POLYTYPIC PROGRAMMING—OR: Programming Language Theory is Helpful

RALF HINZE

March, 2001

(Pick the slides at .../~ralf/talks.html#T23.)

A brief outline of the talk

Polytypic programming is about making programming easier and more economical.

X How?—A programmer's perspective (9 - 13)

X How?—From an implementor's point of view (15 - 26)

Prerequisites: we use the functional programming language Haskell 98 for the examples.

Recap: Haskell 98

Haskell 98 is a statically typed language. New types are introduced via data declarations.

data List $A = nil \mid cons \mid A \mid List \mid A$

Here, *List* is a *type constructor*, *nil* and *cons* are *data constructors*.

Functions are defined via pattern matching.

size	••	$\forall A . List \ A \to Int$
size nil	=	0
$size \ (cons \ a \ as)$	=	1 + size as

S size is a *polymorphic* function. *size* is a *polymorphic* function. *size* is a *polymorphic* function.

Polymorphic type systems

Many of us (most of us?) will probably agree that *static type systems*, especially, *polymorphic type systems* are a good thing. For reasons of

- **Security** soundness results guarantee that well-typed programs cannot 'go wrong'.
- **Flexibility** polymorphism allows the definition of functions that behave uniformly over all types (such as *size*).
- It is an uninteresting talk for addicts of untyped languages.

However, . . .

... even polymorphic type systems are sometimes less flexible than one would wish.

For instance, it is not possible to define a polymorphic *equality function*.

 $eq :: \forall T . T \to T \to Bool$

A deep theorem, the *parametricity theorem*, implies that a function of this type must necessarily be constant—roughly speaking, the two arguments cannot be inspected.

As a consequence, the programmer is forced to program a separate equality function for each type from scratch.

Here is how one would define equality for lists.

••	$\forall A . (A \to A \to Bool)$		
	$\rightarrow (List \ A \rightarrow List \ A \rightarrow Bool)$		
=	True		
=	False		
=	False		
$eqList \ eqA \ (cons \ a_1 \ as_1) \ (cons \ a_2 \ as_2)$			
=	$eqA \ a_1 \ a_2 \wedge eqList \ as_1 \ as_2$		
	:: = = ns ag		

 $rac{} = eqList$ is actually an 'equality transformer'.

Polytypic programming comes to rescue

Polytypic programming (also known as generic programming, type parametric programming, shape polymorphism, structural polymorphism) addresses this problem.

Solution Basic idea: define the equality function by *induction on the structure of types*.

Note that an instance of eq, such as eqList, is typically defined by induction on the structure of values.

Polytypic programs are ubiquitous

- **X** Equality and comparison functions.
- **X** Reductions (such as *size*, *sum*, *listify*).
- **X** Pretty printers (such as Haskell's show function).
- **X** Parsers (such as Haskell's *read* function).
- **X** Data conversion (Jansson and Jeuring, ESOP'99).
- **X** Digital searching (Hinze, JFP).

A brief outline of the talk

- **X** How?—A programmer's perspective (9 13)
- **X** How?—From an implementor's point of view (15 26)

Polytypic definitions

In order to define a polytypic value it suffices to give instances for the following three data types—plus an instance for every primitive type.

data 1 = () data $A_1 + A_2$ = $inl A_1 \mid inr A_2$ data $A_1 \times A_2$ = (A_1, A_2)

Here, 1 is the unit data type, + is a binary sum, and + is a binary product (pairs).

Polytypic definitions—equality

For emphasis, the type argument of eq is enclosed in angle brackets.

$eq\{A\}$	••	$A \to A \to Bool$
$eq\{1\}()()$	—	True
$eq\{ Int \} i_1 i_2$	—	$eqInt \ i_1 \ i_2$
$eq\{A + B\}$ (inl a_1) (inl a_2)	—	$eq\{\!\{A\}\!\} a_1 a_2$
$eq\{A + B\} (inl a_1) (inr b_2)$	=	False
$eq\{A + B\}$ (<i>inr</i> b_1) (<i>inl</i> a_2)	=	False
$eq\{A+B\}$ (inr b_1) (inr b_2)	=	$eq\{\!\{B\}\!\} b_1 b_2$
$eq\{ \{A \times B\} \ (a_1, b_1) \ (a_2, b_2) \}$	—	$eq\{\!\{A\}\!\} a_1 a_2 \wedge eq\{\!\{B\}\!\} b_1 b_2$

This simple definition contains all ingredients needed to derive specializations for arbitrary data types.

Haskell's type classes

Haskell supports overloading, based on type classes.

class Eq T **where** $eq :: T \to T \to Bool$

However, overloading is not polytypic programming. For each type, you have to give an explicit instance declaration, containing the code for equality.

instance $(Eq \ A) \Rightarrow Eq \ (List \ A)$ where			
$eq \ nil \ nil$	=	True	
$eq \ nil \ (cons \ a_2 \ as_2)$	=	False	
$eq \ (cons \ a_1 \ as_1) \ nil$	=	False	
$eq \ (cons \ a_1 \ as_1) \ (cons \ a_2 \ as_2)$	—	$eq \ a_1 \ a_2 \wedge eq \ as_1 \ as_2$	

deriving

However, for a handful of built-in classes Haskell provides special support—the so-called 'deriving' mechanism.

data List $A = nil \mid cons \mid A \mid List \mid A \mid deriving (Eq)$

The 'deriving (Eq)' part tells Haskell to generate the 'obvious' code for equality.

Alas, you cannot define your own derivable type classes.

Derivable type classes

Idea: use polytypic definitions to specify default method declarations.

class $Eq T$ where		
eq	••	$T \to T \to Bool$
$eq\{\!\{1\}\!\}\ ()\ ()$	—	True
$eq\{A + B\} (inl \ a_1) (inl \ a_2)$	—	$eq a_1 a_2$
$eq\{A + B\} (inl \ a_1) (inr \ b_2)$	=	False
$eq\{A + B\} (inr \ b_1) (inl \ a_2)$	—	False
$eq\{A + B\}$ (<i>inr</i> b_1) (<i>inr</i> b_2)	=	$eq \ b_1 \ b_2$
$eq\{\!\{A \times B\}\!\} (a_1, b_1) (a_2, b_2)$	—	$eq \ a_1 \ a_2 \wedge eq \ b_1 \ b_2$

This extension is implemented in the Glasgow Haskell Compiler (Version 5.00).

A brief outline of the talk

/

How?—A programmer's perspective (9 - 13)

X How?—From an implementor's point of view (15 - 26)

A closer look at Haskell's data construct

It features type abstraction.

data List $A = nil \mid cons A (List A)$

It features type application.

data List $A = nil \mid cons A (List A)$

It features type recursion.

data List $A = nil \mid cons \mid A \mid List \mid A$

 \square The type language corresponds to the simply typed λ -calculus.

Kinds and types

Kinds—can be seen as the 'types of types'.

$\mathfrak{T},\mathfrak{U}\in\mathit{Kind}$::=	*	kind of types
		$\mathfrak{T} \to \mathfrak{U}$	function kind

Types.

$T, U \in Type$::=	= C	type constant
	A	type variable
	ΛA . T	type abstraction
	$T \ U$	type application

Modelling data types

Assuming the following type constants

we can rewrite List as a lambda term:

List = Fix $(\Lambda L \cdot \Lambda A \cdot 1 + A \times L A)$.

Specializing: unfolding . . .

We could specialize a polytypic value by unfolding its definition:

where

... does not work

Consider the following data type.

data Power $A = zero A \mid succ (Power (A \times A))$

Since the type recursion is nested, unfolding eq's definition will loop.

$$\begin{array}{l} eq\{Power \ Int\} \\ = \ eq\{Int + Power \ (Int \times Int)\} \\ = \ eq_{+} \ eq_{Int} \ (eq\{Power \ (Int \times Int)\}) \\ = \ eq_{+} \ eq_{Int} \ (eq_{+} \ (eq_{\times} \ eq_{Int} \ eq_{Int}) \\ \quad (eq\{Power \ ((Int \times Int) \times (Int \times Int))\}) \end{array}$$

Specializing polytypic values

Basic idea: Let function follow type.

 $eq\{ List Int \} = eqList eqInt$ $eq\{ Power Int \} = eqPower eqInt$

Since *List* and *Power* are functions on types, eqList and eqPower are consequently functions on equality functions: eqList maps $eq\{|A|\}$ to $eq\{|List A|\}$.

Specializing generic values—continued

In general, the type of $eq\{T::\mathfrak{T}\}$ is given by

 $eq\{T::\mathfrak{T}\}::Equal\{\mathfrak{T}\}\ T,$

where $Equal\{\{\mathfrak{T}\}\}\$ is defined by induction on the structure of kinds.

 $\iff eqList \text{ has type } Equal \{ \star \rightarrow \star \} List.$

Specializing generic values—continued

The specialization of eq to types of arbitrary kinds is given by

$eq\{A\}$	—	eq_A
$eq\{\! C \!\}$	—	eq_c
$eq\{T_1 \ T_2\}$	=	$(eq\{T_1\}) T_2 (eq\{T_2\})$
$eq\{\!\{\Lambda A . T\}\!\}$	=	$\lambda A . \lambda eq_A . eq\{\!\![T]\!\!\}.$

Type application is mapped to value application, type abstraction to value abstraction, and type recursion to value recursion ($eq_{Fix} = fix$).

This is very similar to an interpretation of the simply typed $\lambda\text{-calculus.}$

Recap: applicative structures

An *applicative structure* \mathcal{E} is a triple (**E**, **app**, **const**) such that

•
$$\mathbf{E} = (\mathbf{E}^{\mathfrak{T}} \mid \mathfrak{T} \in Kind)$$
,

•
$$\mathsf{app} = (\mathsf{app}_{\mathfrak{T},\mathfrak{U}} : \mathsf{E}^{\mathfrak{T} \to \mathfrak{U}} \to (\mathsf{E}^{\mathfrak{T}} \to \mathsf{E}^{\mathfrak{U}}) \mid \mathfrak{T}, \mathfrak{U} \in Kind)$$
, and

• const : $const \to \mathbf{E}$ with $const(C :: \mathfrak{T}) \in \mathbf{E}^{\mathfrak{T}}$.

Recap: environment models

An applicative structure $\mathcal{E} = (\mathbf{E}, \mathbf{app}, \mathbf{const})$ is an *environment model* if it is *extensional* (**app** is one-to-one) and if the clauses below define a total meaning function.

$$\begin{split} \mathcal{E}\llbracket C :: \mathfrak{T} \rrbracket \eta &= \operatorname{const}(C) \\ \mathcal{E}\llbracket A :: \mathfrak{T} \rrbracket \eta &= \eta(A) \\ \mathcal{E}\llbracket (\Lambda A \cdot T) :: (\mathfrak{S} \to \mathfrak{T}) \rrbracket \eta \\ &= \text{ the unique } \varphi \in \mathbf{E}^{\mathfrak{S} \to \mathfrak{T}} \text{ such that} \\ \mathbf{app}_{\mathfrak{S}, \mathfrak{T}} \varphi \ \delta &= \mathcal{E}\llbracket T :: \mathfrak{T} \rrbracket \eta(A := \delta) \\ \mathcal{E}\llbracket (T \ U) :: \mathfrak{V} \rrbracket \eta &= \mathbf{app}_{\mathfrak{U}, \mathfrak{V}} \left(\mathcal{E}\llbracket T :: \mathfrak{U} \to \mathfrak{V} \rrbracket \eta \right) \left(\mathcal{E}\llbracket U :: \mathfrak{U} \rrbracket \eta \right) \end{split}$$

Specialization as an interpretation

The applicative structure $\mathcal{E} = (\mathbf{E}, \mathbf{app}, \mathbf{const})$ with

$$\begin{aligned} \mathbf{E}^{\mathfrak{T}} &= (T :: \mathfrak{T}; Equal\{\!\{\mathfrak{T}\}\!\} T) \\ & \mathsf{app}_{\mathfrak{T},\mathfrak{U}}(F; f)(A; a) &= (F A; f A a) \\ & \mathsf{const}(C) &= (C; eq_C) \end{aligned}$$

is an environment model. Here, $(\,T::\mathfrak{T};F\;\;T)$ denotes a dependent product.

Benefits

- Since the definition of **app** and the interpretation of Fix are the same for all polytypic functions, the polytypic programmer merely has to specify the interpretation of the remaining constants: '1', '+', '×', *Int*, and so on.
- **X** We can use the basic proof method of the simply typed λ calculus, which is based on so-called *logical relations* to prove properties of polytypic values.

A brief outline of the talk

Why?
$$(2 - 7)$$

/

/

How?—A programmer's perspective (9 - 13)

✓ How?—From an implementor's point of view (15 - 26)