Generics for the masses

RALF HINZE

Institut für Informatik III, Universität Bonn Römerstraße 164, 53117 Bonn, Germany Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf

September, 2004

(Pick the slides at .../~ralf/talks.html#T37.)

In Haskell, showing values of a data type is easy.

data Tree $\alpha = Leaf \ \alpha \mid Fork \ (Tree \ \alpha) \ (Tree \ \alpha)$ deriving (Show)

Simply attach a deriving clause to the data type declaration; a suitable show function is then automatically generated by the compiler.

This *show* function is, for instance, implicitly called on the command line (the function *tree* has type $[\alpha] \rightarrow Tree \alpha$).

 $\begin{array}{ll} Main \rangle & tree \ [0..3] \\ Fork \ (Fork \ (Leaf \ 0) \ (Leaf \ 1)) \ (Fork \ (Leaf \ 2) \ (Leaf \ 3)) \end{array}$

However, the display of larger data structures is not especially pretty, due to lack of indentation.

 $\begin{array}{ll} Main\rangle & tree \ [0\,.\,.\,9] \\ Fork \ (Fork \ (Fork \ (Leaf \ 0) \ (Leaf \ 1)) \ (Fork \ (Leaf \ 2) \ (Fork \ (Leaf \ 3) \ (Leaf \ 4)))) \ (Fork \ (Fork \ (Leaf \ 5) \ (Leaf \ 6)) \ (Fork \ (Leaf \ 7) \ (Fork \ (Leaf \ 8) \ (Leaf \ 9)))) \end{array}$

Urks.

If We need a prettier printer.

This talk shows how to define a generic prettier printer and other generic functions.

A generic function is a function that can be instantiated on many data types to obtain data type specific functionality. Examples of generic functions are the functions that can be derived in Haskell, such as *show*, *read*, and '=='.

Motivation

Salient features of the approach.

- It's Haskell 98! No extensions, no fancy type systems, no preprocessors required.
- ▶ ... so you can play with it, modify it, extend it, adapt it to your needs.

In a nutshell:

- ▶ The definition of generic functions works 'as before'.
- ► A little bit of extra work is required for each newly defined data type.

Warmup: data compression

Let us start with a simpler, albeit related function: a generic data compressor. For simplicity, we represent a binary string by a list of bits.

type Bin = [Bit] **data** Bit = 0 | 1 **deriving** (Show) $bits \qquad :: (Enum \alpha) \Rightarrow Int \rightarrow \alpha \rightarrow Bin$

The function bits encodes an element of an enumeration type using the specified number of bits.

We seek to generalise bits to a function showBin that works for arbitrary types.

Warmup: data compression

Here is an interactive session that illustrates the use of showBin (characters consume 7 bits and integers 16 bits).

You get the idea ...

Defining generic functions: elementary types

Implementing showBin so that it works for arbitrary data types seems like a hard nut to crack.

Fortunately, it suffices to define *showBin* for primitive types and for three elementary types: the one-element type, the binary sum, and the binary product.

data Unit = Unitdata $Plus \alpha \beta = Inl \alpha | Inr \beta$ data $Pair \alpha \beta = Pair \{ outl :: \alpha, outr :: \beta \}$

Why these types?

Defining generic functions: representation types

Because a data declaration introduces a type that is isomorphic to a sum of products.

If we know how to compress sums and products, we can compress elements of an arbitrary data type.

In general, we can handle a type σ if we can handle some representation type τ that is isomorphic to σ . representation type are largely irrelevant. When programming a generic function it suffices to know the two mappings that witness the isomorphism.

data Iso $\alpha \beta = Iso\{from Data :: \beta \to \alpha, to Data :: \alpha \to \beta\}$

Defining generic functions: the signature

Turning to the implementation of showBin, we first have to provide the signature of the generic function.

newtype ShowBin α = ShowBin{ appShowBin :: $\alpha \rightarrow Bin$ }

 \checkmark This is not a newtype declaration (\checkmark).

Data compression does not work for arbitrary types, but only for types that are representable.

 $showBin :: (Rep \ \alpha) \Rightarrow \alpha \rightarrow Bin$ $showBin = appShowBin \ rep$

Loosely speaking, we apply the generic function to the type representation rep.

Defining generic functions: the definition itself

The generic function performs a case analysis on types.

instance Generic ShowBin where $unit = ShowBin (\lambda x \rightarrow [])$ $plus = ShowBin (\lambda x \rightarrow case x of Inl \ l \rightarrow 0 : showBin \ l$ $Inr \ r \rightarrow 1 : showBin \ r)$ $pair = ShowBin (\lambda x \rightarrow showBin \ (outl \ x) + showBin \ (outr \ x))$ $datatype \ descr \ iso$ $= ShowBin \ (\lambda x \rightarrow showBin \ (fromData \ iso \ x))$ $char = ShowBin \ (\lambda x \rightarrow bits \ 7 \ x)$ $int = ShowBin \ (\lambda x \rightarrow bits \ 16 \ x)$

 \checkmark This is not an instance declaration (\checkmark).

Recall: a generic function such as showBin can only be instantiated to a representable type.

By default, only the elementary types, Unit, Plus, and Pair, and the primitive types Char and Int are representable.

The declaration below makes the type *Tree* representable.

 $\begin{array}{ll} \textbf{instance} \; (Rep \; \alpha) \Rightarrow Rep \; (Tree \; \alpha) \; \textbf{where} \\ rep = datatype \; ("Leaf" ./ 1 .| "Fork" ./ 2) & -- \; \text{syntax} \\ (Iso \; from Tree \; to Tree) & -- \; \text{semantics} \end{array}$

Defining a new type: specifying the syntax

The expression "Leaf" ./1.| "Fork" ./2 is of type DataDescr and specifies the syntax of a data declaration.

Defining a new type: specifying the semantics

The semantics of a data declaration is given by an isomorphic type, the structure type, which must be representable.

type Tree' $\alpha = Plus (Constr \alpha)$	$(\mathbf{C}$	$Constr (Pair (Tree \alpha) (Tree \alpha)))$
fromTree	::	Tree $\alpha \to Tree' \alpha$
from Tree (Leaf x)	=	Inl (Constr x)
$from Tree \ (Fork \ l \ r)$	=	Inr (Constr (Pair l r))
toTree	::	$Tree' \alpha \rightarrow Tree \alpha$
to Tree (Inl (Constr x))	=	Leaf x
to Tree (Inr (Constr (Pair l r)))	=	Fork l r

The type *Constr* marks the occurrences of constructors.

newtype Constr $\alpha = Constr \{ arg :: \alpha \}$

Haskell's list data type can be treated in a similar manner.

fromList	:: $[\alpha] \rightarrow Plus \ Unit \ (Pair \ \alpha \ [\alpha])$
fromList []	$= Inl \ Unit$
fromList (x : xs)	= Inr (Pair x xs)
toList	:: Plus Unit (Pair $\alpha [\alpha]) \rightarrow [\alpha]$
toList (Inl Unit)	=[]
toList (Inr (Pair x xs))	= x : xs

Implementation: type case

Th class *Generic* accommodates the different instances of a generic function.

class Gene	eric g where	
unit	::	g Unit
plus	$:: (Rep \ \alpha, Rep \ \beta) \Rightarrow$	$g \ (Plus \ lpha \ eta)$
pair	$:: (Rep \ \alpha, Rep \ \beta) \Rightarrow$	$g (Pair \ \alpha \ \beta)$
datatype	$:: (Rep \ \alpha) \Rightarrow DataDescr \rightarrow Iso \ \alpha \ \beta -$	$\rightarrow g \beta$
char		g Char
int	::	g Int
list	$:: (Rep \ \alpha) \Rightarrow$	$g\left[lpha ight]$
constr	$:: (Rep \ \alpha) \Rightarrow$	$g(Constr \ lpha)$
list	= datatype ("[]"./0. ":"./2) (Iso)	fromList toList)
constr	= datatype ("Constr"./1) (Iso	arg Constr)

The class abstracts over the type constructor g, the type of a generic function.

Implementation: type representation

What does it mean for a type to be representable?

For our purposes, this simply means that we can instantiate a generic function to that type.

So an intriguing choice is to identify type representations with generic functions.

class $Rep \ \alpha$ **where** $rep :: (Generic \ g) \Rightarrow g \ \alpha$

 \bigcirc The type variable g is universally quantified: the type representation must work for all instances of g.

Implementation: type representation

A type is representable if we can instantiate a generic function to that type.

instance	Rep	Unit	where
rep = unit			
instance $(Rep \ \alpha, Rep \ \beta) \Rightarrow$	Rep	(Plus $\alpha \beta$)	where
rep = plus			
instance $(Rep \ \alpha, Rep \ \beta) \Rightarrow$	Rep	(Pair $\alpha \beta$)	where
rep = pair			
instance	Rep	Char	where
rep = char			
instance	Rep	Int	where
rep = int			
instance $(Rep \ \alpha) \Rightarrow$	Rep	$[\alpha]$	where
rep = list			
instance $(Rep \ \alpha) \Rightarrow$	Rep	$(Constr \alpha)$	where
rep = constr			

Implementation: type representation

The type of *rep* is quite remarkable:

 $\mathit{rep} :: (\mathit{Rep} \ \alpha, \mathit{Generic} \ g) \Rightarrow g \ \alpha$

In a sense, rep can be seen as the mother of all generic functions.

A generic prettier printer

 $\begin{array}{l} pretty :: (Rep \ \alpha) \Rightarrow \alpha \rightarrow Doc \\ pretty = pretty' \ NoData \end{array}$

The helper function pretty' is defined generically:

newtype $Pretty' \alpha = Pretty' \{ applyPretty' :: DataDescr \rightarrow \alpha \rightarrow Doc \}$ $pretty' :: (Rep \ \alpha) \Rightarrow DataDescr \rightarrow \alpha \rightarrow Doc$ pretty' = applyPretty' rep

A generic prettier printer

instance Generic Pretty' where unit = Pretty' ($\lambda d \ x \rightarrow empty$) plus = Pretty' ($\lambda d \ x \rightarrow case \ x \text{ of } Inl \ l \rightarrow pretty' (getl \ d) \ l$ Inr $r \rightarrow pretty' (qetr d) r$ pair = Pretty' ($\lambda d \ x \rightarrow pretty$ (outl x) (\rangle line (\rangle pretty (outr x)) char = Pretty' ($\lambda d \ x \rightarrow prettyChar \ x$) int = Pretty' ($\lambda d \ x \rightarrow prettyInt \ x$) *list* = *Pretty'* ($\lambda d \ x \rightarrow prettyl \ prettyl \ x$) datatype descr iso = Pretty' ($\lambda d \ x \rightarrow pretty' \ descr \ (from Data \ iso \ x)$) $constr = Pretty' \ (\lambda d \ x \rightarrow if \ arity \ d = 0 \ then$ text (name d)else group (nest 1 (text "(" $\langle \rangle$ text (name d) $\langle \rangle$ line $\langle \rangle pretty (arg x) \langle \rangle text ") \rangle$

A generic prettier printer

For completeness:

$$\begin{array}{ll} prettyl & :: (\alpha \to Doc) \to ([\alpha] \to Doc) \\ prettyl \ p \ [] & = text \ "[] \ " \\ prettyl \ p \ (a : as) & = group \ (nest \ 1 \ (text \ "[" \langle \rangle \ p \ a \ \langle \rangle \ rest \ as)) \\ \textbf{where} \ rest \ [] & = text \ "] \ " \\ rest \ (x : xs) & = text \ ", " \ \langle \rangle \ line \ \langle \rangle \ p \ x \ \langle \rangle \ rest \ xs \end{array}$$

- ► Additional type cases (extending the *Generic* class).
- Default type cases (using default methods).
- Mutually recursive definitions (easy).
- Generic functions on type constructors (size :: $(FRep \ \varphi) \Rightarrow \varphi \ \alpha \rightarrow Int$).
- ▶ Abstraction over two type parameters (*map*).
- Multiple representation types.

Conclusion

- ▶ Pro: It's Haskell 98!
- ► Con: Generic data types are out of reach.
- ► Con: Not suitable for a general-purpose library.
- ▶ Without type classes: you need records with polymorphic components.

