
1 JJ J I II 2

Embedding Generic Programming into Haskell

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

July, 2006

Joint work with Andres Löh

(Pick up the slides at .../~ralf/talks.html#T51.)

2 JJ J I II 2

1 Introduction

3 JJ J I II 2

The mission of generic programming §1

Many of us (most of us?) will probably agree that type systems, especially,
polymorphic type systems are a good thing.

A type system is like a suit of armour:

I it shields against the modern dangers of illegal instructions and memory
violations, but

I it also restricts flexibility.

In Haskell 98, for instance, it is not possible to define an equality test that works
for all types.

☞ Equality, comparison functions, pretty printers (Haskell’s show), parsers
(Haskell’s read) have to become known as data-generic or polytypic functions.

☞ Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour.

4 JJ J I II 2

The mission of this talk §1

I In this talk, we show how to embed generic programming into Haskell.

I The embedding builds upon recent advances in type theory: generalised
algebraic data types and open data types.

I Put differently, we propose and employ language features that are useful for
generic programming.

I We will identify the basic building blocks of generic programming and we will
provide an overview of the overall design space.

I We hope to convince you that generic programming is useful and that you
can use generic programming techniques today!

5 JJ J I II 2

Overview §1

I 1. Introduction

I 2. Preliminaries

I 3. Overloaded functions

I 4. Generic functions

I 5. Conclusion

6 JJ J I II 2

2. Preliminaries

7 JJ J I II 2

Overview §2

I 2.1 Values, types and kinds

I 2.2 Generalised algebraic data types

I 2.3 Open data types and open functions

8 JJ J I II 2

2.1 Values, types and kinds

9 JJ J I II 2

Values, types and kinds §2.1

Haskell has the three level structure depicted below.

kinds: ∗, ∗ → ∗
types: Bool , List α, ∀α.α→ α

values: False, Nil , λf x → f (f x)

I The lowest level — where computations take place — consists of values.

I The second level, which imposes structure on the value level, is inhabited by
types.

I On the third level, which imposes structure on the type level, we have
so-called kinds. ☞ A kind is simply the ‘type’ of a type constructor.

10 JJ J I II 2

Data types: examples §2.1

In Haskell, new data types are declared using the data construct.

data Bool = False | True

data [α] = Nil | Cons α [α]

data Pair α β = (α, β)

☞ Data constructors are written in blue; type constructors in red .

11 JJ J I II 2

Data types: general form §2.1

A data type declaration of the schematic form

data T α1 . . . αs = C 1 τ1,1 . . . τ1,m1
| · · · | Cn τn,1 . . . τn,mn

introduces data constructors C 1, . . . , Cn with signatures

C i :: ∀α1 . . . αs.τi,1 → · · · → τi,mi
→ T α1 . . . αs

☞ The data construct is a beast; it combines no less than four features: type
abstraction, n-ary disjoint sums, n-ary cartesian products and type recursion.

12 JJ J I II 2

2.2 Generalised algebraic data types

13 JJ J I II 2

Generalised algebraic data types §2.2

Using a recent version of GHC, there is an alternative way of defining data types:

data [] :: ∗ → ∗ where
Nil :: ∀α.[α]
Cons :: ∀α.α→ [α]→ [α]

The first line declares the kind of the new data type.

The type is then inhabited by listing the signatures of the data constructors.

14 JJ J I II 2

Generalised algebraic data types §2.2

Generalised algebraic data types (GADTs) lift the Haskell 98 restriction that the
result type of the constructors must be of the form T α1 . . . αs.

data Expr :: ∗ → ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: ∀α.Expr Bool → Expr α→ Expr α→ Expr α

☞ The data type Expr represents typed expressions.

15 JJ J I II 2

Generalised algebraic data types: functions §2.2

An evaluator for the Expr data type:

eval :: Expr α→ α
eval (Num i) = i
eval (Plus e1 e2) = eval e1 + eval e2
eval (Eq e1 e2) = eval e1 = = eval e2
eval (If e1 e2 e3) = if eval e1 then eval e2 else eval e3

☞ For functions on GADTs, type signatures are mandatory.

Each equation has a more specific type: the first equation has type
Expr Int → Int as Num constrains α to Int .

The interpreter is quite noticeable in that it is tag free.

16 JJ J I II 2

2.3 Open data types and open functions

17 JJ J I II 2

Open data types §2.3

For embedding generic function into Haskell, we make use of open data types and
open functions, data types and functions that can be freely extended.

An open data type is declared as follows:

open data Expr :: ∗ → ∗

Constructors can then be introduced just by providing their type signatures, at
any point in the program.

Str :: String → Expr String
Show :: Expr Int → Expr String
Cat :: Expr String → Expr String → Expr String

18 JJ J I II 2

Open functions §2.3

An open function is declared as follows:

open eval :: Expr α→ α

The definition of an open function needs not be contiguous; the defining
equations may be scattered around the program.

eval (Str s) = s
eval (Show e) = show Int (eval e)
eval (Cat e1 e2) = eval e1 ++ eval e2

☞ The semantics of open data types and open functions is the same as if data
types and functions had been defined closed, in a single place.

19 JJ J I II 2

The expression problem §2.3

Open data types and open functions provide two dimensions of extensibility:

I we can add additional sorts of data, by providing new constructors,

I we can add additional operations, by defining new functions:

open string :: Expr α→ String
string (Num i) = "(Num" � show Int i ++ ")"
string (Plus e1 e2) = "(Plus" � string e1 � string e2 ++ ")"
string (Eq e1 e2) = "(Eq" � string e1 � string e2 ++ ")"
string (If e1 e2 e3) = "(If" � string e1 � string e2 � string e3 ++ ")"
string (Str s) = "(Str" � show String s ++ ")"
string (Show e) = "(Show" � string e ++ ")"
string (Cat e1 e2) = "(Cat" � string e1 � string e2 ++ ")"

s1 � s2 = s1 ++ " " ++ s2

20 JJ J I II 2

Best-fit left-to-right pattern matching §2.3

For open functions, first-fit pattern matching is not suitable.

string = ""

Using first-fit pattern matching, this equation effectively closes the definition of
string .

☞ Instead we use best-fit left-to-right pattern matching: the most specific
match rather than the first match wins.

21 JJ J I II 2

3. Overloaded functions

22 JJ J I II 2

Haskell’s deriving clauses §3

In Haskell, showing values of a data type is particularly easy:

data Tree α = Empty | Node (Tree α) α (Tree α)
deriving (Show)

The compiler automatically generates a suitable show function.

This function is used, for instance, in interactive sessions:

Now〉 tree [0 . . 3]
Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node Empty 3 Empty)

Here tree :: [α]→ Tree α transforms a list into a balanced tree.

23 JJ J I II 2

The need for a prettier printer §3

The function show can be seen as a pretty printer.

The display of larger structures, however, is not especially pretty, due to lack of
indentation.

Now〉 tree [0 . . 9]
Node (Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node (Node Em
pty 3 Empty) 4 Empty)) 5 (Node (Node (Node Empty 6 Empty) 7 Empt
y) 8 (Node Empty 9 Empty))

In the sequel we shall develop a replacement for show , a generic prettier printer.

24 JJ J I II 2

A pretty printing library §3

We use a basic pretty printing library, which just offers support for indentation.

data Text
text :: String → Text
nl :: Text
indent :: Int → Text → Text
(♦) :: Text → Text → Text

I Text is type of documents with indentation.

I text converts a string to a text.

I The string passed to text must not contain newline characters. The constant
nl has to be used for that purpose.

I indent i adds i spaces after each newline.

I ‘♦’ concatenates two pieces of text.

25 JJ J I II 2

Towards a generic prettier printer §3

It is a simple exercise to write a prettier printer for trees of integers.

pretty Int :: Int → Text
pretty Int n = text (show Int n)

prettyTreeInt :: Tree Int → Text
prettyTreeInt Empty = text "Empty"
prettyTreeInt (Node l x r) = align "(Node " (prettyTreeInt l ♦ nl ♦

pretty Int x ♦ nl ♦
prettyTreeInt r ♦ text ")")

align :: String → Text → Text
align s d = indent (length s) (text s ♦ d)

☞ While the program does the job, it is not very general: we can print trees of
integers, but not, say, trees of characters.

26 JJ J I II 2

Towards a generic prettier printer — continued §3

Of course, it is easy to add another two ad-hoc definitions.

prettyChar :: Char → Text
prettyChar c = text (showChar c)

prettyTreeChar :: Tree Char → Text
prettyTreeChar Empty = text "Empty"
prettyTreeChar (Node l x r) = align "(Node " (prettyTreeChar l ♦ nl ♦

prettyChar x ♦ nl ♦
prettyTreeChar r ♦ text ")")

The code of prettyTreeChar is almost identical to that of prettyTreeInt .

☞ We actually need a family of pretty printers. A typical case for type classes?

☞ In the sequel we explore a different route!

27 JJ J I II 2

Towards a generic prettier printer — continued §3

We could define a single function that receives the type as an additional argument
and suitably dispatches on this type argument.

pretty :: (α :: ∗)→ α→ Text

☞ Haskell doesn’t permit the explicit passing of types.

We could pass the pretty printer an additional argument that represents the type.

pretty :: Type → α→ Text

☞ This is too simple-minded: a function of this type must necessarily ignore its
second parameter (parametricity, “free theorem”).

pretty :: Type α→ α→ Text

An element of type Type τ is a representation of the type τ .

28 JJ J I II 2

A type representation type §3

Using a generalised algebraic data type, we can define Type directly in Haskell.

open data Type :: ∗ → ∗ where
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β → Type (α, β)
List :: Type α→ Type [α]
Tree :: Type α→ Type (Tree α)

29 JJ J I II 2

A type representation type — continued §3

Each type has a unique representation:

I the type Int is represented by the constructor Int ,

I the type (Char , Int) is represented by Pair Char Int ,

I the type [Tree Char] is represented by List (Tree Char).

☞ Recall: type constructors are written in red ; data constructors in blue.

☞ For any given τ the type Type τ comprises exactly one element: Type τ is a
so-called singleton type.

30 JJ J I II 2

Type annotations §3

We shall often need to annotate an expression with its type representation.

data Typed α = (:){val :: α, type :: Type α}

The definition, which makes use of Haskell’s record syntax, introduces the colon
‘:’ as an infix data constructor.

I 4711 : Int is an element of Typed Int .

I (47, ’R’) : Pair Int Char is an element of Typed (Int ,Char).

☞ Note the difference between x : t and x :: τ .

I x : t is a pair consisting of a value x and a representation t of its type.

I x :: τ is Haskell syntax for ‘x has type τ ’.

31 JJ J I II 2

An almost generic prettier printer §3

Given these prerequisites, we can finally define the desired pretty printer.

open pretty :: Typed α→ Text
pretty (c : Char) = prettyChar c
pretty (n : Int) = pretty Int n
pretty ((x , y) : Pair a b) = align "(" (pretty (x : a)) ♦ nl ♦

align ", " (pretty (y : b)) ♦ text ")"
pretty (xs : List a) = bracketed [pretty (x : a) | x ← xs]
pretty (Empty : Tree a) = text "Empty"
pretty (Node l x r : Tree a)

= align "(Node " (pretty (l : Tree a) ♦ nl ♦
pretty (x : a) ♦ nl ♦
pretty (r : Tree a) ♦ text ")")

We declare pretty to be open so that we can later extend it.

☞ Typed α→ Text is an uncurried version of Type α→ α→ Text .

32 JJ J I II 2

An example session §3

The pretty printer produces output in the following style.

Now〉 pretty (tree [0 . . 3] : Tree Int)
(Node (Node (Node Empty

0
Empty)

1
Empty)

2
(Node Empty

3
Empty))

33 JJ J I II 2

Another example §3

The type of type representations is, of course, by no means special to pretty
printing.

A second example: collecting integers.

open ints :: Typed α→ [Int]
ints (i : Int) = [i]
ints (c : Char) = Nil
ints ((x , y) : Pair a b) = ints (x : a) ++ ints (y : b)
ints (xs : List a) = concat [ints (x : a) | x ← xs]
ints (t : Tree a) = ints (inorder t : List a)

34 JJ J I II 2

Extending Type §3

We have declared Type to be open so that we can freely add new constructors to
the Type data type and that we can freely add new equations to existing open
functions on Type.

Whenenver we define a new data type

data Perfect α = Zero α | Succ (Perfect (α, α))

we extend Type by a new constructor.

Perfect :: Type α→ Type (Perfect α)

☞ Perfect is a so-called nested data type.

35 JJ J I II 2

Extending pretty §3

Then we extend pretty by suitable equations.

pretty (Zero x : Perfect a)
= align "(Zero " (pretty (x : a) ♦ text ")")

pretty (Succ x : Perfect a)
= align "(Succ " (pretty (x : Perfect (Pair a a)) ♦ text ")")

36 JJ J I II 2

An example session §3

Now〉 pretty (perfect 4 1 : Perfect Int)
(Succ (Succ (Succ (Succ (Zero ((((1

, 1)
, (1
, 1))

, ((1
, 1)

, (1
, 1)))

, (((1
, 1)

, (1
, 1))

, ((1
, 1)

, (1
, 1)))))))))

37 JJ J I II 2

Overloaded versus generic functions §3

Whenever we define a new data type,

I we add a constructor of the same name to the type of type representations,

I we add corresponding equations to all generic functions.

Observations:

I the extension of Type is cheap and easy (a compiler could do this for us),

I the extension of all functions on Type is laborious and difficult (can you
imagine a compiler doing that?).

☞ In the next section we shall develop a scheme so that it suffices to extend one
or two particular overloaded functions. The remaining functions adapt themselves.

38 JJ J I II 2

Terminology: overloaded and generic functions §3

overloaded and generic functions. An overloaded function works for
a fixed family of types. By contrast, a generic function works for all types,
including types that the programmer is yet to define.

39 JJ J I II 2

3.3 Generic functions

40 JJ J I II 2

A generic view §3.3

☞ We need to find a way to treat elements of a data type in a uniform way.

Consider an arbitrary element of some data type:

C e1 · · · en

The idea is to make this applicative structure visible and accessible: we mark the
constructor using Con and each function application using ‘♦’.

I Empty becomes Con empty ,

I Node l a r becomes Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int).

☞ The arguments are additionally annotated with their types and the
constructor itself with information on its syntax.

41 JJ J I II 2

The Spine data type §3.3

The functions Con and ‘♦’ are constructors of a data type called Spine.

data Spine :: ∗ → ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial spine
of a constructor application.

42 JJ J I II 2

Construction of a spine §3.3

The following table illustrates the stepwise construction of a spine.

node :: Constr (Tree Int → Int → Tree Int → Tree Int)
Con node :: Spine (Tree Int → Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)

43 JJ J I II 2

The data type Constr §3.3

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus additional information about its syntax.

data Constr α = Descr{constr :: α
, name :: String }

44 JJ J I II 2

The function fromSpine §3.3

Given a value of type Spine α, we can easily recover the original value of type α:

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x) = (fromSpine f) (val x)

☞ fromSpine is parametrically polymorphic.

45 JJ J I II 2

The function toSpine §3.3

The inverse of fromSpine is an overloaded function of type Typed α→ Spine α.

Its definition, however, follows a trivial pattern: if the data type comprises a
constructor C

C :: τ1 → · · · → τn → τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi.

46 JJ J I II 2

The function toSpine — continued §3.3

As an example, here is the definition of toSpine for binary trees.

open toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a)

= Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

empty :: Constr (Tree α)
empty = Descr{constr = Empty ,

name = "Empty"}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Descr{constr = Node,

name = "Node"}

47 JJ J I II 2

A generic ints function §3.3

With all the machinery in place we can now turn pretty and ints into truly
generic functions.

☞ The idea is to add a catch-all case that takes care of all the remaining type
cases in a uniform manner.

ints :: Typed α→ [Int]
ints (i : Int) = [i]
ints x = intsSpine (toSpine x)

intsSpine :: Spine α→ [Int]
intsSpine (Con c) = []
intsSpine (f ♦ x) = intsSpine f ++ ints x

48 JJ J I II 2

A generic prettier printer §3.3

The catch-all case for pretty is almost as easy. We only have to take care that we
do not parenthesize nullary constructors.

pretty x = prettySpine (toSpine x)

prettySpine :: Spine α→ Text
prettySpine (Con c) = text (name c)
prettySpine (f ♦ x) = prettySpine1 f (pretty x)

prettySpine1 :: Spine α→ Text → Text
prettySpine1 (Con c) d = align ("(" ++ name c ++ " ") (d ♦ text ")")
prettySpine1 (f ♦ x) d = prettySpine1 f (pretty x ♦ nl ♦ d)

49 JJ J I II 2

Stocktaking §3.3

Now, why are we in a better situation than before?

I When we introduce a new data type we still have to extend Type and provide
cases for the data constructors in the toSpine function.

I This has to be done only once per data type.

I The code for the generic functions (of which there can be many) is
completely unaffected by the addition of a new data type.

I As a further plus, the generic functions are unaffected by changes to a given
data type. Only the function toSpine must be adapted to the new definition.

50 JJ J I II 2

4. Conclusion

51 JJ J I II 2

Generic programming: the design space §4

Using reflected types we can program overloaded functions. Using a uniform view
on data we can generalise overloaded functions to generic ones.

Support for generic programming consists of three essential ingredients:

I a type reflection mechanism,

I a type representation, and

I a generic view on data.

For each dimension there are several choices: instead of the data type Type we
could use type classes or a type-safe cast.

52 JJ J I II 2

Related work §4

view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA – – –

fixed point Reloaded PolyP – PolyP

sum-of-products LIGD DTC, GC, GM – GH

spine Reloaded,
Revolutions

SYB,
Reloaded

SYB –

