Generics for the masses

RALF HINZE

Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn, Germany
Email: ralf@informatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/~ralf

September, 2004

(Pick the slides at .../~ralf/talks.html#T37.)
Motivation

In Haskell, showing values of a data type is easy.

```haskell
data Tree α = Leaf α | Fork (Tree α) (Tree α)
deriving (Show)
```

Simply attach a deriving clause to the data type declaration; a suitable `show` function is then automatically generated by the compiler.

This `show` function is, for instance, implicitly called on the command line (the function `tree` has type `[α] → Tree α`).

```haskell
Main> tree [0..3]
Fork (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf 2) (Leaf 3))
```
Motivation

However, the display of larger data structures is not especially pretty, due to lack of indentation.

```
Main) tree [0..9]
Fork (Fork (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf 2) (Fork (Leaf 3) (Leaf 4))))
   (Fork (Fork (Leaf 5) (Leaf 6)) (Fork (Leaf 7) (Fork (Leaf 8) (Leaf 9))))
```

Urks.
We need a prettier printer.

This talk shows how to define a generic prettier printer and other generic functions.

A generic function is a function that can be instantiated on many data types to obtain data type specific functionality. Examples of generic functions are the functions that can be derived in Haskell, such as `show`, `read`, and `==`.
Motivation

Salient features of the approach.

- It’s Haskell 98! No extensions, no fancy type systems, no preprocessors required.
- ... so you can play with it, modify it, extend it, adapt it to your needs.

In a nutshell:

- The definition of generic functions works ‘as before’.
- A little bit of extra work is required for each newly defined data type.
Let us start with a simpler, albeit related function: a **generic data compressor**.

For simplicity, we represent a binary string by a list of bits.

```haskell
type Bin = [Bit]
data Bit = 0 | 1 deriving (Show)
bites :: (Enum α) ⇒ Int → α → Bin
```

The function `bits` encodes an element of an enumeration type using the specified number of bits.

We seek to generalise `bits` to a function `showBin` that works for arbitrary types.
Warmup: data compression

Here is an interactive session that illustrates the use of `showBin` (characters consume 7 bits and integers 16 bits).

```haskell
Main⟩ showBin (3 :: Int)
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
Main⟩ showBin ([3, 5] :: [Int])
[1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Main⟩ showBin "Lisa"
[1,0,0,1,1,0,0,1,1,1,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,1,1,0]
```

You get the idea . . .
Implementing \textit{showBin} so that it works for arbitrary data types seems like a hard nut to crack.

Fortunately, it suffices to define \textit{showBin} for primitive types and for three elementary types: the one-element type, the binary sum, and the binary product.

\begin{verbatim}
data Unit = Unit
data Plus α β = Inl α | Inr β
data Pair α β = Pair{ outl :: α, outr :: β}
\end{verbatim}

Why these types?
Because a `data` declaration introduces a type that is isomorphic to a sum of products.

If we know how to compress sums and products, we can compress elements of an arbitrary data type.

In general, we can handle a type \(\sigma \) if we can handle some representation type \(\tau \) that is isomorphic to \(\sigma \). The details of the representation type are largely irrelevant. When programming a generic function it suffices to know the two mappings that witness the isomorphism.

```haskell
data Iso \( \alpha \ \beta \) = Iso\{ fromData :: \( \beta \to \alpha \), toData :: \( \alpha \to \beta \) \}
```
Turning to the implementation of \textit{showBin}, we first have to provide the signature of the generic function.

\begin{verbatim}
newtype ShowBin α = ShowBin{ appShowBin :: α → Bin }
\end{verbatim}

This is not a newtype declaration ().

Data compression does not work for arbitrary types, but only for types that are representable.

\begin{verbatim}
showBin :: (Rep α) ⇒ α → Bin
showBin = appShowBin rep
\end{verbatim}

Loosely speaking, we apply the generic function to the type representation \textit{rep}.
The generic function performs a case analysis on types.

```haskell
instance Generic ShowBin where
    unit = ShowBin (\x -> [])
    plus = ShowBin (\x -> case x of Inl l -> 0 \showBin l
                      Inr r -> 1 \showBin r)
    pair = ShowBin (\x -> showBin (outl x) ++ showBin (outr x))
    datatype descr iso
        = ShowBin (\x -> showBin (fromData iso x))
    char = ShowBin (\x -> bits 7 x)
    int  = ShowBin (\x -> bits 16 x)
```

This is not an instance declaration (↩).
Defining a new type

Recall: a generic function such as `showBin` can only be instantiated to a representable type.

By default, only the elementary types, `Unit`, `Plus`, and `Pair`, and the primitive types `Char` and `Int` are representable.

The declaration below makes the type `Tree` representable.

```haskell
instance (Rep α) ⇒ Rep (Tree α) where
  rep = datatype ("Leaf" ./ 1 .| "Fork" ./ 2) -- syntax
  (Iso fromTree toTree) -- semantics
```
Defining a new type: specifying the syntax

The expression "Leaf" ./ 1 .| "Fork" ./ 2 is of type \texttt{DataDescr} and specifies the syntax of a \texttt{data} declaration.

\begin{verbatim}
type Name = String
type Arity = Int
data DataDescr = NoData |
 ConDescr {name :: Name, arity :: Arity}
 Alt {getl :: DataDescr, getr :: DataDescr}

infix 2 ./
infixr 1 .|

f ./ n = ConDescr {name = f, arity = n}
d_1 .| d_2 = Alt {getl = d_1, getr = d_2}
\end{verbatim}
The semantics of a `data` declaration is given by an isomorphic type, the `structure` type, which must be representable.

```
type Tree' α = Plus (Constr α) (Constr (Pair (Tree α) (Tree α)))
fromTree :: Tree α → Tree' α
fromTree (Leaf x) = Inl (Constr x)
fromTree (Fork l r) = Inr (Constr (Pair l r))
toTree :: Tree' α → Tree α
toTree (Inl (Constr x)) = Leaf x
toTree (Inr (Constr (Pair l r))) = Fork l r
```

The type `Constr` marks the occurrences of constructors.

```
newtype Constr α = Constr{ arg :: α }
```
Defining a new type

Haskell’s list data type can be treated in a similar manner.

\[
\begin{align*}
\text{fromList} &: [\alpha] \rightarrow \text{Plus Unit (Pair } \alpha [\alpha]) \\
\text{fromList } [] &= \text{Inl Unit} \\
\text{fromList } (x : xs) &= \text{Inr (Pair } x xs) \\
\text{toList} &: \text{Plus Unit (Pair } \alpha [\alpha]) \rightarrow [\alpha] \\
\text{toList } (\text{Inl Unit}) &= [] \\
\text{toList } (\text{Inr (Pair } x xs)) &= x : xs
\end{align*}
\]
The class *Generic* accommodates the different instances of a generic function.

```plaintext
class Generic g where
  unit :: g Unit
  plus :: (Rep α, Rep β) ⇒ g (Plus α β)
  pair :: (Rep α, Rep β) ⇒ g (Pair α β)
  datatype :: (Rep α) ⇒ DataDescr → Iso α β → g β
  char :: g Char
  int :: g Int
  list :: (Rep α) ⇒ g [α]
  constr :: (Rep α) ⇒ g (Constr α)

list = datatype ("[]" ./ 0 ./ ":" ./ 2) (Iso fromList toList)
constr = datatype ("Constr" ./ 1) (Iso arg Constr)
```

The class abstracts over the type constructor *g*, the type of a generic function.
What does it mean for a type to be representable?

For our purposes, this simply means that we can instantiate a generic function to that type.

So an intriguing choice is to **identify** type representations with generic functions.

```haskell
class Rep α where
  rep :: (Generic g) ⇒ g α
```

 반드시 The type variable \(g \) is universally quantified: the type representation must work for **all** instances of \(g \).
A type is representable if we can instantiate a generic function to that type.

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep Unit</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep (Plus α β)</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = plus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep (Pair α β)</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = pair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep Char</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = char</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep Int</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = int</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep [α]</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = list</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>instance</th>
<th>Rep (Constr α)</th>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep = constr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The type of \(rep \) is quite remarkable:

\[
rep :: (\text{Rep } \alpha, \text{Generic } g) \Rightarrow g \alpha
\]

In a sense, \(rep \) can be seen as the mother of all generic functions.
A generic prettier printer

pretty :: (Rep α) ⇒ α → Doc
pretty = pretty' NoData

The helper function \(\text{pretty}' \) is defined generically:

newtype Pretty' α = Pretty'\{ applyPretty' :: DataDescr → α → Doc \}
pretty' :: (Rep α) ⇒ DataDescr → α → Doc
pretty' = applyPretty' rep
instance Generic Pretty' where

unit = Pretty' (λd x → empty)
plus = Pretty' (λd x → case x of Inl l → pretty' (getl d) l
 Inr r → pretty' (getr d) r)
pair = Pretty' (λd x → pretty (outl x) ⟨⟩ line ⟨⟩ pretty (outr x))
char = Pretty' (λd x → prettyChar x)
int = Pretty' (λd x → prettyInt x)
list = Pretty' (λd x → prettyl pretty x)
datatype descr iso
 = Pretty' (λd x → pretty' descr (fromData iso x))
constr = Pretty' (λd x → if arity d == 0 then
 text (name d)
 else
 group (nest 1 (text "(" ⟨⟩ text (name d) ⟨⟩ line
 ⟨⟩ pretty (arg x) ⟨⟩ text ")")"))))
A generic prettier printer

For completeness:

\[
\text{prettyl} \quad :: \quad (\alpha \to \text{Doc}) \to ([\alpha] \to \text{Doc}) \\
\text{prettyl} \quad p \quad [] \quad = \quad \text{text} \quad "\[\]"
\]

\[
\text{prettyl} \quad p \quad (a : as) \quad = \quad \text{group} \quad (\text{nest} \quad 1 \quad (\text{text} \quad "[" \quad \langle\rangle \quad p \quad a \quad \langle\rangle \quad \text{rest} \quad as\rangle))
\]

where

\[
\begin{align*}
\text{rest} \quad [] & \quad = \quad \text{text} \quad ""]" \\
\text{rest} \quad (x : xs) & \quad = \quad \text{text} \quad "," \quad \langle\rangle \quad \text{line} \quad \langle\rangle \quad p \quad x \quad \langle\rangle \quad \text{rest} \quad xs
\end{align*}
\]
Extensions and variations

- Additional type cases (extending the Generic class).
- Default type cases (using default methods).
- Mutually recursive definitions (easy).
- Generic functions on type constructors \((\text{size} :: (FRep \varphi) \Rightarrow \varphi \alpha \rightarrow \text{Int})\).
- Abstraction over two type parameters \((\text{map})\).
- Multiple representation types.
Conclusion

- **Pro:** It’s Haskell 98!
- **Con:** Generic data types are out of reach.
- **Con:** Not suitable for a general-purpose library.
- **Without type classes:** you need records with polymorphic components.
Ceci n’est pas une pipe.