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Trinity

I functional core,

I imperative core,

I object-oriented core,

I [module system].
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Open recursion

Open recursion. Another handy feature offered by most
languages with objects and classes is the ability for one method
body to invoke another method of the same object via a special
variable called self or, in some langauges, this. The special
behavior of self is that it is late-bound, allowing a method defined
in one class to invoke another method that is defined later, in
some subclass of the first.
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Functions

- τ1→ τ2 -

values

fun (x1 : τ1)⇒ e

introduction

fun (x1 : τ1)⇒ e

elimination

e2 e1
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Dynamic semantics

(fun (x1 : τ1)⇒ e) ⇓ (fun (x1 : τ1)⇒ e)

e2 ⇓ (fun (x1 : τ1)⇒ e) let val x1 = e1 in e end ⇓ ν

e2 e1 ⇓ ν
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Recursive functions

rec fun (n : Nat)⇒
if n 0 then 1 else self (n − 1) ∗ n

+ self refers to the function itself.
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Dynamic semantics

(rec fun (x1 : τ1)⇒ e) ⇓ (fun (x1 : τ1)⇒ e){self 7→ rec fun (x1 : τ1)⇒ e }

+ The recursive knot is tied at the earliest possible point in time: the
introduction form.
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Objects

- object M end -

values

object µ end

introduction

object m end

elimination

e.x
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Dynamic semantics

m ⇓ µ

object m end ⇓ object µ end

e ⇓ object µ end µ(x) ⇓ ν

e.x ⇓ ν
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Recursive objects

rec object
method factorial (n : Nat) =

if n 0 then 1 else self .factorial (n − 1) ∗ n
end

+ self refers to the object itself.

10 / 23



Closed and
Open Recursion

RALF HINZE

Introduction

Recursive
functions

Recursive
objects

Recursive
functions
revisited

Conclusion

Appendix

Dynamic semantics

m ⇓ µ

rec object m end ⇓ rec object µ end

e ⇓ rec object µ end µ(x){self 7→ rec object µ end} ⇓ ν

e.x ⇓ ν

+ The recursive knot is tied at the latest possible point in time: the
elimination form.
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Stocktaking

I Closed recursion: tie the recursive knot in the introduction form.

I Open recursion: tie the recursive knot in the elimination form.

I Does it make a difference?

I No! If there is only a single introduction and a single elimination form.

I Let’s add an additional combining form, for instance, delegation.
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Delegation

val math =
rec object

method factorial (n : Nat) : Nat =
if n 0 then 1 else self .factorial ′ n ∗ n

method factorial ′ (n : Nat) : Nat =
self .factorial (n − 1)

end

val math′ =
rec object

include math
method factorial ′ (n : Nat) : Nat =

self .factorial (n − 1) + 1
end
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Thoughts

I Open recursion is not limited to objects.

I It is also useful for functions.

I Let’s add an additional combining form for functions.
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Open functions

val fac-base =
fun open (0 : Nat)⇒ 1

val fac-step =
rec fun open (n + 1 : Nat)⇒ self n ∗ (n + 1)

val factorial =
fac-base or fac-step

+ An open function is a partial function.

+ The combinator or combines two partial functions.
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Abstract syntax

e ::= · · · open functions:
| fun open r non-recursive open function
| rec fun open r recursive open function
| e1 or e2 alternation

r ::= ε empty rule
| p ⇒ e single rule
| r1 | r2 sequences of rules
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Dynamic semantics

(rec fun open r) ⇓ (rec fun open r)

e1 ⇓ (rec fun open r1) e2 ⇓ (rec fun open r2)

e1 or e2 ⇓ rec fun open (r1 | r2)

e2 ⇓ (rec fun open r) case e1 of r{self 7→ rec fun open r }end ⇓ ν

e2 e1 ⇓ ν
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Application — generic programming

val sum-nat =
fun open〈Nat〉 ⇒

fun x ⇒ x

val sum-pair =
rec sum fun open〈(a1, a2)〉 ⇒

fun (x1, x2)⇒ sum〈a1〉x1 + sum〈a2〉x2

+ Instead of a case we have a typecase.
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Conclusion

I Open functions are useful in conjunction with open data types.

I Vision: replacement for overloading and type classes.

I Open recursive modules?
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Objects — example

val my-account =
object

local
val balance = ref 0

in
method deposit (amount : Nat) =

balance := !balance + amount

method withdraw (amount : Nat) =
balance := sub (!balance, amount)

method balance =
! balance

end
end
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Objects — abstract syntax

m ← Method method declaration

m ::= ε empty declaration
| method x = e method definition
| m1 m2 sequence of declarations
| local d in m end local declaration
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Objects — dynamic semantics

ε ⇓ ε

(method x = e) ⇓ {x 7→ e }

m1 ⇓ µ1 m2 ⇓ µ2

m1 m2 ⇓ µ1, µ2

d ⇓ δ mδ ⇓ µ

local d in m end ⇓ µ
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Finite maps

When X and Y are sets X →fin Y denotes the set of finite maps from X to
Y . The domain of a finite map ϕ is denoted dom ϕ.

I the singleton map is written {x 7→ y }
I dom{x 7→ y } = {x }
I {x 7→ y }(x) = y

I when ϕ1 and ϕ2 are finite maps the map ϕ1, ϕ2 called ϕ1 extended by
ϕ2 is the finite map with

I dom (ϕ1, ϕ2) = dom ϕ1 ∪ dom ϕ2

I (ϕ1, ϕ2)(x) =


ϕ2(x) if x ∈ dom ϕ2

ϕ1(x) otherwise
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