3

As an example, the functions fromList In Id and toList out Id exhibit the
isomorphism between [ ] and List ′ Id .

fromList :: (α→ α′ χ)→ ([α ]→ List ′ α′ χ)
fromList from Nil = Nil ′

fromList from (Cons x xs) = Cons ′ (from x ) (fromList from xs)

toList :: (α′ χ→ α)→ (List ′ α′ χ→ [α ])
toList to Nil ′ = Nil
toList to (Cons ′ x xs) = Cons (to x ) (toList to xs)

We can use the isomorphism to broaden the scope of generic functions to unlifted
types. To this end we simply re-use the view mechanism.

spine ′ List = View ′ (List ′ Id) (fromList In Id) (toList out Id)
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Discussion §5.3

I The lifted spine view is almost as general as the original spine view: it is
applicable to all data types that are definable in Haskell 98.

I The spine view is not applicable to generalised algebraic data types, as it is
not possible to generalise size to GADTs.

I For generic producers we need a lifted spine view.

I The spine view can even be lifted to kind indices of arbitrary kinds.

The generic programmer then has to consider two cases for the spine view and
additionally n cases, one for each of the n projection types Out 1, . . . , Outn.
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5.4 Sum of products
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The ‘classic’ view of generic programming §5.4

The sum-of-products view is inspired by the semantics of data types.

Consider the schematic form of a Haskell 98 data declaration.

data T α1 . . . αs = C 1 τ1,1 . . . τ1,m1
| · · · | Cn τn,1 . . . τn,mn

The data construct combines several features in a single coherent form: type
abstraction, n-ary disjoint sums, n-ary cartesian products and type recursion.

We have already the machinery in place to deal with type abstraction, type
application and type recursion: using type reflection the type-level constructs are
mapped onto value abstraction, value application and value recursion.

+ It remains to model n-ary sums and n-ary products.



132 JJ J I II 2

The ‘classic’ view of generic programming — continued §5.4

We reduce the n-ary constructs to binary sums and binary products.

data Zero

data Unit = Unit

data α + β = Inl α | Inr β

data α × β = Pair{outl :: α, outr :: β}

+ Zero, the empty sum, is used for encoding data types with no constructors;
Unit , the empty product, is used for encoding constructors with no arguments.

If a data type has more than two alternatives or a constructor more than two
arguments, then the binary constructors ‘+’ and ‘×’ are nested accordingly.

+ With respect to the nesting there are several choices: we can use a right-deep
or a left-deep nesting, a list-like nesting or a (balanced) tree-like nesting.
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Type representations §5.4

As usual, we add suitable constructors to the type of type representations.

0 :: Type Zero
1 :: Type Unit
(+) :: Type α→ Type β→ Type (α + β)
(×) :: Type α→ Type β→ Type (α × β)
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The view function §5.4

The view function for the sum-of-products view is more elaborate than the one for
the spine view as each data type has a tailor-made structure type.

open structure :: Type α→ View α
structure Bool = View (1 + 1) fromBool toBool

where
fromBool :: Bool → Unit + Unit
fromBool False = Inl Unit
fromBool True = Inr Unit

toBool :: Unit + Unit → Bool
toBool (Inl Unit) = False
toBool (Inr Unit) = True
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The view function — continued §5.4

structure (List a) = View (1 + a × List a) fromList toList
where
fromList :: [α ]→ Unit + α × [α ]
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (Pair x xs)
toList :: Unit + α × [α ]→ [α ]
toList (Inl Unit) = Nil
toList (Inr (Pair x xs)) = Cons x xs

structure (Tree a) = View (1 + Tree a × a × Tree a) fromTree toTree
where
fromTree :: Tree α→ Unit + Tree α × α × Tree α
fromTree Empty = Inl Unit
fromTree (Node l x r ) = Inr (Pair l (Pair x r ))
toTree :: Unit + Tree α × α × Tree α→ Tree α
toTree (Inl Unit) = Empty
toTree (Inr (Pair l (Pair x r ))) = Node l x r
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Example: generic memoisation §5.4

The sum-of-products view can be used for defining both consumers and producers.

memo :: Type α→ (α→ ν)→ (α→ ν)
memo Int f i = f i -- no memoisation
memo 1 f Unit = fUnit

where fUnit = f Unit
memo (a + b) f (Inl x ) = fInl x

where fInl = memo a (λx → f (Inl x ))
memo (a + b) f (Inr y) = fInr y

where fInr = memo b (λy → f (Inr y))
memo (a × b) f (Pair x y) = (fPair x ) y

where fPair = memo a (λx →memo b (λy → f (Pair x y)))
memo a f x = fView x

where fView = case structure a of
View b from to→memo b (f . to) . from

+ The helper definitions fUnit , fInl , fInr , fPair and fView do not depend on the
actual argument of f . Thus, once f is given, they can be readily computed.



137 JJ J I II 2

Discussion §5.4

I The sum-of-products view provides more information than the spine view as it
represents the complete data type, not just a single constructor application.

It is type-oriented; the spine view is value-oriented.

I Consequently, it can be used both for defining consumers and producers.

I The sum-of-products view is preferable when the generic function has to relate
different elements of a data type, the paradigmatic example being ordering.

I The sum-of-products view in its original form is only applicable to Haskell 98
data types.

However, using a similar technique as for the type spine view we can broaden
its scope to generalised algebraic data types.
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6. Conclusion
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Generic programming: the design space §6

Support for generic programming consists of three essential ingredients:

I a type reflection mechanism: Type data type, type classes, type-safe cast;

I a type representation: Type, Type ′, Typeκ;

I a generic view on data: spine view, type spine view, lifted spine view,
sum-of-products view.

For each dimension there are several choices.
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Related work §6

view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA – – –

fixed point Reloaded PolyP – PolyP

sum-of-products LIGD DTC, GC, GM – GH

spine Reloaded,
Revolutions

SYB,
Reloaded

SYB –


