
POLYTYPIC PROGRAMMING—OR:
Programming Language Theory is Helpful

RALF HINZE

Institute of Information and Computing Sciences

Utrecht University

Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/~ralf/

March, 2001

(Pick the slides at .../~ralf/talks.html#T23.)

A brief outline of the talk

Polytypic programming is about making programming easier and more

economical.

✖ Why? (2 – 7)

✖ How?—A programmer’s perspective (9 – 13)

✖ How?—From an implementor’s point of view (15 – 26)

Prerequisites: we use the functional programming language Haskell 98

for the examples.

1

Recap : Haskell 98

Haskell 98 is a statically typed language. New types are introduced

via data declarations.

data List A = nil | cons A (List A)

Here, List is a type constructor, nil and cons are data constructors.

Functions are defined via pattern matching.

size :: ∀A .List A → Int
size nil = 0
size (cons a as) = 1 + size as

☞ size is a polymorphic function.

2

Polymorphic type systems

Many of us (most of us?) will probably agree that static type systems,

especially, polymorphic type systems are a good thing. For reasons of

Security soundness results guarantee that well-typed programs

cannot ‘go wrong’.

Flexibility polymorphism allows the definition of functions that

behave uniformly over all types (such as size).

☞ This is an uninteresting talk for addicts of untyped languages.

3

However, . . .

. . . even polymorphic type systems are sometimes less flexible than

one would wish.

For instance, it is not possible to define a polymorphic equality

function.

eq :: ∀T .T → T → Bool

A deep theorem, the parametricity theorem, implies that a function

of this type must necessarily be constant—roughly speaking, the two

arguments cannot be inspected.

4

☞ As a consequence, the programmer is forced to program a separate

equality function for each type from scratch.

Here is how one would define equality for lists.

eqList :: ∀A . (A → A → Bool)
→ (List A → List A → Bool)

eqList eqA nil nil = True
eqList eqA nil (cons a2 as2) = False
eqList eqA (cons a1 as1) nil = False
eqList eqA (cons a1 as1) (cons a2 as2)

= eqA a1 a2 ∧ eqList as1 as2

☞ eqList is actually an ‘equality transformer’.

5

Polytypic programming comes to rescue

Polytypic programming (also known as generic programming,

type parametric programming, shape polymorphism, structural

polymorphism) addresses this problem.

☞ Basic idea: define the equality function by induction on the

structure of types.

Note that an instance of eq , such as eqList , is typically defined by

induction on the structure of values.

6

Polytypic programs are ubiquitous

✖ Equality and comparison functions.

✖ Reductions (such as size, sum, listify).

✖ Pretty printers (such as Haskell’s show function).

✖ Parsers (such as Haskell’s read function).

✖ Data conversion (Jansson and Jeuring, ESOP’99).

✖ Digital searching (Hinze, JFP).

7

A brief outline of the talk

✔ Why? (2 – 7)

✖ How?—A programmer’s perspective (9 – 13)

✖ How?—From an implementor’s point of view (15 – 26)

8

Polytypic definitions

In order to define a polytypic value it suffices to give instances for the

following three data types—plus an instance for every primitive type.

data 1 = ()
data A1 + A2 = inl A1 | inr A2

data A1 × A2 = (A1,A2)

Here, 1 is the unit data type, ‘+’ is a binary sum, and ‘×’ is a binary

product (pairs).

9

Polytypic definitions—equality

For emphasis, the type argument of eq is enclosed in angle brackets.

eq{|A|} :: A → A → Bool
eq{|1|} () () = True
eq{|Int |} i1 i2 = eqInt i1 i2
eq{|A + B |} (inl a1) (inl a2) = eq{|A|} a1 a2

eq{|A + B |} (inl a1) (inr b2) = False
eq{|A + B |} (inr b1) (inl a2) = False
eq{|A + B |} (inr b1) (inr b2) = eq{|B |} b1 b2

eq{|A × B |} (a1, b1) (a2, b2) = eq{|A|} a1 a2 ∧ eq{|B |} b1 b2

This simple definition contains all ingredients needed to derive

specializations for arbitrary data types.

10

Haskell’s type classes

Haskell supports overloading, based on type classes.

class Eq T where
eq :: T → T → Bool

☞ However, overloading is not polytypic programming. For each

type, you have to give an explicit instance declaration, containing the

code for equality.

instance (Eq A) ⇒ Eq (List A) where
eq nil nil = True
eq nil (cons a2 as2) = False
eq (cons a1 as1) nil = False
eq (cons a1 as1) (cons a2 as2) = eq a1 a2 ∧ eq as1 as2

11

deriving

However, for a handful of built-in classes Haskell provides special

support—the so-called ‘deriving’ mechanism.

data List A = nil | cons A (List A) deriving (Eq)

The ‘deriving (Eq)’ part tells Haskell to generate the ‘obvious’ code

for equality.

☞ Alas, you cannot define your own derivable type classes.

12

Derivable type classes

Idea: use polytypic definitions to specify default method declarations.

class Eq T where
eq :: T → T → Bool
eq{|1|} () () = True
eq{|A + B |} (inl a1) (inl a2) = eq a1 a2

eq{|A + B |} (inl a1) (inr b2) = False
eq{|A + B |} (inr b1) (inl a2) = False
eq{|A + B |} (inr b1) (inr b2) = eq b1 b2

eq{|A × B |} (a1, b1) (a2, b2) = eq a1 a2 ∧ eq b1 b2

☞ This extension is implemented in the Glasgow Haskell Compiler

(Version 5.00).

13

A brief outline of the talk

✔ Why? (2 – 7)

✔ How?—A programmer’s perspective (9 – 13)

✖ How?—From an implementor’s point of view (15 – 26)

14

A closer look at Haskell’s data construct

It features type abstraction.

data List A = nil | cons A (List A)

It features type application.

data List A = nil | cons A (List A)

It features type recursion.

data List A = nil | cons A (List A)

☞ The type language corresponds to the simply typed λ-calculus.

15

Kinds and types

Kinds—can be seen as the ‘types of types’.

T, U ∈ Kind ::= ? kind of types

| T → U function kind

Types.

T ,U ∈ Type ::= C type constant

| A type variable

| ΛA .T type abstraction

| T U type application

16

Modelling data types

Assuming the following type constants

1 :: ?

(+) :: ? → ? → ?

(×) :: ? → ? → ?

Fix :: ((? → ?) → (? → ?)) → (? → ?),

we can rewrite List as a lambda term:

List = Fix (ΛL . ΛA . 1 + A × L A).

17

Specializing: unfolding . . .

We could specialize a polytypic value by unfolding its definition:

eq{|List Int |} = eq{|1 + Int × List Int |}
= eq+ eq1 (eq× eq Int (eq{|List Int |})),

where

eq1 () () = True
eq+ eqA eqB (inl a1) (inl a2) = eqA a1 a2

eq+ eqA eqB (inl a1) (inr b2) = False
eq+ eqA eqB (inr b1) (inl a2) = False
eq+ eqA eqB (inr b1) (inr b2) = eqB b1 b2

eq× eqA eqB (a1, b1) (a2, b2) = eqA a1 a2 ∧ eqB b1 b2.

18

. . . does not work

Consider the following data type.

data Power A = zero A | succ (Power (A × A))

Since the type recursion is nested, unfolding eq ’s definition will loop.

eq{|Power Int |}
= eq{|Int + Power (Int × Int)|}
= eq+ eq Int (eq{|Power (Int × Int)|})
= eq+ eq Int (eq+ (eq× eq Int eq Int)

(eq{|Power ((Int × Int) × (Int × Int))|}))
= . . .

19

Specializing polytypic values

☞ Basic idea: Let function follow type.

eq{|List Int |} = eqList eqInt
eq{|Power Int |} = eqPower eqInt

Since List and Power are functions on types, eqList and eqPower are

consequently functions on equality functions: eqList maps eq{|A|} to

eq{|List A|}.

20

Specializing generic values—continued

In general, the type of eq{|T :: T|} is given by

eq{|T :: T|} :: Equal{|T|} T ,

where Equal{|T|} is defined by induction on the structure of kinds.

Equal{|?|} T = T → T → Bool
Equal{|A → B|} T = ∀A .Equal{|A|} A → Equal{|B|} (T A)

☞ eqList has type Equal{|? → ?|} List .

21

Specializing generic values—continued

The specialization of eq to types of arbitrary kinds is given by

eq{|A|} = eqA
eq{|C |} = eqc
eq{|T1 T2|} = (eq{|T1|}) T2 (eq{|T2|})
eq{|ΛA .T |} = λA . λeqA . eq{|T |}.

Type application is mapped to value application, type abstraction to

value abstraction, and type recursion to value recursion (eqFix = fix).

☞ This is very similar to an interpretation of the simply typed

λ-calculus.

22

Recap: applicative structures

An applicative structure E is a triple (E, app, const) such that

• E = (ET | T ∈ Kind),

• app = (appT,U : ET→U → (ET → EU) | T, U ∈ Kind), and

• const : const → E with const(C :: T) ∈ ET.

23

Recap: environment models

An applicative structure E = (E, app, const) is an environment model

if it is extensional (app is one-to-one) and if the clauses below define

a total meaning function.

EJC :: TKη = const(C)

EJA :: TKη = η(A)

EJ(ΛA .T) :: (S → T)Kη
= the unique ϕ ∈ ES→T such that

appS,T ϕ δ = EJT :: TKη(A := δ)

EJ(T U) :: VKη = appU,V (EJT :: U → VKη) (EJU :: UKη)

24

Specialization as an interpretation

The applicative structure E = (E, app, const) with

ET = (T :: T;Equal{|T|} T)
appT,U (F ; f) (A; a) = (F A; f A a)
const(C) = (C ; eqC)

is an environment model. Here, (T :: T;F T) denotes a dependent

product.

25

Benefits

✖ Since the definition of app and the interpretation of Fix are

the same for all polytypic functions, the polytypic programmer

merely has to specify the interpretation of the remaining

constants: ‘1’, ‘+’, ‘×’, Int , and so on.

✖ We can use the basic proof method of the simply typed λ-

calculus, which is based on so-called logical relations to prove

properties of polytypic values.

26

A brief outline of the talk

✔ Why? (2 – 7)

✔ How?—A programmer’s perspective (9 – 13)

✔ How?—From an implementor’s point of view (15 – 26)

27

