An algebra of scans

RALF HINZE

Institut fur Informatik Ill, Universitat Bonn

RomerstraBe 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/ " ralf

July, 2004
(Pick the slides at .../ ralf/talks.html#T35.)

1 o 4 > » U



cilc




. more abstract

o 4 > » U



¢ Parallel prefix circuits or scans

A parallel prefix circuit or scan takes n inputs
L1y L2y Ty
and produces the n outputs

1,1 9x9y..., L1 0T90---0T,,

where ‘o’ is an arbitrary associative binary operation.

|:| Range of applications: fast integer addition, parallel sorting, convex hull
problems.
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¢"Scans as directed acyclic oriented graphs

A scan can be modelled as a directed acyclic oriented graph.

The edges are directed downwards; a node of in-degree two, an operation node,
represents the ‘sum’ of its two inputs; a node of in-degree one and out-degree
greater than one, a duplication node, distributes its input to its outputs.

|:| Measures: size, depth, fan-out (maximal out-degree of an operation node),
height difference (length of the path from the first input to the last output).

5 <« «4 > » 0O



" Aim of the talk .

|:| A description in form of a graph obscures the structure of a scan and is hard
to manipulate.

Define and manipulate scans algebraically.

|:| Using only two basic building blocks (fan and id) and four combinators
(X, ¢, >, —) all standard designs can be described succinctly and rigorously.
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" QOutline of the talk

Basic combinators (8-13)

Scan combinators and simple scans (15-19)
Stretch combinators (21-27)

A proof (29-30)

Brent-Kung and Ladner-Fischer scans (32-35)
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" Fans )

LORD DARLINGTON. ... [Sees a fan lying on the
table.] And what a wonderful fan! May | look at it?
LADY WINDERMERE. Do. Pretty, isn't it! It's got
my name on it, and everything. | have only just
seen it myself. It's my husband'’s birthday present to
me. You know to-day is my birthday?

— Oscar Wilde, Lady Windermere's Fan

|:| A scan can be seen as a composition of fans, denoted fan,,.

N NN NN NS

A fan adds its first input—counting from left to right—to each of its remaining
inputs. It consists of a duplication node and n — 1 operation nodes.
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The identity circuit of width n is denoted id,,.
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¢ Parallel or horizontal composition

Placing two circuits side by side is called parallel or horizontal composition,
denoted “x'.

N x N = NN
| x NN = [ NN
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¢ Serial or vertical composition

Placing two circuits on top of each other is called serial or vertical composition,

NN s NG = PR

|:| We require that the two circuits have the same width.
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Laws: composition

The combinators have to satisfy a number of laws: ‘§’ is associative with ¢d,, as
its neutral element; "X is associative with ¢d, as its neutral element; ‘X’
preserves identity and vertical composition (|f| denotes the width of f).

wdo X f = f
dyp sf = f [ xidy = f
fsidy = f fx(gxh) = (fxg)xh
fs(gsh) = (fsg)sh idy X id, = idyi,
fxg)s(f'xg) = (fsf)x(g359)

|:| These laws are purely structural: they do not depend on the associativity of
the underlying binary operation ‘o’ (simply because they do not involve fans).
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We specify scans as follows (scans as repeated folds):

scany = idg
SCaN, 1 = Succ scan,
succ [ = idy X [ § fan 4

Here is a scan of width 8.

T
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¢ Serial or vertical composition of scans .

Using the basic building blocks we can define derived combinators, for instance,
the serial or vertical composition of scans.

f\g = fxidy-15idy-1xg

The last output of the first circuit is fed into the first input of the second circuit.
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* Parallel or horizontal composition of scans

The second scan combinator is the parallel or horizontal composition of scans:

flg = fxgsidys X fan,,

Both circuits are placed side by side, an additional fan adds the last output of the
left circuit to each output of the right circuit.

N 1PN -
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" Properties

Zd1&f—f fﬂido_
f\id = f fllglh) =
fN(@\A) = (f\g)\h flg =

|
S

|
~
=
w
I~
(@)
)
N

|:| The last law on the right shows that the parallel composition of scans is a
serial composition in disguise (f | g and f \\ succ g are even structurally equal).

Furthermore, succ, "\\" and '[|' are scan combinators.

succ scamn, = SCAN 4
SCaM i1 \ SCAN, = SCAN 4y
scan,, || scan, = scan, i,
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¢ Serial scans

If the parallel composition is bracketed to the left, we obtain the serial scan.

sers = 1d
ser; = 1d;
ser,.1 = ser, | id;

The graphical representation illustrates why ser,, is called serial scan.

|:| The serial scan has maximum depth, but the least number of operation

nodes, namely, n — 1 among all scans of the same width.
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“"Minimum depth scans

If we balance the parallel composition evenly, we obtain scans of minimum depth.

rec,,
\ otherwise = T€Cryn /2] ﬂ TeC|n/2)

Here is a minimum-depth circuit of width 32.

|:| The tree of operation nodes that computes the last output is fully balanced,
which explains why the depth is minimal.
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¢ Stretch combinators

Horizontal and vertical composition, however, are not sufficient.

The middle part is stretched by a factor of two:
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" Stretch combinators—continued )

Another stretch combinator is ‘—" which is similar to >—" except that it connects
the first input of each group to its argument circuit.

12,3,1] > fang = [M
fang —[2,3,1] = W

The inputs of the resulting circuit are grouped according to the given positive
widths. The last respectively first input of each group is connected to the
argument circuit; the other inputs are wired through.

|:| >—"is useful for combining scans, while ‘— is a natural choice for
combining fans.
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" Derived combinators

More derived combinators:

par = foldr (X) id,

The combinator par generalizes X" and places a list of circuits side by side.

fs|—f
s par fs

fs = f = par fs 3
f<fs = f—Ifs

The combinators ‘>~" and ‘<’ are convenient variants of >—"and ‘—<': the
expression f < [fi,. .., f,] connects the i-th output of f to the first input of f;
while [fi, ..., f.] = f connects the last output of f; to the i-th input of f.
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¢ Laws: stretching

The combinators ‘—' and >—" have to satisfy a number of laws:

’ld#m—<$ = ZdEI
[ —< replicate |f| 1 = f
(f59) <z = (f <2)5(9g <2
(fxg) <(z4y) = (f <) x (9 <y
(f <2) <y = f =[Sz |z« group x y]
idiq X (f <y [k]) = ([i]#y>—f) % idp

|:| ‘— preserves identity and composition (replicate n a constructs a list
containing exactly n copies of a). The second but last law shows that nested
occurrences of stretch combinators can be flattened. The last equation, termed
flip law, shows that ‘—' can be defined in terms of >—" and vice versa.
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¢ Laws: fan—trading depth for fan-out y

The first fan law allows the designer of scans to trade depth for fan-out.

I - vt

The circuit on the left has a depth of 2 and a fan-out of 5 while the circuit on the
right has depth 1 and fan-out 8.

fan,,, < [fan,, < fs|#gs = fan,, ., < fs + gs

|:| This rule is also structural as it does not rely on the associativity of the
underlying operator.
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¢Laws: fan—optimizing scans .

The second fan law finally employs the associativity of ‘o’

The left circuit consists of a big fan below a layer of smaller fans. The big fan
adds its first input to each of the intermediate values; the same effect is achieved
on the right by broadcasting the first input to each of the smaller fans.

id1+#x = [Zdl] e [fanj |] N LU] 3fani+2x
= fa’nH—#x < | fan,;] 4 [fcmj | j — =]

The size of the right circuit is at most the size of the left circuit while the depth
of both circuits is the same.

|:| The second fan law allows us to optimize scans.
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* Laws: fan-summary

Summary:

fan, = 1id,
fan, = 1d;
fan,, ., < [fan,, < fs|# gs = fan,,., < fs H gs
idyype < [2d;] A [fan, | § < z]§ fan, 5, |
= fan,,,, < [fan;] 4 [fan; | j < 7]

Derived law: a binary version of the second fan law.

W X fan, 1 § fany, i = fan, ., X id, § id, X fan,
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(Associativity of parallel scan composition y

|:| Recall: The parallel composition of scans is a serial composition in disguise:

flg=f\succy

flU(glh)

= { characterization of ‘|]' }

f\ suce (g \\ succ h)
= { proof obligation }

f\ (suce g \\ succ h)
= {*\\' is associative }
(f \ succ g) \\ succ h

= { characterization of ‘|]' }

Fl9)lh

[ ] (f [ 9) | his better than f || (g [| h).
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" Proof obligation

It remains to show the proof obligation:

suce (f \\ succ g)
= { definition of succ and '\\" }

tdy X f X ddjg) § ds1 X g § idig X fanyg § fanyp g
= { derived fan law }

idl X f X Zd‘g| 9 Zd|f’+1 X g Sfcmwﬂ X Zd|g’ 9 'Zd|f| X fan,g‘ﬂ
= { composition }

1dy X f X de Sfan’le X id|g| 9 id|f|+1 X g3 id|f| X fan’ng
= { definition of succ and *\\" }

succ f\\ succ g

Since the proof relies on the second fan law, succ f \\ succ g has fewer nodes
than succ (f \\ succ g).
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¢ Brent-Kung scans

The rec,, family of circuits implements a simple divide-and-conquer scheme.
A different recursive decomposition was devised by Brent and Kung.

The inputs are ‘paired’ using a layer of 2-fans. Every second output is then fed
into a Brent-Kung circuit of half the width; the other inputs are wired through.

A final layer of 2-fans, shifted by one position, distributes the results of the nested
Brent-Kung circuit to the wired-through signals.
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¢ Brent-Kung scans—continued

The first layer of 2-fans can be generalized to a layer of scans of arbitrary, not
necessarily equal widths. So, here is yet another scan combinator:

ey =g
(ffs)eg = (f:fs) > g§idy1 ¥ par gs
where gs = [fan | f « fs] 4 [id:]

The Brent-Kung circuit is defined

bk,
|n <1 id,,
| otherwise = (replicate |n/2]| fan, 4 [id; | odd n]) & bk, o

Brent-Kung circuits have logarithmic (not minimum) depth, but they use fewer
operation nodes than the rec, circuits and they have only a fan-out of 2!
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“Ladner-Fischer scans

|:| Observation: the left part of the rec, circuit does not use the bottom level.

This motivates the following depth-optimal scan that has the minimal number of
operation nodes among all minimum-depth circuits:

opt n
|n <1 = id,
| otherwise = stretch opt [n/2] || opt |n/2]
stretch s n = (replicate |n/2| fan, 4 [id; | odd n]) > s [n/2]

|:| stretch captures the recursive step of Brent-Kung.
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" Ladner-Fischer scans—continued

Here is a Ladner-Fischer scan of width 32, which illustrates that all layers are
nicely utilized.

I ..
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Conclusion

» Scans enjoy a surprisingly rich algebra.

» The algebraic approach has several benefits: it allows us to specify scans in a
readable and concise way, to prove them correct, and to derive new designs.

» Almost all the laws are structural; only the second fan law relies on the
associativity of the underlying operator.

Related work:

» Scans in parallel programming: correspond to clocked circuits while we study
purely combinatorial ones.
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