
1 JJ J I II 2

Constructing tournament representations:

An exercise in pointwise relational programming

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

July, 2002

(Pick the slides at .../~ralf/talks.html#T32.)

2 JJ J I II 2

Prologue

We all know and love functional programming.

☞ A functional language can be used for proving properties of programs or for
calculating programs (fold-unfold transformations).

3 JJ J I II 2

Prologue

However, there is often a need to go beyond the world of functions:

I nondeterministic problems are most easily specified in terms of relations;

I even deterministic problems that enjoy deterministic solutions may benefit
from a relational setting.

☞ Problems about functions of real variables are sometimes solved more easily
in the complex plane.

4 JJ J I II 2

A problem: tournament representations

Here is the problem:

Given a sequence x of integers, construct a heap whose inorder traversal is x
itself.

This heap is a so-called tournament representation of x .

NB. The tournament representation is unique iff the given integers are distinct.

5 JJ J I II 2

A problem: tournament representations

data Tree a = E | N (Tree a) a (Tree a)

heap :: Tree Int → Bool
heap E = True
heap (N l a r) = heap l ∧ top l > a 6 top r ∧ heap r

top :: Tree Int → Int
top E = ∞
top (N l a r) = a

list :: ∀a .Tree a → [a]
list E = []
list (N l a r) = list l ++ [a] ++ list r

6 JJ J I II 2

Skipping ahead: a Haskell solution

Our goal is to derive the following deterministic Haskell solution.

tournament :: [Int] → Tree Int
tournament x = let (t , y) = loop-to ′ (−∞) E x in t

loop-to ′ p (l , []) = (l , [])
loop-to ′ p (l , a : x)

| p > a = (l , a : x)
| otherwise = let (r , y) = loop-to ′ a (E , x) in loop-to ′ p (N l a r , y)

7 JJ J I II 2

Relational calculus

The artist’s approach to program derivation: switch to the world of relations.

Specification: we seek a function tournament :: [Int] → Tree Int such that

tournament ⊆ heap? · list ◦.

Here, heap ? ::Tree Int → Tree Int is a subset of identity and list ◦ is the
converse of list .

Characteristics: point-free reasoning, derivations employ universal properties of
operators.

8 JJ J I II 2

Relational calculus

[. . .] the calculus of relations has gained a good deal of notoriety for the
apparently enormous number of operators and laws that one has to memorise
in order to do proofs effectively.

[Richard Bird and Oege de Moor, Algebra of Programming, Prentice Hall Europe,
London, 1997].

9 JJ J I II 2

Pointwise versus point-free

Pointwise:

(x ++ y) ++ z = x ++ (y ++ z).

Point-free:

cat · (cat ∗ id) = cat · (id ∗ cat) · assocr .

[Oege de Moor and Jeremy Gibbons, Pointwise relational programming, AMAST
2000, LNCS 1816, May 2000].

10 JJ J I II 2

Functional calculus and set comprehensions

The craftsman’s approach to program derivation: stay in the world of functions
and model relations by set-valued functions.

Specification: we seek a function tournament :: [Int] → Set (Tree Int) such
that

t � tournament x ≡ list t = x , heap t .

Here, e1 � e2 is set comprehension notation (is drawn from).

Characteristics: pointwise reasoning; derivations are based on fold-unfold
transformations.

11 JJ J I II 2

Step 1: tupling

We generalize tournament to a function build :: [Int] → Set (Tree Int , [Int])
that satisfies

(t , y) � build x ≡ list t ++ y = x , heap t .

12 JJ J I II 2

Step 1: tupling

The derivation of build proceeds almost mechanically.

(t , y) � build x

≡ { specification of build }
list t ++ y = x , heap t

≡ { t has type Tree Int }
(list E ++ y = x , heap E , t = E)

∨ (list (N l a r) ++ y = x , heap (N l a r), t = N l a r)

We conduct two subproofs.

13 JJ J I II 2

Step 1: tupling

Case t = E :

list E ++ y = x , heap E

≡ { definition of list and heap }
[] ++ y = x

≡ { definition of ‘++’ }
y = x .

14 JJ J I II 2

Step 1: tupling

Case t = N l a r :

list (N l a r) ++ y = x , heap (N l a r)

≡ { definition of list and heap }
list l ++ [a] ++ list r ++ y = x , heap l , top l > a 6 top r , heap r

≡ { introduce x1 and rearrange }
list l ++ x1 = x , heap l , [a] ++ list r ++ y = x1, top l > a 6 top r , heap r

≡ { specification of build }
(l , x1) � build x , [a] ++ list r ++ y = x1, top l > a 6 top r , heap r

≡ { introduce x2 and rearrange }
(l , x1) � build x , [a] ++ x2 = x1, list r ++ y = x2, heap r , top l > a 6 top r

≡ { specification of build }
(l , x1) � build x , [a] ++ x2 = x1, (r , y) � build x2, top l > a 6 top r

≡ { definition of ‘++’ }
(l , x1) � build x , a : x2 = x1, (r , y) � build x2, top l > a 6 top r .

15 JJ J I II 2

Comprehension principle

We can turn an equivalence into an equation by applying the following
comprehension principle.

(e1 � e2 ≡ q) ≡ (e2 = {e1 | q })

16 JJ J I II 2

Step 1—summary

We have shown that the specification satisfies the following equation.

build :: [Int] → Set (Tree Int , [Int])
build x = {(E , x)}

∪ {(N l a r , y) | (l , x1) � build x ,
a : x2 = x1,
(r , y) � build x2,
top l > a 6 top r }

In fact, the specification is even the unique solution of the equation. We can
reorder the derivation into an inductive proof showing that an arbitrary solution of
the equation satisfies the specification.

NB. This is almost an executable Haskell program.

17 JJ J I II 2

Set comprehensions

Set comprehensions can be given a precise semantics via the following identities:

{e | ε} = return e
{e | b, q } = if b then {e | q } else ∅
{e | p � s , q } = s . λx → case x of p → {e | q }; → ∅,

where return and ‘.’ are unit and bind of the set monad:

return a = {a }
s . f =

⋃
{f a | a � s }.

18 JJ J I II 2

Step 2: turning top-down into bottom-up

Observation: the construction of the left subtree is ‘pure guesswork’.
Goal: eliminate the left-recursive call to build .

Using the above identities build can be put into the form

build x = a x ∪ build x . b,

for suitable functions a and b.

In a point-free style:

build = a ∪ build � b.

Here, (f ∪ g) n = f n ∪ g n and (f � g) n = f n . g .

19 JJ J I II 2

Step 2: turning top-down into bottom-up

The equation build = a ∪ build � b has the unique solution a � b∗, where (−)∗

is the reflexive, transitive closure of a relation.

The closure operator (−)∗ can be defined either as the least fixed point of a
left-recursive or of a right-recursive equation:

e∗ = return ∪ e∗ � e

e∗ = return ∪ e � e∗.

Consequently, an equivalent definition of build is

build = a � loop

loop = return ∪ b � loop.

20 JJ J I II 2

Step 2—summary

build x = loop (E , x)

loop (l , x1) = {(l , x1)}
∪ {(t , z) | a : x2 = x1,

(r , y) � loop (E , x2),
top l > a 6 top r ,
(t , z) � loop (N l a r , y)}

NB. The transformation has turned a top-down program into a bottom-up one.

21 JJ J I II 2

Step 3: promoting the tests

Goal: promote the tests top l > a 6 top r into the generation of the trees.

We specify loop-to:

p 6 top l , (t , y) � loop-to p (l , x) ≡ (t , y) � loop (l , x), p 6 top t .

NB. The specified function loop-to maintains an invariant.

22 JJ J I II 2

Step 3—summary

build x = loop-to (−∞) (E , x)

loop-to p (l , x1) = {(l , x1)}
∪ {(t , z) | a : x2 = x1,

top l > a, p 6 a,
(r , y) � loop-to a (E , x2),
(t , z) � loop-to p (N l a r , y)}

23 JJ J I II 2

Step 4: strengthening

Observation: build considers all prefixes of its argument.
Goal: calculate a variant of loop-to which consumes as many elements as possible
building maximal subtrees.

Assuming that p 6 top l we specify loop-to ′:

top l > hd x , (t , y) � loop-to ′ p (l , x)
≡ (t , y) � loop-to p (l , x), p > hd y .

Here, hd is given by:

hd :: [Int] → Int
hd [] = −∞
hd (a : x) = a.

24 JJ J I II 2

Step 4—summary

tournament x = {t | (t , y) � loop-to ′ (−∞) (E , x)}
loop-to ′ p (l , []) = {(l , [])}
loop-to ′ p (l , a : x2) = {(l , a : x2) | p > a }

∪ {(t , z) | p 6 a,
(r , y) � loop-to ′ a (E , x2),
(t , z) � loop-to ′ p (N l a r , y)}

NB. The derived program is still nondeterministic.
NB. The control structure is a combination of recursion and iteration.

25 JJ J I II 2

Epilogue

I Set comprehensions provide a convenient language for specifying and deriving
nondeterministic programs in a pointwise manner.

I They also allow for point-free arguments.

I The task of constructing tournament representations is closely related to
precedence parsing.

