
1 JJ J I II 2

Generic data types — Or: Know your school math

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

September, 2004

(Pick the slides at .../~ralf/talks.html#T36.)



2 JJ J I II 2

Generic programming

Generic programming is a matter of making programs more adaptable by making
them more general. It consists of allowing a wider range of entities as parameters
than is available in more traditional programming languages.

Datatype-generic programming is an instantiation of the idea of generic
programming: it allows programs to be parameterised by a data type or a type
functor.

The purpose of this talk is to show that this idea not only applies to algorithms
but also to data structures.



3 JJ J I II 2

Prerequisites

Some basic knowledge of functional programming languages such as Haskell or
ML is most useful. I will use a Haskell-like language throughout.

Example: binary digits, binary strings, and string concatenation.

data Bit = 0 + 1

data String = Nil + Cons (Bit × String)

(++) :: String → String → String
Nil ++ s2 = s2
Cons (b, s1) ++ s2 = Cons (b, s1 ++ s2)



4 JJ J I II 2

Polymorphic type systems

Polymorphic type systems combine security (well-typed programs cannot ‘go
wrong’) with flexibility (polymorphism allows the definition of functions that
behave uniformly over all types).

However, polymorphic type systems are sometimes less flexible than one would
wish: for instance, it is not possible to define a polymorphic compress function
that works for all types.

compress :: ∀α . α → String

Parametricity implies that a function of this type must necessarily be constant:
the function is insensitive to what type the values of the first argument are.



5 JJ J I II 2

Generic programming

Generic programming saves the day.

Idea: define the compress function by induction on the structure of types (for
emphasis the type argument is enclosed in angle brackets).

compress〈τ :: ?〉 :: τ → String

compress〈1〉 () = Nil

compress〈α + β〉 (Inl a) = Cons (0, compress〈α〉 a)
compress〈α + β〉 (Inr b) = Cons (1, compress〈β〉 b)

compress〈α × β〉 (a, b) = compress〈α〉 a ++ compress〈β〉 b

This simple definition contains all the ingredients needed to derive specialisations
for compressing elements of arbitrary data types (assuming that a data type is a
sum of products as in Haskell).



6 JJ J I II 2

Overview

✖ Digital search trees (7–20)

✖ Trees with a focus (22–33)



7 JJ J I II 2

Digital search trees

Digital search trees, also known as tries, employ the structure of search keys to
organise information.

Tries were originally devised to represent sets of strings (A. Thue, Über die
gegenseitige lage gleicher teile gewisser zeichenreihen, 1912).

{ear ,
earl ,
east ,
easy ,
eye}

=⇒

e

a

r

l

s

t y

y

e



8 JJ J I II 2

Task

Digital search trees can also be used to implement finite maps (aka dictionaries,
look-up tables).

☞ Finite maps are a wildly used abstraction. Digital search trees feature access
that is proportional to the size of the key; they are superior to ordinary search
trees and hash tables.

We are seeking a generic definition, that is, one that works for arbitrary key types.



9 JJ J I II 2

A concrete instance: binary strings

Let us first consider two special instances.

data MapBit :: ? → ?

lookupBit :: ∀ν .Bit → MapBit ν → Maybe ν

data MapString :: ? → ?

lookupString :: ∀ν . String → MapString ν → Maybe ν

The data type MapString V represents the set of finite maps from String to V ,
that is, String →fin V .



10 JJ J I II 2

The Maybe data type

The mathematical treatment of finite maps usually assumes that V contains a
distinguished element •. Then a finite map is a function that sends only a finite
number of keys to a value different from •.

To avoid this restrictive assumption we adjoin a distinguished element using
Haskell’s Maybe data type.

data Maybe α = Nothing | Just α

Forward composition of maps:

(3) :: (α → Maybe β) → (β → Maybe γ) → (α → Maybe γ)
(f 3 g) a = case f a of {Nothing → Nothing ; Just b → g b}



11 JJ J I II 2

Implementation of MapBit

Finite maps over bits are simply pairs:

data MapBit ν = NodeBit (Maybe ν ×Maybe ν)

lookupBit 0 (NodeBit (t0 , t1 )) = t0
lookupBit 1 (NodeBit (t0 , t1 )) = t1



12 JJ J I II 2

Implementation of MapString

Finite maps over binary strings are compositions of finite maps:

data MapString ν = NodeString (Maybe ν -- Nil
×MapBit (MapString ν)) -- Cons

lookupString Nil (NodeString (tn, tc))
= tn

lookupString (Cons b s) (NodeString (tn, tc))
= (lookupBit b 3 lookupString s) tc

☞ Unfolding the definition of MapBit yields the familiar data structure of
binary tries.



13 JJ J I II 2

Some school math

Digital search trees are based on the laws of exponentials.

1 →fin ν ∼= ν
(κ1 + κ2) →fin ν ∼= (κ1 →fin ν) × (κ2 →fin ν)
(κ1 × κ2) →fin ν ∼= κ1 →fin (κ2 →fin ν)

This observation is due to Wadsworth (R.H. Connelly and F.L. Morris, A
generalisation of the trie data structure, 1995).



14 JJ J I II 2

Generic finite maps

1 →fin ν ∼= ν
(κ1 + κ2) →fin ν ∼= (κ1 →fin ν) × (κ2 →fin ν)
(κ1 × κ2) →fin ν ∼= κ1 →fin (κ2 →fin ν)

Using the laws of exponentials we can define a generic type of finite maps:
Map〈K 〉 V represents K →fin V .

data Map〈κ :: ?〉 :: ? → ?
data Map〈1〉 ν = Maybe ν
data Map〈α + β〉 ν = Map〈α〉 ν ×Map〈β〉 ν
data Map〈α × β〉 ν = Map〈α〉 (Map〈β〉 ν)

☞ The two type arguments of Map play different rôles: Map〈K 〉 V is defined
by induction on the structure of K , but is parametric in V .



15 JJ J I II 2

Generic finite maps

data Map〈1〉 ν = Maybe ν
data Map〈α + β〉 ν = Map〈α〉 ν ×Map〈β〉 ν
data Map〈α × β〉 ν = Map〈α〉 (Map〈β〉 ν)

The definition of Map can be written more succinctly using a point-free style:

data Map〈1〉 = Maybe
data Map〈α + β〉 = Map〈α〉 ×Map〈β〉
data Map〈α × β〉 = Map〈α〉 · Map〈β〉

NB. ‘×’ denotes lifted products.



16 JJ J I II 2

Generic look-up

lookup〈κ :: ?〉 :: ∀ν . κ → Map〈κ〉 ν → Maybe ν
lookup〈1〉 () t = t
lookup〈α + β〉 (Inl a) (ta, tb) = lookup〈α〉 a ta
lookup〈α + β〉 (Inr b) (ta, tb) = lookup〈β〉 b tb
lookup〈α × β〉 (a, b) t = (lookup〈α〉 a 3 lookup〈β〉 b) t



17 JJ J I II 2

Generic look-up

The definition of lookup can be written more succinctly using a point-free style:

lookup〈κ :: ?〉 :: ∀ν . κ → Map〈κ〉 ν → Maybe ν
lookup〈1〉 () = id
lookup〈α + β〉 (Inl a) = lookup〈α〉 a · outl
lookup〈α + β〉 (Inr b) = lookup〈β〉 b · outr
lookup〈α × β〉 (a, b) = lookup〈α〉 a 3 lookup〈β〉 b



18 JJ J I II 2

Some instances

Let’s pick the fruit and specialise Map to some data types.

☞ The generic definition can be specialised to arbitrary data types (R. Hinze,
J. Jeuring, and A. Löh. Type-indexed data types, 2004). Perhaps surprisingly, the
specialisation also works for parameterised data types:

data Pair α = Pair (α × α)

The trie for Pair α is parameterised by the trie for α:

data MapPair mapα ν = NodePair (mapα (mapα ν))

lookupPair :: ∀α mapα . (∀ν . α → mapα ν → Maybe ν)
→ (∀ν .Pair α → MapPair mapα ν → Maybe ν)

lookupPair lookupα (Pair (a1, a2)) (NodePair t)
= (lookupα a1 3 lookupα a2) t



19 JJ J I II 2

Some instances

Specialising parameterised recursive data types works, as well.

data Tree α = Empty + Node (Pair (Tree α))

The trie is recursive where the key type is:

data MapTree mapα ν = NodeTree (Maybe ν
×MapPair (MapTree mapα) ν)

lookupTree :: ∀α mapα . (∀ν . α → mapα ν → Maybe ν)
→ (∀ν .Tree α → MapTree mapα ν → Maybe ν)

lookupTree lookupα Empty (NodeTree (te, tn))
= te

lookupTree lookupα (Node p) (NodeTree (te, tn))
= lookupPair (lookupTree lookupα) p tn



20 JJ J I II 2

Some instances

Finally, we can derive tries for so-called nested data types.

data Pow α = Zero α + Succ (Pow (Pair α))

The trie is nested, as well:

data MapPow mapα ν = NodePow (mapα ν
×MapPow (MapPair mapα) ν)

lookupPow :: ∀α mapα . (∀ν . α → mapα ν → Maybe ν)
→ (∀ν .Pow α → MapPow mapα ν → Maybe ν)

lookupPow lookupα (Zero a) (NodePow (tz , ts))
= lookupα a tz

lookupPow lookupα (Succ p) (NodePow (tz , ts))
= lookupPow (lookupPair lookupα) p ts

☞ MapPow is a stream-like data structure; lookupPow is tail-recursive.



21 JJ J I II 2

Overview

✔ Digital search trees (7–20)

✖ Trees with a focus (22–33)



22 JJ J I II 2

Task

Represent a tree together with a focus of interest (zipper, finger, pointer reversal).

☞ Focused trees have a variety of applications: structured editors, theorem
provers etc.

Again, we are seeking a generic definition, that is, one that works for arbitrary
data types.



23 JJ J I II 2

A concrete instance: 2-3 trees

data Tree23 = Empty
+ Node2 (Tree23 × Int × Tree23 )
+ Node3 (Tree23 × Int × Tree23 × Int × Tree23 )



24 JJ J I II 2

A concrete instance: 2-3 trees

A 2-3 tree with a focus of interest consists of the focused tree and a path leading
to the root.

type Focus23 = Path23 × Tree23

data Path23 = Top + Step (Path23 × Seg23 )

data Seg23 = Node2 1 (• × Int × Tree23 )
+ Node2 2 (Tree23 × Int × • )

+ Node3 1 (• × Int × Tree23 × Int × Tree23 )
+ Node3 2 (Tree23 × Int × • × Int × Tree23 )
+ Node3 3 (Tree23 × Int × Tree23 × Int × • )

☞ Path23 is a snoc list of Seg23 s.

NB. • is the unit type (representing a hole).



25 JJ J I II 2

Operations

Moving up a 2-3 tree:

up :: Focus23 → Focus23
up (Top, t) = (Top, t)
up (Step (p, s), t) = (p, plugin (s , t))

plugin :: Seg23 × Tree23 → Tree23
plugin (Node2 1 (•, a, r ), t) = Node2 (t , a, r )
plugin (Node2 2 (l , a, •), t) = Node2 (l , a, t)
plugin (Node3 1 (•, a,m, b, r ), t) = Node3 (t , a,m, b, r )
plugin (Node3 2 (l , a, •, b, r ), t) = Node3 (l , a, t , b, r )
plugin (Node3 3 (l , a,m, b, •), t) = Node3 (l , a,m, b, t)



26 JJ J I II 2

Making recursive components explicit

We write the type Tree23 as a fixed point of a functor, the so-called base functor,
using a point-free style.

Tree23 = Fix Base23

Base23 = Empty
+ Node2 (Id ×K Int × Id)
+ Node3 (Id ×K Int × Id ×K Int × Id)

NB. K T is the constant functor, Id is the identity functor, and ‘+’ and ‘×’
denote lifted sums and products.

The fixed point operator, Fix , is given by

data Fix φ = In (φ (Fix φ))



27 JJ J I II 2

Making recursive components explicit

Focus23 = Path23 × Tree23

Path23 = Top + Step (Path23 × Seg23 )

Seg23 = Base23 ′ Tree23

Base23 ′ = Node2 1 (K • ×K Int × Id)
+ Node2 2 (Id ×K Int ×K •)
+ Node3 1 (K • ×K Int × Id ×K Int × Id)
+ Node3 2 (Id ×K Int ×K • ×K Int × Id)
+ Node3 3 (Id ×K Int × Id ×K Int ×K •)



28 JJ J I II 2

Generic paths and segments

Let T be the fixed point of F , that is, T = Fix F . We parameterise the generic
types by the base functor F .

Focus F = Path F × Fix F -- = Path F × T

Path F = Top + Step (Path F × Seg F )

Seg F = F ′ (Fix F )

☞ Now, what is the relationship between F and F ′?



29 JJ J I II 2

More school math

The functor F ′ is the derivative of the base functor F . We define F ′ by induction
on the structure of F .

(F :: ? → ?)′ :: ? → ?
(K C )′ = K 0
Id ′ = K 1 -- = K •
(F1 + F2)

′ = F ′
1 + F ′

2
(F1 × F2)

′ = F ′
1 × F2 + F1 × F ′

2

Since F is a functor, we must distinguish 4 cases rather than 3.

☞ The observation that a one-point context corresponds to the derivative of a
functor is due to McBride; the definition above was given independently by Hinze
and Jeuring.



30 JJ J I II 2

Examples of derivatives

(Id + Id)′ = K 1 + K 1
(K n × Id)′ ∼= K n

(Id × Id)′ = K 1 × Id + Id ×K 1
(Idn)′ ∼= K n × Idn−1

The derivative of the list functor is a pair of lists: the prefix and the suffix of the
hole.

List = K 1 + Id × List

List ′ = K 0 + (K 1 × List + Id × List ′)
List ′ ∼= List × List



31 JJ J I II 2

The chain rule

One can show that (−)′ satisfies the chain rule, which we all know and love:

(F · G)′ ∼= F ′ · G ×G ′

The chain rule states, that the derivative of a composition of two functors is the
derivative of the outer functor (composed with the inner functor) times the
derivative of the inner functor.



32 JJ J I II 2

More examples of derivatives

(List · List)′ ∼= List ′ · List × List ′

(List · List)′ ∼= List 2 · List × List 2

The chain rule is convenient for calculating the derivatives of nested data types.

Pair = Id × Id
Pow = Id + Pow · Pair

Pow ′ ∼= K 1 + Pow ′ · Pair ×K 2 × Id
Pow ′ ∼= K 1 + Pow ′ · Pair × Id + Pow ′ · Pair × Id



33 JJ J I II 2

Generic operations

up〈F :: ? → ?〉 :: Focus F → Focus F
up〈F 〉 (Top, t) = (Top, t)
up〈F 〉 (Step (p, s), t) = (p, In (plugin〈F 〉 (s , t)))

plugin〈F :: ? → ?〉 :: ∀α .F ′ α × α → F α
plugin〈Id〉 (•, t) = t
plugin〈F1 + F2〉 (Inl s1, t) = Inl (plugin〈F1〉 (s1, t))
plugin〈F1 + F2〉 (Inr s2, t) = Inr (plugin〈F2〉 (s2, t))
plugin〈F1 × F2〉 (Inl (s , r ), t) = (plugin〈F1〉 (s , t), r )
plugin〈F1 × F2〉 (Inr (l , s), t) = (l , plugin〈F2〉 (s , t))

NB. We need not define plugin〈K C 〉 as (K C )′ = K 0.



34 JJ J I II 2

Overview

✔ Digital search trees (7–20)

✔ Trees with a focus (22–33)



35 JJ J I II 2

Conclusion

I Generic functions and data types are defined by induction on the structure of
types.

I Generic definitions can be specialised to arbitrary data types.

I Generic programming, albeit more abstract, is often simpler than ordinary
programming (because we only have to provide instances for three simple,
non-recursive data types).

I Generalisations of textbook data structures reveal familiar mathematical
structures.


