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Overview

✖ Search trees

✖ Priority search queues
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Search trees—Learning targets

✖ Persistence

✖ Red-black trees

✖ Smart constructors

✖ Number systems
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Unbalanced binary search trees

Elements in the internal nodes are stored in symmetric order.
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Unbalanced binary search trees—Haskell

In Haskell we represent binary trees with the following data type.

data STree a = Leaf | Node (STree a) a (STree a)

NB. The type STree is parameterized with the type of elements.

stree = Node (Node (Node (Leaf ) 1 (Leaf ))
2
(Node (Leaf ) 3 (Leaf )))

4
(Node (Node (Leaf ) 6 (Leaf ))

7
Leaf )
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Unbalanced binary search trees—Insertion

insert :: (Ord a) ⇒ a → STree a → STree a
insert k t = ins t

where
ins Leaf = Node Leaf k Leaf
ins (Node l a r)
| k < a = Node (ins l) a r
| k a = Node l k r
| k > a = Node l a (ins r)

NB. The type of elements must be an instance of Ord .
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Persistence

Functional data structures are always persistent: an update creates a

new structure that coexists with the old one.

Persistence is achieved via path copying. Situation after insert 8 stree:
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Note that the subtrees rooted at 2 and 6 are shared.
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Persistence

Making use of persistence:

✖ Arbitrary “undo” (text editor, image manipulation program).

✖ Nested declarations with static scoping. Idea: use a stack of

environments (only the “topmost” is active).

{ ⇐ duplicate top of stack

int j; . . . ⇐ insert j
{ ⇐ duplicate top of stack

int i; ⇐ insert i
int j; . . . ⇐ insert j

} . . . ⇐ pop top of stack

} ⇐ pop top of stack
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Balanced search trees: Red-black trees

Unbalanced search trees may degenerate. Red-black trees are among

the simplest balancing schemes.

A red-black tree is a binary tree whose nodes are coloured either red

or black (leaves are, by definition, black).

data Colour = R | B
data RBTree a = L | N Colour (RBTree a) a (RBTree a)
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Historical roots

Red-black trees were developed by R. Bayer under the name symmetric

binary B-trees as binary tree representations of 2-3-4 trees (a 2-3-4

tree consists of 2-, 3- and 4-nodes and satisfies the invariant that all

leaves appear on the same level).

The idea of red-black trees is to represent 3- and 4-nodes by small

binary trees, which consist of a black root and one or two auxiliary red

children.
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Balance conditions

This explains the following two balance conditions.

Red condition: Each red node has a black parent.

Black condition: Each path from the root to an empty node contains

exactly the same number of black nodes (this number is called the

tree’s black height).
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Example red-black trees

There are two ways to color the above tree.
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Properties of red-black trees

The balance conditions imply the following properties—recall that∑n
k=0 xk = (1− xn+1)/(1− x).

black-depth t 6 depth t 6 2 · black-depth t

2 ↑ black-depth t − 1 6 size t 6 4 ↑ black-depth t − 1

depth t 6 2 · lg (size t + 1)

In other words, red-black trees guarantee O(log n) worst-case running

time of basic dynamic-set operations.
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Red-black trees: Insertion

insert :: (Ord a) ⇒ a → RBTree a → RBTree a
insert a t = blacken (ins t)

where
ins L = N R L a L
ins (N c l b r)

| a < b = bal c (ins l) b r
| a b = N c l a r
| a > b = bal c l b (ins r)

blacken (N l a r) = N B l a r

NB. bal is a so-called smart constructor.
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Red-black trees: Balancing

Since a new node is colored red, only the red condition is possibly

violated. The smart constructor bal detects and repairs such violations.

bal B (N R (N R t1 a1 t2) a2 t3) a3 t4
= N R (N B t1 a1 t2) a2 (N B t3 a3 t4)

bal B (N R t1 a1 (N R t2 a2 t3)) a3 t4
= N R (N B t1 a1 t2) a2 (N B t3 a3 t4)

bal B t1 a1 (N R (N R t2 a2 t3) a3 t4)
= N R (N B t1 a1 t2) a2 (N B t3 a3 t4)

bal B t1 a1 (N R t2 a2 (N R t3 a3 t4))
= N R (N B t1 a1 t2) a2 (N B t3 a3 t4)

bal c l a r = N c l a r
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Building red-black trees

We can build a red-black tree by repeatedly inserting elements into an

empty tree.

top-down :: (Ord a) ⇒ [a ] → RBTree a
top-down = foldr insert L

NB. The elements are inserted from right to left.

Now, assume that the elements are given in increasing order. Can we

improve top-down, which has a running time of O(n log n), for this

special case?
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n = 14 n = 15

n = 22 n = 23

n = 31
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A closer look at top-down

The following trees are generated by top-down [1 . . i ] for 1 6 i 6 8.

NB. ins always traverses the left spine of the tree to the leftmost

leaf.
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A closer look at top-down

If we draw the left spine horizontally, the balancing operation (first

equation of bal) takes on the following form.

t1 a1

t2

a2

t3

a3

t4

7−→
t1 a1

t2

a2

a3

t3 t4

☞ The trees below the left spine (t2, t3 and t4) must be perfectly

balanced binary trees (perfect trees for short). Thus, the generated

red-black trees correspond to sequences of topped perfect trees or

pennants.

☞ A pennant of rank r contains exactly 2r nodes.
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A closer look at top-down

It is helpful to redraw the examples according to the left-spine view.

Let r be the rank of the rightmost pennant; the black condition implies

that a pennant of rank i appears either once or twice for all 0 6 i 6 r .

☞ The red-black trees generated by top-down correspond to ‘binary

numbers’ composed of the digits 1 and 2.
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The 1-2 number system

Recall that the value of a radix-2 number is given by

(bn−1 . . . b0)2 =
n−1∑

i=0

bi2i.

Each natural number has a unique representation in the 1-2 number

system.

()2, (1)2, (2)2, (11)2, (12)2, (21)2, (22)2, (111)2, (112)2 . . .
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The 1-2 number system—Haskell

data Digit = One | Two
type Nat = [Digit ]

Incrementing a 1-2 number:

incr :: Nat → Nat
incr n = add One n
add :: Digit → Nat → Nat
add One [ ] = [One ]
add One (One : ds) = Two : ds
add One (Two : ds) = One : add One ds

NB. The carry is made explicit.
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Corollaries

The trees corresponding to (1{n})1-2 are perfectly balanced; the trees

corresponding to (2{n})1-2 and (12{n})1-2 are skinny trees (a skinny

tree is a tree of smallest possible size for a given height); the trees

corresponding to (1{n}2)1-2 and (21{n})1-2 are left-complete trees.

(1222)1-2 (2111)1-2
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Improving top-down

The analogy to the 1-2 number system can be exploited to improve

the implementation of top-down for the special case that the elements

appear in ascending order. The digits become containers for pennants:

data Digit a = One a (RBTree a)
| Two a (RBTree a) a (RBTree a) .

A red-black tree under the left-spine view is represented as a list of

digits.

type RBTree ′ a = [Digit a ] .
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Improving top-down

Inserting an element corresponds to incrementing a 1-2 number.

insert ′ :: a → RBTree ′ a → RBTree ′ a
insert ′ a ps = add (One a L) ps

add (One a t) [ ] = [One a t ]
add (One a1 t1) (One a2 t2 : ps) = Two a1 t1 a2 t2 : ps
add (One a1 t1) (Two a2 t2 a3 t3 : ps)

= One a1 t1 : add (One a2 (N B t2 a3 t3)) ps
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Improving top-down

bottom-up :: [a ] → RBTree a
bottom-up = foldl link L · foldr insert ′ [ ]
link :: RBTree a → Digit a → RBTree a
link l (One a t) = N B l a t
link l (Two a1 t1 a2 t2) = N B (N R l a1 t1) a2 t2

If as is ordered, we have top-down as = bottom-up as.

☞ A standard amortization argument shows that bottom-up runs in

linear time.

☞ top-down and bottom-up construct trees with a minimal number

of red nodes among all trees of that size.
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Overview

✔ Search trees

✖ Priority search queues
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Priority search queues—Learning targets

✖ Views

✖ Tournament trees

✖ Priority search pennants
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Views

A view allows any type to be viewed as a free data type. The following

view (minimum view) allows any list to be viewed as an ordered list.

view (Ord a) ⇒ [a ] = Empty | Min a [a ] where
[ ] → Empty
a1 : Empty → Min a1 [ ]
a1 : Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

A view declaration for a type T consists of an anonymous data type,

the view type, and an anonymous function, the view transformation,

that shows how to map elements of T to the view type.
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Views

The view constructors, Empty and Min, can now be used to pattern

match elements of type [a ] (where a is an instance of Ord).

selection-sort :: (Ord a) ⇒ [a ] → [a ]
selection-sort Empty = [ ]
selection-sort (Min a as) = a : selection-sort as.

However, the view constructors Empty and Min must not be used

in expressions—with the notable exception of the view transformation

itself.
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Priority search queues: signature

Priority search queues are conceptually finite maps that support

efficient access to the binding with the minimum value, where a

binding is an argument-value pair and a finite map is a finite set of

bindings.

key :: (k , p) → k
key (k , p) = k
prio :: (k , p) → p
prio (k , p) = p.
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data PSQ k p
-- constructors

∅ :: PSQ k p
{·} :: (k , p) → PSQ k p
insert :: (k , p) → PSQ k p → PSQ k p
from-ord-list :: [(k , p)] → PSQ k p

-- destructors

view PSQ k p = Empty | Min (k , p) (PSQ k p)
delete :: k → PSQ k p → PSQ k p

-- observers

lookup :: k → PSQ k p → Maybe p
to-ord-list :: PSQ k p → [(k , p)]

-- modifier

adjust :: (p → p) → k → PSQ k p → PSQ k p
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Application: single-source shortest path

Dijkstra’s algorithm maintains a queue that maps each vertex to its

estimated distance from the source and works by repeatedly removing

the vertex with minimal distance and updating the distances of its

adjacent vertices.

The update operation is typically called decrease:

decrease :: (k , p) → PSQ k p → PSQ k p
decrease (k , p) q = adjust (min p) k q
decrease-list :: [(k , p)] → PSQ k p → PSQ k p
decrease-list bs q = foldr decrease q bs.
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Application: single-source shortest path

type Weight = Vertex → Vertex → Double
dijkstra :: Graph → Weight → Vertex

→ [(Vertex ,Double)]
dijkstra g w s = loop (decrease (s, 0) q0)

where
q0 = from-ord-list [(v , +∞) | v ← vertices g ]
loop Empty = [ ]
loop (Min (u, d) q)

= (u, d) : loop (decrease-list bs q)
where bs = [(v , d + w u v) | v ← adjacent g u ]
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Implementation: tournament trees

Ade 4 Doaitse 2 Eelco 1 Johan 6 Lambert 3 Nigel 7 Piet 5 Vladimir 8

Doaitse 2 Eelco 1 Lambert 3 Piet 5

Eelco 1 Lambert 3

Eelco 1
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Heaps — priority search trees

Vladimir 8

Ade 4 Johan 6 Nigel 7 Piet 5

Doaitse 2 Lambert 3

Eelco 1
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Semi-heaps — priority search pennants

Ade 4 Johan 6 Nigel 7 Vladimir 8

Doaitse 2 Piet 5

Lambert 3

Eelco 1
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Priority search pennants: adding split keys

L1
W

P3
M

E2
E

C4
C

M6
L

S5
R

R7
P

W8
S
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Priority search pennants: data types

The Haskell data type for priority search pennants is a direct

implementation of these ideas.

data PSQ k p = Void
| Winner (k , p) (LTree k p) k

data LTree k p = Start
| Loser (k , p) (LTree k p) k (LTree k p)

NB. Winner b t m ∼= Loser b t m Start .

The maximum key is accessed using the function max-key.

max-key :: PSQ k p → k
max-key (Winner b t m) = m
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Priority search pennants: invariants

Semi-heap conditions: 1) Every priority in the pennant must be less

than or equal to the priority of the winner. 2) For all nodes in the

loser tree, the priority of the loser’s binding must be less than or

equal to the priorities of the bindings of the subtree, from which the

loser originates. The loser originates from the left subtree if its key

is less than or equal to the split key, otherwise it originates from the

right subtree.

Search-tree condition: For all nodes, the keys in the left subtree

must be less than or equal to the split key and the keys in the right

subtree must be greater than the split key.

Key condition: The maximum key and the split keys must also occur

as keys of bindings.

Finite map condition: The pennant must not contain two bindings

with the same key.
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Constructors: ∅ and {·}

∅ :: PSQ k p
∅ = Void
{·} :: (k , p) → PSQ k p
{b} = Winner b Start (key b).
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Playing a match

b1
m2

b2
m1

t1 t2

b1≤b2⇐=

b1
m1

t1

&

b2
m2

t2

b1>b2=⇒

b2
m2

b1
m1

t1 t2

NB. b1 6 b2 is shorthand for prio b1 6 prio b2.
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Playing a match

(&) :: PSQ k p → PSQ k p → PSQ k p
Void & t ′ = t ′

t & Void = t
Winner b t m & Winner b′ t ′ m ′

| prio b 6 prio b′ = Winner b (Loser b′ t m t ′) m ′

| otherwise = Winner b′ (Loser b t m t ′) m ′
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Constructors: from-ord-list

from-ord-list :: [(k , p)] → PSQ k p
from-ord-list = foldm (&) ∅ · map (λb → {b})

NB. foldm folds a list in a binary-sub-division fashion.
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Destructors

view PSQ k p = Empty | Min (k , p) (PSQ k p) where
Void → Empty
Winner b t m → Min b (second-best t m)

The function second-best determines the second-best player by

replaying the tournament without the champion.

second-best :: LTree k p → k → PSQ k p
second-best Start m = Void
second-best (Loser b t k u) m
| key b 6 k = Winner b t k & second-best u m
| otherwise = second-best t k & Winner b u m
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A second view:
priority search pennants as tournament trees

view PSQ k p = ∅ | {k , p} | PSQ k p & PSQ k p
where
Void → ∅
Winner b Start m → {b}
Winner b (Loser b′ tl k tr) m
| key b′ 6 k → Winner b′ tl k & Winner b tr m
| otherwise → Winner b tl k & Winner b′ tr m

NB. We have taken the liberty of using ∅, {·} and ‘&’ also as

constructors.
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Observers: to-ord-list

to-ord-list :: PSQ k p → [(k , p)]
to-ord-list ∅ = [ ]
to-ord-list {b} = [b ]
to-ord-list (tl & tr) = to-ord-list tl ++ to-ord-list tr
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Observers: lookup

lookup :: k → PSQ k p → Maybe p
lookup k ∅ = Nothing
lookup k {b}
| k key b = Just (prio b)
| otherwise = Nothing

lookup k (tl & tr)
| k 6 max-key tl = lookup k tl
| otherwise = lookup k tr
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Modifier: adjust

adjust :: (p → p) → k → PSQ k p → PSQ k p
adjust f k ∅ = ∅
adjust f k {b}
| k key b = {k , f (prio b)}
| otherwise = {b}

adjust f k (tl & tr)
| k 6 max-key tl = adjust f k tl & tr
| otherwise = tl & adjust f k tr
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Constructors: insert

insert :: (k , p) → PSQ k p → PSQ k p
insert b ∅ = {b}
insert b {b′}
| key b < key b′ = {b} & {b′}
| key b key b′ = {b} -- update

| key b > key b′ = {b′} & {b}
insert b (tl & tr)
| key b 6 max-key tl = insert b tl & tr
| otherwise = tl & insert b tr
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Destructors: delete

delete :: k → PSQ k p → PSQ k p
delete k ∅ = ∅
delete k {b}
| k key b = ∅
| otherwise = {b}

delete k (tl & tr)
| k 6 max-key tl = delete k tl & tr
| otherwise = tl & delete k tr
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Adding a balancing scheme

One of the strengths of priority search pennants as compared to priority

search trees is that a balancing scheme can be easily added.

Most balancing schemes such as red-black trees use rotations to restore

balancing invariants. However, rotations do not preserve the semi-heap

property:

F2
E

D5
B

t1 t2

t3
 =⇒

D5
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t1

F2
E

t2 t3
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Single rotation

b1
k2

b2
k1

t1 t2
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(b2 & b1) & −∞
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t2 t3

b1 & (b2 & −∞)
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Learning targets

✖ Persistence

✖ Red-black trees

✖ Smart constructors

✖ Number systems

✖ Views

✖ Tournament trees

✖ Priority search pennants
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Appendix: foldr

The function foldr captures a common pattern of recursion on lists

(it is a so-called catamorphism; the greak preposition κατα means

“downwards”).

foldr :: (a → b → b) → b → ([a ] → b)
foldr (?) e [ ] = e
foldr (?) e (a : as) = a ? foldr (?) e as

For example,

foldr (?) e (a1 : a2 : · · · : an : [ ]) = a1 ? (a2 ? (· · · ? (an ? e) · · ·)) .
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Appendix: foldl

The function foldl is similar to foldr , except that the parentheses

group from the left.

foldl :: (b → a → b) → b → ([a ] → b)
foldl (?) e [ ] = e
foldl (?) e (a : as) = foldl (?) (e ? a) as

For example,

foldl (?) e (a1 : a2 : · · · : an : [ ]) = (· · · ((e ? a1) ? a2) ? · · ·) ? an .
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Appendix: foldm

The function foldm folds a list in a binary-sub-division fashion.

foldm :: (a → a → a) → a → [a ] → a
foldm (?) e as
| null as = e
| otherwise = fst (rec (length as) as)
where rec 1 (a : as) = (a, as)

rec n as = (a1 ? a2, as2)
where m = n ‘div ‘ 2

(a1, as1) = rec (n −m) as
(a2, as2) = rec m as1
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