
Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Foundations of Object-Oriented Programming

RALF HINZE

Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

February 2007

(Pick up the slides at . . . /~ralf/talks.html#54.)

1 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Vision

Possible future course “Foundations of Programming”:

I FVOP: Foundations of Value-Oriented Programming;

I FEOP: Foundations of Effect-Oriented Programming;

I FOOP: Foundations of Object-Oriented Programming.

+ A large part of the material is classroom-tested:

I advanced course on “Principles of Programming Languages”;

I introductory course on “Programming”.

2 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Concept

You can never understand one language
until you understand at least two.

Ronald Searle (1920–)

Make everything as simple as possible,
but not simpler.

Albert Einstein (1859–1955)

I Idea: explain programming language concepts by growing a “teaching
language”:

I empty language,
I functional language,
I imperative language,
I object-oriented language;

I define everything precisely: syntax and semantics;

I concentrate on essential concepts and ideas;

I guiding principle: a concept should be as simple and pure as possible;

I the concepts should be orthogonal;

I use the teaching language to explain features of “real programming
languages”.

3 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Foundations of Value-Oriented Programming

local
val base = 8

in
function digits (n : Nat) : List 〈Nat〉 =

if n 0 then Nil
else Cons (n % base, digits (n ÷ base))

function nat (ds : List 〈Nat〉) : Nat =
case ds of

Nil ⇒ 0
| Cons (d , ds ′) ⇒ d + base ∗ nat (ds ′)
end

end

+ Introduces expressions, declarations, the concept of scope etc.

+ Advanced topics: type abstraction, polymorphism, contracts etc.

4 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Foundations of Effect-Oriented Programming

local
val bal = ref 0

in
function deposit (amount : Nat) : () =

bal := !bal + amount

function withdraw (amount : Nat) : () =
bal := !bal − amount

function balance () : Nat =
!bal

end

+ Introduces IO, state, exceptions, the concept of extent etc.

5 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Table of contents

1 Background

2 Foundations of Value-Oriented Programming

3 Foundations of Effect-Oriented Programming

4 Foundations of Object-Oriented Programming
Introduction
Objects
Classes
Open Recursion
Subtyping
Delegation
Inheritance
Conclusion

5 Appendix

6 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Introduction — Jargon

Every subject has its jargon, object-oriented programming is no exception:

abstract class, anonymous class, behaviour, class hierarchy, class method,
class variable, class, constructor, delegation, dispatch table, down cast,

dynamic binding, dynamic dispatch, encapsulation, extension, field, final,
friend, generic class, implementation, inclusion polymorphism, inheritance,
inner class, instance variable, instance, interface inheritance, interface, late
binding, message passing, method invocation, method, multiple inheritance,

name subtyping, new, object creation, object, object-oriented, open
recursion, overriding, package, private, protected, public, redefinition, self,
structural subtyping, subclass, subtype polymorphism, subtyping, super,

superclass, this, up cast, (virtual) method table, visibility.

+ Object-orientation seems to be complex and loaded. To help de-mystify
the subject, we shall identify the essential principles or characteristics.

7 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Characteristics — What is object-oriented programming?

I Dynamic dispatch:
When an operation is invoked on an object, the object itself
determines what code gets executed. Two objects with the same
interface may be implemented quite differently.

I Encapsulation:
The implementation of an object is hidden from view. Changes to the
implementation can only affect the object itself.

I Open recursion:
One method can invoke another method via a special identifier called
self , which is late-bound — dynamic dispatch for recursive invocations.

I Subtyping:
An object that supports more operations can be used as an object that
supports less operations. The ability to ignore parts of an interface
allows us to write general code that manipulates different sorts of
objects in a uniform way.

I Inheritance:
The behaviour of an object can be reused in another object so that
common behaviour must be implemented just once. This reuse of
behaviour can be achieved

I via objects and delegation or
I via classes and subclassing.

8 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Recapitulation: encapsulation in an effect-oriented language

+ Encapsulation is achieved by delimiting the scope of internals — only
entities that have a name can be accessed and reused.

local
val bal = ref 0

in
function deposit (amount : Nat) : () =

bal := !bal + amount

function withdraw (amount : Nat) : () =
bal := !bal − amount

function balance () : Nat =
!bal

end

+ The representation of a bank account, the reference cell bal , is local to
deposit, withdraw and balance.

+ Observation: The functions deposit, withdraw and balance belong
together, but they are only loosely coupled.

9 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Objects

Wish: linguistic support for integrating operations into a single entity.

val my-account =
object

local
val bal = ref 0

in
method deposit (amount : Nat) : () =

bal := !bal + amount

method withdraw (amount : Nat) : () =
bal := !bal − amount

method balance : Nat =
!bal

end

end

+ The entity is called an object. As a first approximation an object can be
seen as a record of functions.

+ Syntactic changes: object . . . end bracket; method instead of function.

10 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Method invocation

+ An integrated function aka method is invoked using the dot notation.
(Recall: ≫ is the prompt of the evaluator).

≫ my-account.deposit (4711)
()
≫ my-account.withdraw (815)
()
≫ my-account.withdraw (2765)
()
≫ my-account.balance
1131

Jargon: we say “invoking a method on an object” or “sending an object a
message”.

11 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Interfaces

+ Every well-formed expression has a type; object . . . end is an expression;
so what is the type of an object?

type Account =
object

method deposit : Nat → ()
method withdraw : Nat → ()
method balance : Nat

end

+ Recall: a type represents our static knowledge of an expression.

+ An object is solely defined by its behaviour; the object’s internal
representation does not appear in its type!

+ An object type such as Account is also called an interface. An interface
is the set of operations an object supports.

12 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Objects and Interfaces

A different implementation of a bank account with the same interface:

val your-account =
object

local
val n = ref 0

val history = array [10] i ⇒ ref 0

function inc (n : Nat) : Nat = (n + 1) % 10
in

method deposit (amount : Nat) : () =
history .[inc (!n)] := !history .[!n] + amount; n := inc (!n)

method withdraw (amount : Nat) : () =
history .[inc (!n)] := !history .[!n]− amount; n := inc (!n)

method balance : Nat =
!history .[!n]

end
end

13 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Demo

≫ my-account.balance
1131
≫ your-account.deposit 4711
()
≫ my-account.withdraw 1000; your-account.deposit 1000
()
≫ my-account.balance
131
≫ your-account.balance
5711

+ The objects my-account and your-account are interchangeable — at
least from the point of view of the language. They respond to the same
messages.

+ Each object itself determines what code gets executed.

14 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Objects and Interfaces

The fact that objects with the same interface are interchangeable allows us
to write code that manipulates objects in a uniform way.

function transfer (account1 : Account, amount : Nat, account2 : Account) : () =
account1.withdraw amount;
account2.deposit amount

+ We can transfer money between bank accounts, even if the bank
accounts are implemented differently.

≫ (my-account.balance, your-account.balance)
(131, 5711)
≫ transfer (your-account, 815, my-account)
()
≫ (my-account.balance, your-account.balance)
(946, 4896)

15 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Objects — abstract syntax

We extend our language with anonymous objects and method invocations.

m ∈ Method method declarations

e ::= · · ·
| object m end anonymous object
| e.x method invocation

+ An object is a collection of methods.

16 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Methods — abstract syntax

A method declaration is essentially a sequence of method definitions.

m ::= method x : τ = e method definition
| m1 m2 sequential declaration
| local d in m end local declaration

+ local is the interface between the effect-oriented language and the
object-oriented language.

+ local makes explicit that the internal representation of an object,
possibly comprising instance variables or fields, is local to some of the
methods (encapsulation).

17 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Objects — dynamic semantics

+ The value of an object is essentially a dispatch or method table.

µ ∈ Id →fin Expr method tables

ν ::= · · ·
| object µ end object

+ A method table maps a name to an expression, not to a value!

Evaluation rules:

m ⇓ µ

object m end ⇓ object µ end

e ⇓ object µ end µ(x) ⇓ ν

e.x ⇓ ν

+ The name x is looked up at run-time in the method table associated
with the object e (dynamic dispatch).

18 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Methods — dynamic semantics

Evaluation rules:

(method x : τ = e) ⇓ {x 7→ e }

m1 ⇓ µ1 m2 ⇓ µ2

m1 m2 ⇓ µ1, µ2

d ⇓ δ mδ ⇓ µ

local d in m end ⇓ µ

+ Method bodies are not evaluated. Why?

I method balance : Nat is not a natural number but a computation that
yields a natural number.

I Later: the method body may contain the identifier self , which refers to
the object itself and which is late-bound.

+ The sequence m1 m2 evaluates to the method table µ1 extended by µ2;
the methods do not see each other. Later definitions shadow earlier ones.

+ The declaration d is local to the method declaration m.

19 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Summary

I An object is solely defined by the set of operations it supports.

I The implementation of an operation is called a method.

I The object’s internal representation — state, other objects etc — is
hidden from view outside the object’s definition (encapsulation).

I When an operation is invoked on an object, the object itself
determines what code gets executed (dynamic dispatch).

I An interface is the set of operations an object supports.

I The object’s internal representation does not appear in its type.

20 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

What’s next?

I object templates: classes;

I recursive method invocation: self ;

I more flexibility: subtyping;

I re-use of behaviours: inheritance via delegation;

I re-use of behaviours: inheritance via classes.

21 / 28

Foundations of
Object-Oriented
Programming

RALF HINZE

Background

FVOP

FEOP

FOOP

Introduction

Objects

Classes

Open Recursion

Subtyping

Delegation

Inheritance

Conclusion

Appendix

Finite maps

When X and Y are sets X →fin Y denotes the set of finite maps from X to
Y . The domain of a finite map ϕ is denoted dom ϕ.

I the singleton map is written {x 7→ y }
I dom{x 7→ y } = {x }
I {x 7→ y }(x) = y

I when ϕ1 and ϕ2 are finite maps the map ϕ1, ϕ2 called ϕ1 extended by
ϕ2 is the finite map with

I dom (ϕ1, ϕ2) = dom ϕ1 ∪ dom ϕ2

I (ϕ1, ϕ2)(x) =

ϕ2(x) if x ∈ dom ϕ2

ϕ1(x) otherwise

22 / 28

	Background
	Foundations of Value-Oriented Programming
	Foundations of Effect-Oriented Programming
	Foundations of Object-Oriented Programming
	Introduction
	Objects
	Classes
	Open Recursion
	Subtyping
	Delegation
	Inheritance
	Conclusion

	Appendix

