POLYTYPIC PROGRAMMING—OR:
Programming Language Theory is Helpful

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University
Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/"ralf/

March, 2001

(Pick the slides at .../ "ralf/talks.html#T23.)



A brief outline of the talk

Polytypic programming is about making programming easier and more
economical.

N Why? (2 - 7)
] How?—A programmer's perspective (9 — 13)
O How?—From an implementor’s point of view (15 — 26)

Prerequisites: we use the functional programming language Haskell 98
for the examples.



Recap : Haskell 98

Haskell 98 is a statically typed language. New types are introduced
via data declarations.

data List A = mnil | cons A (List A)

Here, List is a type constructor, nil and cons are data constructors.

Functions are defined via pattern matching.

size . VA.List A — Int
size nil = 0
size (cons a as) = 1+ size as

size is a polymorphic function.




Polymorphic type systems

Many of us (most of us?) will probably agree that static type systems,
especially, polymorphic type systems are a good thing. For reasons of

Security soundness results guarantee that well-typed programs
cannot ‘go wrong'.

Flexibility = polymorphism allows the definition of functions that
behave uniformly over all types (such as size).

This is an uninteresting talk for addicts of untyped languages.




However, . ..

. . even polymorphic type systems are sometimes less flexible than
one would wish.

For instance, it is not possible to define a polymorphic equality
function.

‘eq 2 VI.T — T — Bool |

A deep theorem, the parametricity theorem, implies that a function
of this type must necessarily be constant—roughly speaking, the two
arguments cannot be inspected.




As a consequence, the programmer is forced to program a separate

equality function for each type from scratch.

Here is how one would define equality for lists.

eqList :: VA.(A— A — Bool)
— (List A — List A — Bool)
eqList eqA nil nil = True
eqList eqA nil (cons az ase) = False
eqList eqA (cons a1 as1) nil = False
eqList eqA (cons ay as1) (cons as ass)
= eqA a1 ag N\ eqlist asy ass

eqList is actually an ‘equality transformer’.




Polytypic programming comes to rescue

Polytypic programming (also known as generic programming,
type parametric programming, shape polymorphism, structural
polymorphism) addresses this problem.

Basic idea: define the equality function by induction on the

structure of types.

Note that an instance of eq, such as eqList, is typically defined by
induction on the structure of values.



Polytypic programs are ubiquitous

Equality and comparison functions.

Reductions (such as size, sum, listify).

Pretty printers (such as Haskell's show function).
Parsers (such as Haskell's read function).

Data conversion (Jansson and Jeuring, ESOP'99).

Digital searching (Hinze, JFP).



[]

[]

[]

A brief outline of the talk

Why? (2 - 7)
How?—A programmer's perspective (9 — 13)

How?—From an implementor’s point of view (15 — 26)



Polytypic definitions

In order to define a polytypic value it suffices to give instances for the
following three data types—plus an instance for every primitive type.

data 1 = ()
data Al -+ A2 = nl Al ‘ nr A2
data Al X A2 = (Al, Ag)

Here, 1 is the unit data type, '+ is a binary sum, and "X’ is a binary
product (pairs).



Polytypic definitions—equality

For emphasis, the type argument of eq is enclosed in angle brackets.

eq{ A} . A— A — Bool

eq{1f () () = True

eq{Intl} 1 io = eqlnt iy i

eq{A + B} (inl a1) (inl az) = eq{A} a1 ao

eq{A + Bt (inl a1) (inr by) = False

eq{A + B} (inr by) (inl az) = False

eq{A + B} (inr by) (inr by) = eq{B} b1 by

GQ{A X B[} (Cbl, bl) (0,2, bg) = QQ{IA[} aip as N\ GQ{IBH bl bg

This simple definition contains all ingredients needed to derive
specializations for arbitrary data types.

10



Haskell's type classes

Haskell supports overloading, based on type classes.

class Fg T where
eq :: T — T — Bool

However, overloading is not polytypic programming. For each
type, you have to give an explicit instance declaration, containing the

code for equality.

instance (Fq A) = FEq (List A) where

eq nil nil = True
eq nil (cons az ass) = Fulse
eq (cons ay asy) nil = Fulse

eq (cons ay as1) (cons as ass)

eq a1 ax /\ eq asi aSo

11



deriving

However, for a handful of built-in classes Haskell provides special
support—the so-called ‘deriving’ mechanism.

data List A = mnil | cons A (List A) deriving (FEq)

The ‘deriving (Fq)’ part tells Haskell to generate the ‘obvious’ code
for equality.

Alas, you cannot define your own derivable type classes.

12



Derivable type classes

Idea: use polytypic definitions to specify default method declarations.

class Fig T where
eq . T — T — Bool
eq{1ft () O = True
eq{{A + B[} (inl a1) (inl ax) = eq a1 as
eq{A + B} (inl a1) (inr by) = False
eq{A + B} (inr by) (inl az) = False
eq{A + B} (inr by) (inr b)) = eq by bo
eq{A x B} (a1,b1) (az,b2) = eq ay as N eq by bo

This extension is implemented in the Glasgow Haskell Compiler
(Version 5.00).

13



[]

[]

[]

A brief outline of the talk

Why? (2 - 7)
How?—A programmer's perspective (9 — 13)

How?—From an implementor’s point of view (15 — 26)

14



A closer look at Haskell’'s data construct

It features type abstraction.

data List A = mnil | cons A (List A)

It features type application.

data List A = mnil | cons A (List A)

It features type recursion.

data List A = mnil | cons A (List A)

The type language corresponds to the simply typed A-calculus.

15



Kinds and types

Kinds—can be seen as the ‘types of types'.

T Ue Kind = % kind of types
| T -4 function kind

T, Ue€ Type = C type constant
A type variable
ANA. T type abstraction
T U type application

16



Modelling data types

Assuming the following type constants

we can rewrite List as a lambda term:

List = Fiz (AL.AA. 1+ A Xx L A).

17



Specializing: unfolding . . .

We could specialize a polytypic value by unfolding its definition:

eq{List Int} = eq{l + Int x List Int|
eq+ eqr (eqyx eqpy (eqiList Intl)),

where
eqy () () = True
eq, eqy eqp (inl ar) (inl az) = eqy a1 as
eqy eqy eqp (inl ar) (inr by) = False
eq, eqy eqp (inr by) (inl ag) = False
eq, eqy eqp (inr by) (inr b)) = eqp by by
eq, eqq eqp (a1, b1) (az,b2) = eqq a1 as N eqg by bo.

18



. . . does not work

Consider the following data type.

data Power A = zero A | succ (Power (A x A))

Since the type recursion is nested, unfolding eq's definition will loop.

eq{ Power Int|
= eq{Int + Power (Int x Int)[}

= eq. eqp, (eq{Power (Int x Int)|})

= eqy eqpy (eqy (eqx qrmr €4
(eq{ Power ((Int x Int) x (Int x Int))}))

19



Specializing polytypic values

Basic idea: Let function follow type.

eqq{ List Int|} — eqList eqInt
eq{ Power Int|} = eqPower eqlnt

Since List and Power are functions on types, eqList and eqPower are
consequently functions on equality functions: eqList maps eq{ Al} to
eq{ List Al}.

20



Specializing generic values—continued

In general, the type of eq{ T :: |} is given by

‘eq{lT::‘Z[}  Equal{Z} T, |

where Fqual{Z[ is defined by induction on the structure of kinds.

FEqual{x} T = T — T — Bool
Fqual{d — B} T = VA.FEqual{} A — Equal{B|} (T A)

eqList has type Equal{x — x|} List.

21



Specializing generic values—continued

The specialization of eq to types of arbitrary kinds is given by

6(]{14['? — €4y

eq{ C'} = eq,

eqg{Tr Tof = (eq{Ti}}) T> (eq{T>}})
eqg{AA. T} = XA.Xeqy.eq{ T}

Type application is mapped to value application, type abstraction to
value abstraction, and type recursion to value recursion (eqp,, = fir).

This is very similar to an interpretation of the simply typed
A-calculus.

22



Recap: applicative structures

An applicative structure £ is a triple (E, app, const) such that

e E=(E* | T € Kind),

e app = (appx y: E*~% — (E* — EY) | Z,4U € Kind), and

e const : const — E with const(C :: T) € E*.

23



Recap: environment models

An applicative structure £ = (E, app, const) is an environment model
if it is extensional (app is one-to-one) and if the clauses below define
a total meaning function.

ENC :: Zn = const(C)
E[A = Z]n = 71(4)
E[AA.T):: (6 —%F)]n

—= the unique ¢ € E®~% such that

apps g ¢ 0 = &[T = En(A :=9)
appy g (E[T = U — Dn) (E[U :: U]n)

ENT U)::0|n

24



Specialization as an interpretation

The applicative structure £ = (E, app, const) with

E* = (T ::%; Equal{Z|} T)
appey (Fif) (Aia) = (F A;f Aa)
const( () = (C;eqp)

is an environment model. Here, (T :: ¥; F T) denotes a dependent
product.

25



Benefits

Since the definition of app and the interpretation of Fizx are
the same for all polytypic functions, the polytypic programmer
merely has to specify the interpretation of the remaining

constants: ‘1’, '+’ ‘X', Int, and so on.

We can use the basic proof method of the simply typed -
calculus, which is based on so-called logical relations to prove
properties of polytypic values.

26



[]

[]

[]

A brief outline of the talk

Why? (2 - 7)
How?—A programmer's perspective (9 — 13)

How?—From an implementor’s point of view (15 — 26)

27



