
1 JJ J I II 2

“Scrap Your Boilerplate” Revolutions

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

July, 2006

Joint work with Andres Löh

(Pick up the slides at .../~ralf/talks.html#50.)

2 JJ J I II 2

1 Introduction

3 JJ J I II 2

The mission of generic programming §1

Many of us (most of us?) will probably agree that type systems, especially,
polymorphic type systems are a good thing.

A type system is like a suit of armour:

I it shields against the modern dangers of illegal instructions and memory
violations, but

I it also restricts flexibility.

In Haskell 98, for instance, it is not possible to define an equality test that works
for all types.

☞ Equality, comparison functions, pretty printers (Haskell’s show), parsers
(Haskell’s read) have to become known as data-generic or polytypic functions.

☞ Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour.

4 JJ J I II 2

Generic programming: the design space §1

Support for generic programming consists of three essential ingredients:

I a type reflection mechanism,

I a type representation, and

I a generic view on data.

☞ Using type reflection we can program functions that exhibit type-specific
behaviour, so-called overloaded functions. Using a generic view on data we can
generalise overloaded functions to generic ones. The type representation
determines the generic functions we can write: ∗-indexed functions such as ‘= =’,
read ; ∗ → ∗-indexed functions such as map, size etc.

For each dimension there are several choices: for instance, to reflect types we can
use a type representation type, type classes or a type-safe cast.

☞ The purpose of this talk is to investigate the third dimension: the generic
view on data.

5 JJ J I II 2

A brief history of generic programming §1

I Classicism (1990 –): strong background in category theory.

PolyP: a data type is viewed as a fixed point of a regular functor; the base
functor is viewed as a lifted sum of products.

I Romanticism (1995 –): shift towards type-theoretic approaches.

Generic Haskell: a data type is viewed as a sum of products.

I Realism (2000 –): compiler and library hacking.

SYB: combinator-based, the user writes generic functions by combining a few
generic primitives.

☞ SYB did not seem to fit into the picture, as it lacked the generic view. Also,
it wasn’t clear, whether SYB could express all the generic functions.

6 JJ J I II 2

2. The spine view

7 JJ J I II 2

A type representation type §2

To reflect types onto the value level, we introduce a type representation type.

data Type :: ∗ → ∗
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β → Type (α, β)
List :: Type α→ Type [α]

Each type has a unique representation: Int is represented by the constructor Int ,
(String , Int) is represented by Pair (List Char) Int .

We shall often need to annotate an expression with its type representation.

data Typed α = (:){val :: α, type :: Type α}

The definition, which makes use of Haskell’s record syntax, introduces the colon
‘:’ as an infix data constructor: 4711 : Int is an element of Typed Int .

8 JJ J I II 2

An overloaded function §2

Using the type of type representation we can define overloaded functions that
exhibit type-specific behaviour.

Example: collecting integers.

ints :: Typed α→ [Int]
ints (c : Char) = []
ints (i : Int) = [i]
ints ((x , y) : Pair a b) = ints (x : a) ++ ints (y : b)
ints (xs : List a) = concat [ints (x : a) | x ← xs]

9 JJ J I II 2

Towards a generic view §2

In order to define a generic function, we need to find a way to treat elements of a
data type in a uniform way.

Consider an arbitrary element of some data type:

C e1 · · · en

The idea is to make this applicative structure visible and accessible: we mark the
constructor using Con and each function application using ‘♦’.

I Empty becomes Con empty ,

I Node l a r becomes Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int).

☞ The arguments are additionally annotated with their types and the
constructor itself with information on its syntax.

10 JJ J I II 2

The Spine data type §2

The functions Con and ‘♦’ are constructors of a data type called Spine.

data Spine :: ∗ → ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial spine
of a constructor application.

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus additional information about its syntax.

data Constr α = Descr{constr :: α, name :: String }

11 JJ J I II 2

The function fromSpine §2

In order to use the Spine data type as a generic view, we need for each data type
functions that convert to and fro.

Given a value of type Spine α, we can easily recover the original value of type α:

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x) = (fromSpine f) (val x)

☞ fromSpine is parametrically polymorphic — one size fits all.

12 JJ J I II 2

The function toSpine §2

The inverse of fromSpine is an overloaded function of type Typed α→ Spine α.

Its definition, however, follows a trivial pattern: if the data type comprises a
constructor C

C :: τ1 → · · · → τn → τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi.

13 JJ J I II 2

The function toSpine — continued §2

As an example, here is the definition of toSpine for binary trees.

data Tree α = Empty | Node (Tree α) α (Tree α)

toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a)

= Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

empty :: Constr (Tree α)
empty = Descr{constr = Empty , name = "Empty"}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Descr{constr = Node, name = "Node"}

14 JJ J I II 2

A generic ints function §2

With all the machinery in place we can now turn ints into a truly generic function.

☞ The idea is to add a catch-all case that takes care of all the remaining type
cases in a uniform manner.

ints :: Typed α→ [Int]
ints (i : Int) = [i]
ints x = intsSpine (toSpine x)

intsSpine :: Spine α→ [Int]
intsSpine (Con c) = []
intsSpine (f ♦ x) = intsSpine f ++ ints x

15 JJ J I II 2

Discussion §2

I The spine view is easy to use: the generic part of a generic function only has
to consider two cases: Con and ‘♦’.

I A further advantage of the spine view is its generality: it is applicable to a
large class of data types including generalized algebraic data types.

I On the other hand, the spine view restricts the class of functions we can write:

one can only define generic functions that consume or transform data
(such as show) but not ones that produce data (such as read);

functions that abstract over type constructors (such as map or size) are
out of reach.

16 JJ J I II 2

3 The type spine view

17 JJ J I II 2

The type spine view §3

In order to define generic producers, we require additional information about the
data type, information that the spine view does not provide.

Consider the syntactic form of a generalized algebraic data type: a data type is
essentially a sequence of signatures. This motivates the following definitions.

type Datatype α = [Signature α]

data Signature :: ∗ → ∗ where
Sig :: Constr α→ Signature α
(@) :: Signature (α→ β)→ Type α→ Signature β

☞ The type Signature is almost identical to the Spine type, except for the
second argument of ‘@’, which is of type Type α rather than Typed α.

18 JJ J I II 2

Another overloaded function: datatype §3

To be able to use the type spine view, we require an overloaded function that
maps a type representation to an element of type Datatype α.

datatype :: Type α→ Datatype α
datatype (Bool) = [Sig false, Sig true]
datatype (Char) = [Sig (char c) | c ← [minBound . .maxBound]]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound]]
datatype (List a) = [Sig nil , Sig cons @ a @ List a]
datatype (Pair a b) = [Sig pair @ a @ b]
datatype (Tree a) = [Sig empty , Sig node @ Tree a @ a @ Tree a]

☞ datatype plays the same role for producers as toSpine plays for consumers.

19 JJ J I II 2

Example: a test data generator §3

Here is an example of a generic producer: a test-data generator.

generate :: Type α→ Int → [α]
generate a 0 = []
generate a (d + 1) = concat [generateSig s d | s ← datatype a]

generateSig :: Signature α→ Int → [α]
generateSig (Sig c) d = [constr c]
generateSig (s @ a) d = [f x | f ← generateSig s d , x ← generate a d]

The helper function generateSig constructs all terms that conform to a given
signature.

20 JJ J I II 2

Discussion §3

I The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers
or transformers.

I The type spine view shares the major advantage of the spine view: it is
applicable to a large class of data types including generalized algebraic data
types.

21 JJ J I II 2

4 Lifted spine view

22 JJ J I II 2

A representation type for types of kind ∗ → ∗ §4

To represent container types of kind ∗ → ∗, we lift the type constructors and
include Id as a representation of the type variable α:

data Type ′ :: (∗ → ∗)→ ∗

Id :: Type ′ Id
Char ′ :: Type ′ Char ′

Int ′ :: Type ′ Int ′

List ′ :: Type ′ ϕ→ Type ′ (List ′ ϕ)

☞ List ′ takes a type of kind ∗ → ∗ to a type of kind ∗ → ∗. The container
type Λα.[[α]] is represented by List ′ (List ′ Id).

data Typed ′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type ′ ϕ}

23 JJ J I II 2

An overloaded function §4

Using the type Type ′ of type representations we can define overloaded functions
that abstract over type constructors of kind ∗ → ∗.

Example: the size of a container.

size :: Typed ′ ϕ α→ Int
size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a ′) = 0
size (Cons ′ x xs :′ List ′ a ′) = size (x :′ a ′) + size (xs :′ List ′ a ′)

☞ Nil ′ etc are the constructors of the lifted types.

24 JJ J I II 2

Towards a generic view §4

The lifted data definitions follow a simple scheme: each data constructor C

C :: τ1 → · · · → τn → τ0

is replaced by a polymorphic data constructor C ′

C ′ :: ∀χ.τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

where τ ′i is the lifted variant of τi.

We can write the signature more perspicuously as

C ′ :: ∀χ.(τ ′1 →′ · · · →′ τ ′n →′ τ ′0) χ

using the lifted function space:

newtype (ϕ→′ ψ) χ = Fun{app :: ϕ χ→ ψ χ}

25 JJ J I II 2

The lifted spine view §4

☞ An element of a lifted type can always be put into the applicative form

c ′ ‘app‘ e1 ‘app‘ · · · ‘app‘ en

As in the first-order case we can make this structure visible and accessible by
marking the constructor and the function applications.

data Spine ′ :: (∗ → ∗)→ ∗ → ∗ where
Con ′ :: (∀χ.ϕ χ)→ Spine ′ ϕ α
(♦′) :: Spine ′ (ϕ→′ ψ) α→ Typed ′ ϕ α→ Spine ′ ψ α

☞ The structure of Spine ′ is very similar to that of Spine except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ.ϕ χ to an element of Spine ′ ϕ.

26 JJ J I II 2

The function fromSpine ′ §4

Turning to the conversion functions, fromSpine ′ is again polymorphic.

fromSpine ′ :: Spine ′ ϕ α→ ϕ α
fromSpine ′ (Con ′ c) = c
fromSpine ′ (f ♦′ x) = fromSpine ′ f ‘app‘ val ′ x

27 JJ J I II 2

The function toSpine ′ §4

Its inverse is an overloaded function that follows a similar pattern as toSpine:
each constructor C ′

C ′ :: ∀χ.τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′0) = Con c ′ ♦ (x1 : t ′1) ♦ · · · ♦ (xn : t ′n)

where c ′ is the variant of C ′ that uses the lifted function space and t ′i is the type
representation of the lifted type τ ′i .

As an example, here is the instance for lifted lists.

toSpine ′ :: Typed ′ ϕ α→ Spine ′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a ′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a ′) = Con ′ cons ′ ♦′ (x :′ a ′) ♦′ (xs :′ List ′ a ′)

28 JJ J I II 2

A generic size function §4

Given these prerequisites we can turn size into a truely generic function.

size :: Typed ′ ϕ α→ Int
size (x :′ Id) = 1
size (x :′ a ′) = sizeSpine (toSpine ′ (x :′ a ′))

The implementation of sizeSpine is entirely straightforward: it traverses the spine
summing up the sizes of the constructors arguments.

sizeSpine :: Spine ′ ϕ α→ Int
sizeSpine (Con ′ c) = 0
sizeSpine (f ♦′ x) = sizeSpine f + size x

29 JJ J I II 2

Discussion §4

I The lifted spine view is almost as general as the original spine view: it is
applicable to all data types that are definable in Haskell 98.

I The lifted spine view is not applicable to generalised algebraic data types, as
it is not possible to generalise size to GADTs.

I For generic producers we need a lifted spine view.

I The spine view can even be lifted to kind indices of arbitrary kinds.

The generic programmer then has to consider two cases for the spine view and
additionally n cases, one for each of the n projection types Out 1, . . . , Outn.

30 JJ J I II 2

5. Conclusion

31 JJ J I II 2

Related work — Scrap your boilerplate §5

The original SYB approach is combinator-based: the user writes generic functions
by combining a few generic primitives such as gfoldl and gunfold .

I gfoldl is essentially the catamorphism of the Spine data type: gfoldl equals
the catamorphism composed with toSpine.

I gunfold is the catamorphism of the Signature data type.

32 JJ J I II 2

Related work — the grand view §5

view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA – – –

fixed point Reloaded PolyP – PolyP

sum-of-products LIGD DTC, GC, GM – GH

spine Reloaded,
Revolutions

SYB,
Reloaded

SYB –

