“Scrap Your Boilerplate” Revolutions

RALF HINZE

Institut fur Informatik Ill, Universitat Bonn
Romerstrale 164, 53117 Bonn
Email: ralf@informatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/ " ralf

July, 2006

Joint work with Andres Loh
(Pick up the slides at .../ ralf/talks.html#50.)

1 o 4 > » U

1 Introduction

2 o 4 > » U

j

The mission of generic programming 81

Many of us (most of us?) will probably agree that type systems, especially,
polymorphic type systems are a good thing.

A type system is like a suit of armour:

» it shields against the modern dangers of illegal instructions and memory
violations, but
» it also restricts flexibility.
In Haskell 98, for instance, it is not possible to define an equality test that works

for all types.

[] Equality, comparison functions, pretty printers (Haskell's show), parsers
(Haskell's read) have to become known as data-generic or polytypic functions.

|:| Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour.

3 o 4 > » U

Generic programming: the design space g1

Support for generic programming consists of three essential ingredients:

» a type reflection mechanism,
» a type representation, and

» a generic view on data.

|:| Using type reflection we can program functions that exhibit type-specific
behaviour, so-called overloaded functions. Using a generic view on data we can
generalise overloaded functions to generic ones. The type representation
determines the generic functions we can write: *-indexed functions such as ‘==’
read; * — *-indexed functions such as map, size etc.

For each dimension there are several choices: for instance, to reflect types we can
use a type representation type, type classes or a type-safe cast.

|:| The purpose of this talk is to investigate the third dimension: the generic
view on data.

4 o 4 > » U

" A brief history of generic programming §1)

» Classicism (1990 —): strong background in category theory.

PolyP: a data type is viewed as a fixed point of a regular functor; the base
functor is viewed as a lifted sum of products.

» Romanticism (1995 -): shift towards type-theoretic approaches.

Generic Haskell: a data type is viewed as a sum of products.

» Realism (2000 —): compiler and library hacking.

SYB: combinator-based, the user writes generic functions by combining a few
generic primitives.

|:| SYB did not seem to fit into the picture, as it lacked the generic view. Also,
it wasn't clear, whether SYB could express all the generic functions.

5 o 4 > » U

2. The spine view

§) o 4 > » U

ﬁ type representation type §2’

To reflect types onto the value level, we introduce a type representation type.

data Type :: * — x

Char :: Type Char

Int :: Type Int

Pair :: Type a — Type B — Type (o, 3)
List :: Type a — Type [«]

Each type has a unique representation: Int is represented by the constructor Int,
(String, Int) is represented by Pair (List Char) Int.

We shall often need to annotate an expression with its type representation.

data Typed o = (:){wal :: «, type :: Type o'}

The definition, which makes use of Haskell's record syntax, introduces the colon

" as an infix data constructor: 4711 : Int is an element of Typed Int.
7 o 4 > » U

' An overloaded function

Using the type of type representation we can define overloaded functions that
exhibit type-specific behaviour.

Example: collecting integers.

52

ints : Typed o — | Int]

ints (¢ : Char) =[]

ints (i : Int) = 1]

ints ((z,y): Pair a b) = ints (z : a) 4 ints (y : b)
ints (SES List a) = concat [ints (z: a) | © «— xs]

« 4 > »

O

" Towards a generic view 32)3

In order to define a generic function, we need to find a way to treat elements of a
data type in a uniform way.

Consider an arbitrary element of some data type:

061 RN

The idea is to make this applicative structure visible and accessible: we mark the
constructor using Con and each function application using ‘o'.

» Empty becomes Con empty,
» Node | a r becomes Con node ¢ (I : Tree Int) ¢ (a: Int) o (r: Tree Int).

|:| The arguments are additionally annotated with their types and the
constructor itself with information on its syntax.

9 o 4 > » 0O

" The Spinc data type g2)

The functions C'on and ‘¢’ are constructors of a data type called Spine.

data Spine :: * — *x where
Con :: Constr ac — Spine «
(0) :: Spine (a« —) — Typed o — Spine [3

The type is called Spine because its elements represent the possibly partial spine
of a constructor application.

Elements of type Constr o comprise an element of type «, namely the original
data constructor, plus additional information about its syntax.

data Constr a = Descr{ constr :: a, name :: String }

10 o 4 > » 0O

" The function fromSpine §2j

In order to use the Spine data type as a generic view, we need for each data type
functions that convert to and fro.

Given a value of type Spine «, we can easily recover the original value of type «:

fromSpine . Spine a — «
fromSpine (Con c) = constr ¢
fromSpine (f o x) = (fromSpine f) (val)

|:| fromSpine is parametrically polymorphic — one size fits all.

11 o 4 > » U

The function toSpine 925

The inverse of fromSpine is an overloaded function of type Typed v — Spine .

lts definition, however, follows a trivial pattern: if the data type comprises a
constructor ('

Com— - —>1,—T

then the equation for toSpine takes the form

toSpine (C z; ... T, t)) = Con co(xy:t) 00 (L)

where c is the annotated version of C' and ¢; is the type representation of 7;.

12 o 4 > » U

(_fThe runction 7oopine — continued

As an example, here is the definition of toSpine for binary trees.

2

data Tree o = Empty | Node (Tree o) o (Tree o)

toSpine :: Typed o« — Spine «
toSpine (Empty : Tree a) = Con empty
toSpine (Node | = r: Tree a)
= Con node o (1: Tree a) o (x : a) o (r: Tree a)

empty :: Constr (Tree)
empty = Descr{ constr = Empty, name = "Empty" }

node :: Constr (Tree a« — a — Tree o — Tree «)
node = Descr{constr = Node, name = "Node"}
13 o 4 > » U

f A generic ints function

52)

With all the machinery in place we can now turn ints into a truly generic function.

|:| The idea is to add a catch-all case that takes care of all the remaining type
cases in a uniform manner.

mts
ints (i : Int)
mits x

intsSpine

. Typed o — [Int]

= (1]

= intsSpine (toSpine x)

: Spine a — [Int]

intsSpine (Con ¢) = |]
intsSpine (f o x) = intsSpine f H ints x

14

o 4 > » U

Discussion 32

» The spine view is easy to use: the generic part of a generic function only has
to consider two cases: Con and ‘o',

» A further advantage of the spine view is its generality: it is applicable to a
large class of data types including generalized algebraic data types.

» On the other hand, the spine view restricts the class of functions we can write:

one can only define generic functions that consume or transform data
(such as show) but not ones that produce data (such as read);

functions that abstract over type constructors (such as map or size) are
out of reach.

15 o 4 > » U

3 The type spine view

16 o 4 > » U

" The type spine view 33 5

In order to define generic producers, we require additional information about the
data type, information that the spine view does not provide.

Consider the syntactic form of a generalized algebraic data type: a data type is
essentially a sequence of signatures. This motivates the following definitions.

type Datatype a = [Signature o]

data Signature :: * — * where
Sig :: Constr a — Signature o
(o) :: Signature (o« — () — Type a — Signature (3

|:| The type Signature is almost identical to the Spine type, except for the
second argument of ‘0', which is of type Tiype a rather than Typed «.

17 o 4 > » U

" Another overloaded function: datatype 33 ’

To be able to use the type spine view, we require an overloaded function that
maps a type representation to an element of type Datatype .

datatype . Type o — Datatype o

datatype (Bool) = | Sig false, Sig true]

datatype (Char) = [Sig (char ¢) | ¢ < [minBound .. maxBound]]
datatype (Int) = [Sig (int @) | i < [minBound .. marBound||
datatype (List a) = [Sig nil, Sig cons o ao List a]

datatype (Pair a b) = [Sig pair o a o b]

datatype (Tree a) = [Sig empty, Sig node o Tree a o a o Tree a]

|:| datatype plays the same role for producers as toSpine plays for consumers.

18 o 4 > » 0O

{Example: a test data generator 530

Here is an example of a generic producer: a test-data generator.

generate . Type o — Int — [«

generate a 0 = |]

generate a (d +1) = concat |generateSig s d | s < datatype a]
generateSig . Signature o — Int — |a]

generateSig (Sig ¢) d = [constr c]

generateSig (soa) d = |f z | f < generateSig s d,z < generate a d]

The helper function generateSig constructs all terms that conform to a given
signature.

19 o 4 > » 0O

Discussion 83

» The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers

or transformers.

» The type spine view shares the major advantage of the spine view: it is
applicable to a large class of data types including generalized algebraic data

types.

20 o 4 > » U

4 Lifted spine view

21 o 4 > » U

f A representation type for types of kind * — * ngj

To represent container types of kind x — *, we lift the type constructors and
include /d as a representation of the type variable a:

data Type' :: (x — %) — x

Id :: Type' Id

Char' :: Type' Char’

Int" :: Type' Int’

List' :: Type' ¢ — Type' (List' @)

|:| List" takes a type of kind * — * to a type of kind *x — *. The container
type Acv.[[a]] is represented by List’ (List' Id).

data Typed ¢ a = ("){val :: p a, type' :: Type' ¢}

22 <« «4 > » 0O

¢ An overloaded function

g4)

Using the type Tiype’ of type representations we can define overloaded functions

that abstract over type constructors of kind * — .

Example: the size of a container.

 Typed' ¢ o — Int
(1) .

size (¢ ' Char’) =

size (1 Int’)

size (Nil':" List’ o) =

size (Cons' x xs ! List' a

") = size (z ' a') + size (xs

L List’

a’)

|:| Nil" etc are the constructors of the lifted types.

23

o 4 > » U

E Towards a generic view

70

The lifted data definitions follow a simple scheme: each data constructor C

Com— - —1,—17

is replaced by a polymorphic data constructor C’

C'a:Vxmx— =T, X—=T X

where 7/ is the lifted variant of 7,.

We can write the signature more perspicuously as

C'Vx.(T] =" - =T =) x

using the lifted function space:

newtype (p —') x = Fun{app = x — ¢ x}

54

o 4 > » U

(" The lifted spine view 1)

|:| An element of a lifted type can always be put into the applicative form

¢’ ‘app‘ e ‘app* - ‘app’ e,

As in the first-order case we can make this structure visible and accessible by
marking the constructor and the function applications.

data Spine’ :: (* — *) — * — * where
Con' :: (Vx. x) — Spine’ ¢ o
(o) Spine’ (p =") a — Typed' p o — Spine’ Y «

|:| The structure of Spine’ is very similar to that of Spine except that we are
now working in a higher realm: Con’ takes a polymorphic function of type
Vx.p x to an element of Spine’ .

25 <« «4 > » 0O

‘ I"E |uncE|0n ?mm!;pme §Z ’

Turning to the conversion functions, fromSpine’ is again polymorphic.

fromSpine’ : Spine’ p a — ¢ a
fromSpine’ (Con’ ¢) = ¢
fromSpine' (f o' z) = fromSpine' f ‘app’ val'

26 o 4 > » U

tThe runction toopine’

1)

lts inverse is an overloaded function that follows a similar pattern as toSpine:

each constructor C’

C'a:Vxmx— =T . X—=T X

gives rise to an equation of the form

toSpine’ (C'z ... z, ' t)=Con ' o (@ :t)o---0(x,:t
0 |

n

where ¢ is the variant of (" that uses the lifted function space and ¢/ is the type

representation of the lifted type 7.

As an example, here is the instance for lifted lists.

toSpine’
toSpine’ (Nil' ' List' a')

. Typed' p oo — Spine’ ¢ «
= Con' nil’

toSpine’ (Cons' x zs ' List’ a') = Con' cons’ o' (x:" a’) o' (xs:' List' a')

27

o 4 > » U

' A generic size function

1)

Given these prerequisites we can turn size into a truely generic function.

size (! Id) =1

size Typed' ¢ o — Int

size (x ' a') = sizeSpine (toSpine’ (x ' a’))

The implementation of sizeSpine is entirely straightforward: it traverses the spine

summing up the sizes of the constructors arguments.

sizeSpine

sizeSpine (f o' x)

. Spine’ o a — Int

sizeSpine (Con' ¢) =0

= sizeSpine f + size x

28

o 4 > » U

4

Discussion 34

» The lifted spine view is almost as general as the original spine view: it is
applicable to all data types that are definable in Haskell 98.

» The lifted spine view is not applicable to generalised algebraic data types, as
it is not possible to generalise size to GADTs.

» For generic producers we need a lifted spine view.

» The spine view can even be lifted to kind indices of arbitrary kinds.

The generic programmer then has to consider two cases for the spine view and
additionally n cases, one for each of the n projection types Outy, ..., Out,.

29 o 4 > » U

5. Conclusion

30 o 4 > » U

Related work — Scrap your boilerplate 35

The original SYB approach is combinator-based: the user writes generic functions
by combining a few generic primitives such as gfoldl and gunfold.

» gfoldl is essentially the catamorphism of the Spine data type: gfoldl equals
the catamorphism composed with toSpine.

» gunfold is the catamorphism of the Signature data type.

31 o 4 > » U

Related work — the grand view

30

view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation
none ITA — — —
fixed point Reloaded PolyP — PolyP
sum-of-products LIGD DTC, GC, GM - GH
spine Reloaded, SYB, SYB —

Revolutions Reloaded

32 o 4 > » U

