
1 JJ J I II 2

Generics for the masses

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

September, 2004

(Pick the slides at .../~ralf/talks.html#T37.)

2 JJ J I II 2

Motivation

In Haskell, showing values of a data type is easy.

data Tree α = Leaf α | Fork (Tree α) (Tree α)
deriving (Show)

Simply attach a deriving clause to the data type declaration; a suitable show
function is then automatically generated by the compiler.

This show function is, for instance, implicitly called on the command line (the
function tree has type [α] → Tree α).

Main〉 tree [0 . . 3]
Fork (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf 2) (Leaf 3))

3 JJ J I II 2

Motivation

However, the display of larger data structures is not especially pretty, due to lack
of indentation.

Main〉 tree [0 . . 9]
Fork (Fork (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf 2) (Fork (Leaf 3) (Leaf
4)))) (Fork (Fork (Leaf 5) (Leaf 6)) (Fork (Leaf 7) (Fork (Leaf 8) (Leaf
9))))

Urks.

4 JJ J I II 2

Motivation

☞ We need a prettier printer.

This talk shows how to define a generic prettier printer and other generic
functions.

A generic function is a function that can be instantiated on many data types to
obtain data type specific functionality. Examples of generic functions are the
functions that can be derived in Haskell, such as show , read , and ‘ ’.

5 JJ J I II 2

Motivation

Salient features of the approach.

I It’s Haskell 98! No extensions, no fancy type systems, no preprocessors
required.

I . . . so you can play with it, modify it, extend it, adapt it to your needs.

In a nutshell:

I The definition of generic functions works ‘as before’.

I A little bit of extra work is required for each newly defined data type.

6 JJ J I II 2

Warmup: data compression

Let us start with a simpler, albeit related function: a generic data compressor.

For simplicity, we represent a binary string by a list of bits.

type Bin = [Bit]

data Bit = 0 | 1 deriving (Show)

bits :: (Enum α) ⇒ Int → α → Bin

The function bits encodes an element of an enumeration type using the specified
number of bits.

We seek to generalise bits to a function showBin that works for arbitrary types.

7 JJ J I II 2

Warmup: data compression

Here is an interactive session that illustrates the use of showBin (characters
consume 7 bits and integers 16 bits).

Main〉 showBin (3 :: Int)
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Main〉 showBin ([3, 5] :: [Int])
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0]
Main〉 showBin "Lisa"
[1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
1, 0]

You get the idea . . .

8 JJ J I II 2

Defining generic functions: elementary types

Implementing showBin so that it works for arbitrary data types seems like a hard
nut to crack.

Fortunately, it suffices to define showBin for primitive types and for three
elementary types: the one-element type, the binary sum, and the binary product.

data Unit = Unit

data Plus α β = Inl α | Inr β

data Pair α β = Pair{outl :: α, outr :: β}

Why these types?

9 JJ J I II 2

Defining generic functions: representation types

Because a data declaration introduces a type that is isomorphic to a sum of
products.

If we know how to compress sums and products, we can compress elements of an
arbitrary data type.

In general, we can handle a type σ if we can handle some representation type τ
that is isomorphic to σ. ☞ The details of the representation type are largely
irrelevant. When programming a generic function it suffices to know the two
mappings that witness the isomorphism.

data Iso α β = Iso{fromData :: β → α, toData :: α → β}

10 JJ J I II 2

Defining generic functions: the signature

Turning to the implementation of showBin, we first have to provide the signature
of the generic function.

newtype ShowBin α = ShowBin{appShowBin :: α → Bin }

☞ This is not a newtype declaration ().

Data compression does not work for arbitrary types, but only for types that are
representable.

showBin :: (Rep α) ⇒ α → Bin
showBin = appShowBin rep

Loosely speaking, we apply the generic function to the type representation rep.

11 JJ J I II 2

Defining generic functions: the definition itself

The generic function performs a case analysis on types.

instance Generic ShowBin where
unit = ShowBin (λx → [])
plus = ShowBin (λx → case x of Inl l → 0 : showBin l

Inr r → 1 : showBin r)
pair = ShowBin (λx → showBin (outl x) ++ showBin (outr x))
datatype descr iso

= ShowBin (λx → showBin (fromData iso x))
char = ShowBin (λx → bits 7 x)
int = ShowBin (λx → bits 16 x)

☞ This is not an instance declaration ().

12 JJ J I II 2

Defining a new type

Recall: a generic function such as showBin can only be instantiated to a
representable type.

By default, only the elementary types, Unit , Plus , and Pair , and the primitive
types Char and Int are representable.

The declaration below makes the type Tree representable.

instance (Rep α) ⇒ Rep (Tree α) where
rep = datatype ("Leaf" ./ 1 .| "Fork" ./ 2) -- syntax

(Iso fromTree toTree) -- semantics

13 JJ J I II 2

Defining a new type: specifying the syntax

The expression "Leaf" ./ 1 .| "Fork" ./ 2 is of type DataDescr and specifies the
syntax of a data declaration.

type Name = String

type Arity = Int

data DataDescr = NoData
| ConDescr{name :: Name, arity :: Arity }
| Alt {getl :: DataDescr , getr :: DataDescr }

infix 2 ./
infixr 1 .|
f ./ n = ConDescr{name = f , arity = n }
d1 .| d2 = Alt {getl = d1, getr = d2}

14 JJ J I II 2

Defining a new type: specifying the semantics

The semantics of a data declaration is given by an isomorphic type, the structure
type, which must be representable.

type Tree ′ α = Plus (Constr α) (Constr (Pair (Tree α) (Tree α)))

fromTree :: Tree α → Tree ′ α
fromTree (Leaf x) = Inl (Constr x)
fromTree (Fork l r) = Inr (Constr (Pair l r))

toTree :: Tree ′ α → Tree α
toTree (Inl (Constr x)) = Leaf x
toTree (Inr (Constr (Pair l r))) = Fork l r

The type Constr marks the occurrences of constructors.

newtype Constr α = Constr{arg :: α}

15 JJ J I II 2

Defining a new type

Haskell’s list data type can be treated in a similar manner.

fromList :: [α] → Plus Unit (Pair α [α])
fromList [] = Inl Unit
fromList (x : xs) = Inr (Pair x xs)

toList :: Plus Unit (Pair α [α]) → [α]
toList (Inl Unit) = []
toList (Inr (Pair x xs)) = x : xs

16 JJ J I II 2

Implementation: type case

Th class Generic accommodates the different instances of a generic function.

class Generic g where
unit :: g Unit
plus :: (Rep α,Rep β) ⇒ g (Plus α β)
pair :: (Rep α,Rep β) ⇒ g (Pair α β)
datatype :: (Rep α) ⇒ DataDescr → Iso α β → g β
char :: g Char
int :: g Int
list :: (Rep α) ⇒ g [α]
constr :: (Rep α) ⇒ g (Constr α)

list = datatype ("[]" ./ 0 .| ":" ./ 2) (Iso fromList toList)
constr = datatype ("Constr" ./ 1) (Iso arg Constr)

The class abstracts over the type constructor g , the type of a generic function.

17 JJ J I II 2

Implementation: type representation

What does it mean for a type to be representable?

For our purposes, this simply means that we can instantiate a generic function to
that type.

So an intriguing choice is to identify type representations with generic functions.

class Rep α where
rep :: (Generic g) ⇒ g α

☞ The type variable g is universally quantified: the type representation must
work for all instances of g .

18 JJ J I II 2

Implementation: type representation

A type is representable if we can instantiate a generic function to that type.

instance Rep Unit where
rep = unit

instance (Rep α,Rep β) ⇒ Rep (Plus α β) where
rep = plus

instance (Rep α,Rep β) ⇒ Rep (Pair α β) where
rep = pair

instance Rep Char where
rep = char

instance Rep Int where
rep = int

instance (Rep α) ⇒ Rep [α] where
rep = list

instance (Rep α) ⇒ Rep (Constr α) where
rep = constr

19 JJ J I II 2

Implementation: type representation

The type of rep is quite remarkable:

rep :: (Rep α,Generic g) ⇒ g α

In a sense, rep can be seen as the mother of all generic functions.

20 JJ J I II 2

A generic prettier printer

pretty :: (Rep α) ⇒ α → Doc
pretty = pretty ′ NoData

The helper function pretty ′ is defined generically:

newtype Pretty ′ α = Pretty ′{applyPretty ′ :: DataDescr → α → Doc}
pretty ′ :: (Rep α) ⇒ DataDescr → α → Doc
pretty ′ = applyPretty ′ rep

21 JJ J I II 2

A generic prettier printer

instance Generic Pretty ′ where
unit = Pretty ′ (λd x → empty)
plus = Pretty ′ (λd x → case x of Inl l → pretty ′ (getl d) l

Inr r → pretty ′ (getr d) r)
pair = Pretty ′ (λd x → pretty (outl x) 〈〉 line 〈〉 pretty (outr x))
char = Pretty ′ (λd x → prettyChar x)
int = Pretty ′ (λd x → prettyInt x)
list = Pretty ′ (λd x → prettyl pretty x)
datatype descr iso

= Pretty ′ (λd x → pretty ′ descr (fromData iso x))
constr = Pretty ′ (λd x → if arity d 0 then

text (name d)
else

group (nest 1 (
text "(" 〈〉 text (name d) 〈〉 line
〈〉 pretty (arg x) 〈〉 text ")")))

22 JJ J I II 2

A generic prettier printer

For completeness:

prettyl :: (α → Doc) → ([α] → Doc)
prettyl p [] = text "[]"
prettyl p (a : as) = group (nest 1 (text "[" 〈〉 p a 〈〉 rest as))

where rest [] = text "]"
rest (x : xs) = text "," 〈〉 line 〈〉 p x 〈〉 rest xs

23 JJ J I II 2

Extensions and variations

I Additional type cases (extending the Generic class).

I Default type cases (using default methods).

I Mutually recursive definitions (easy).

I Generic functions on type constructors (size :: (FRep ϕ) ⇒ ϕ α → Int).

I Abstraction over two type parameters (map).

I Multiple representation types.

24 JJ J I II 2

Conclusion

I Pro: It’s Haskell 98!

I Con: Generic data types are out of reach.

I Con: Not suitable for a general-purpose library.

I Without type classes: you need records with polymorphic components.

25 JJ J I II 2

