FUNCTORIAL UNPARSING

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University
Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/"ralf/

July, 2001

(Pick the slides at .../"ralf/talks.html#T27.)

A programming puzzle

Implement C's printf in Haskell (called format below).

Main) :type format (lit "hello world")
Str

Main) format (lit "hello world")
"hello world"

Main) :type format int

Int — Str

Main) format int 5

ngn

Main) :type format (int = lit " is " = str)
Int — Str — Str

Main) format (int = lit " is," ~ str) 5 "five"

' 5|_|iS|_|f ive"

Preliminaries: functors

At the heart of the Haskell solution is the concept of a functor.

class Functor F where
map :» (A— B)— (FA— F B)

As an example, the functional type (A —) for fixed A is a functor with
the mapping function given by post-composition.

instance Functor (A —) where

(
map ¢ r = ¢

- X

NB. Interestingly, this instance is not predefined in Haskell 98.

Further examples are the identity functor and functor composition.

type Id A = A

instance Functor Id where

map = id

type (F-G)A = F (G A)

instance (Functor F, Functor G) = Functor (F - G) where
map = map - map

NB. These instance declarations are not legal Haskell since Id and *
are not data types defined by data or by newtype.

A non-solution

The type of format depends on its first argument, the format directive.

Clearly, we cannot define such a dependently typed function in Haskell
if we represent directives by elements of a single data type, say,

data Dir = it Str | int | str | Dir = Dir.

However, using Haskell's type classes we can define values that
depend on types.

Singleton types

To utilize type classes we must arrange that each directive possesses a
distinct type. To this end we introduce the following singleton types:

data LIT = [it Str
data INT — nt
data STR = str

data D1 - D2 = D1 ~ D2.

The structure of the directive is mirrored on the type level:

it = it " is " T str 2 INT © LIT -~ STR.

Step 1: A generic program

We can now specify format as a type-indexed value of type

formaty, :: D — Formatp Str,

that is, format, takes a directive of type D and returns ‘something’
of Str where ‘something’ is determined by D in the following way:

Formatp.., ok — ok
Formatrr S =
Formatiyt S = Int— S
Formatsrp S = Str — S

Formatp,-p, S

Formatp, (Formatp, S).

Here, Formatp is a type-indexed type, a type that depends on a type.

6

The crucial property of Formatp is that it constitutes a functor. This
can be seen more clearly if we rewrite Formatp in a point-free style.

Formatr = Id
Format;yy = (Int —)
Formatsyr = (Str —)

Format p,-p,

Formatp, - Formatp,

The implementation of format is straightforward except perhaps for
the last case.

format . D — Formatp Str
format ;p (lit s) = S

format ;o int = A\i — show 1

format grp str = As— 5

formatp -p, (d1 ~ d2) formatp dy o formatp, do

Exploiting the functoriality of Formatp

It remains to define the operator ‘¢’, which takes an F' Str and a

G Strtoa (F - G) Str.

() = (Functor F, Functor G)
F Str — G Str — (F - G) Str

fog = map (As — map A\t — s+ 1t)g)f

The operator ‘¢" enjoys nice algebraic properties: it is associative and
has the empty string, "" :: Id Str, as a unit.

Step 2: Towards a Haskell solution

To implement format, :: D — Formatp Str in Haskell, we use a
multiple parameter type class with a functional dependency.

class (Functor F') = Format D F' | D — F where
format :: D — F Str

The functional dependency D — F' (beware, this is not the function
space arrow) constrains the relation to be functional: if both
Format Dy F; and Format Dy F3 hold, then Dy = Dy implies
Fy = Fs.

10

For each directive D we provide an instance of the schematic form
instance Format D (Formatp) where format = format .

instance Format LIT Id where
format (lit s)
instance Format INT

S

/N

Int —) where
At — show 1

format int
instance Format STR (Str —) where

format str = AS— S
instance (Format Dy Fy, Format Doy F5)
= Format (D1~ D) (F1 - F3) where
format (dy =~ d3) = format dy o format ds

In implementing the specification we have simply replaced a type
function by a functional type relation.

11

An example translation

format (int = lit " is," = str)
= { definition of format }
show ¢ " is " ¢ id

= { definition of ‘¢’ }

map (As — map (At — map (Au — s H t H u) id) "Lisy") show
= { definition of map ,_, and map;; }

(As — (At — (Au — s+HtH u)-id) "uisy") - show

{ algebraic simplifications and (-conversion }

Al — A\u — show 1 +H " is," H wu

Since the format directive is static, this is a compile-time optimization.

12

Step 3: A Haskell solution

Recall that the Functor instances for Id and ‘" are not legal since type
synonyms must not be partially applied. We have to use newtype's:

newtype Id A = de A
newtype (F - G) A = com (F (G A)).

Alas, now Id and -" are new distinct types. In particular, the identities
Id A= Aand (F-G)A=F (G A) do not hold any more: we have

format (int ~ lit " isy" ~str) 0 ((Int —) - Id - (Str —)) Str

rather than

format (int = lit ",isy" ~ str) @ Int — Str — Str.

13

Applying a functor

We must apply the functor (Int —) - Id - (Str —) to Str.

class (Functor F) = App F A B | FF A — B where
apply . FA— B
instance App (A —) B (A — B) where
apply = 1id
instance App Id A A where
apply (ide a) = a
instance (App G A B, App F B C) = App (F - G) A C where
apply (com z) = apply (map apply z)
format . (Format D F,App F Str A) =D — A
format d = apply (formatz d).

The intention is that the type relation App FF A B holds iff ' A = B.

14

Haskell can do it (almost) without type classes

We can eliminate the Format class by specializing format: for
each d :: D we introduce a new directive d :: Formatp Str given by
d = formatx d (below we reuse the original names).

lit
lit s
nt
it
str

str

format
format d

Str — Id Str
vde s

(Int —) Str

Al — show 1

(Str —) Str

AS — S

(App F Str A) = F Str — A
apply d

15

An example session

Furthermore, instead of *~' we use ‘¢'.

Main) :type (int o lit "Lisy" © str)

((Int —) - Id - (Str —)) Str

Main) :type format (int o lit " is," © str)
Int — Str — Str

Main) format (int o lit "Lisy" o str) 5 "five"

"5 ,is five"

Main) format (show < lit "Lis, " © show) b "five"

"B ois \"five\""

Main) format (lit "sum," © show ¢ lit " =" ¢ show)
[1..10] (sum [1..10])

"sum,[1,2,3,4,5,6,7,8,9,10] _=_55"

Note the use of show in the last two examples.

16

Extensions: printing to stdout

Here is a variant of format that outputs the string to the standard
output device.

printf = (App F (10 ()) A)= F Str — A
printf d = apply (map putStrLn d)

This function nicely demonstrates how to define one’s own variable-
argument functions on top of format.

17

Extensions: additional directives

Here is a directive for unparsing a list of values.

list (A —) Str — (|A] —) Str
list d || = "[I"
list d (a:as) = "["H d aH rest as
where rest || = "]
rest (a:as) = ",." H d aH rest as

To format a string we can now either use the directive str (emit the
string literally), show (put the string in quotes), or list show (show
the string as a list of characters).

Likewise, for formatting a list of strings we can choose between show,
list str, list show, or list (list show).

18

Appendix: Danvy’s solution [JFP, 8(6)]

class Format’' D F | D — F where
format’ :: VA.D — (Str — A) — (Str — F A)

instance Format’ LIT Id where

format’ (lit s) = Ak out — Kk (out + s)
instance Format’ INT (Int —) where

format’ int = Ak out — \i — Kk (out H show 1)
instance Format’ STR (Str —) where

format’ str = Ak out — As — K (out H s)
instance (Format’ Dy Fy, Format’ Dy F5)

= Format' (D1~ D) (F1 - F3) where
format’ (dy = d2) = Mk out — format’ di (format’ dy k) out

format 2 (Format' D F) = D — F Str
format d = format’ d id ""

19

Here are functions that convert to and fro:

Ak out — map (As — Kk (out H s)) d
vd' = did"".

Q
QL
|

The coercion function « introduces a continuation and an accumulating
string, while ~ supplies an initial continuation and an empty
accumulating string.

The two approaches to unparsing are equivalent (that is, v - o = id
and a - v =id) if

format’ d (e - o) = format' d € - o,

for all directives d.

20

