
1 JJ J I II 2

Finger trees:

The swiss army knife of data structures

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

October, 2004

Joint work with Ross Paterson, City University, London

(Pick up the slides at .../~ralf/talks.html#T38.)

2 JJ J I II 2

Salient features of finger trees

I 2-3 finger trees: a purely functional sequence data type

I a persistent data type

I deque operations in amortised constant time

I concatenation and splitting in time logarithmic in the size of the smaller piece

I general purpose data structure: can serve as a sequence, priority queue,
search tree, priority search queue and more

I performs well in practice

I much simpler than previous implementations with similar bounds

H. Kaplan and R. E. Tarjan, Purely functional representations of catenable
sorted lists, ACM Symposium on the Theory of Computing, 1996.

C. Okasaki, Purely Functional Data Structures, Cambridge University
Press, 1998.

3 JJ J I II 2

Outline of the talk

✖ Preliminaries (4–6)

✖ Finger trees and catenation (8–16)

✖ Annotated finger trees and splitting (18–25)

✖ Applications (27–30)

4 JJ J I II 2

Preliminaries—monoids and reductions

A type with an associative operation and an identity forms a monoid.

class Monoid α where
∅ :: α
(⊕) :: α → α → α

A reduction is a function that collapses a structure of type ϕ α into a single value
of type α:

I empty subtrees are replaced by ∅;
I intermediate results are combined using ‘⊕’.

5 JJ J I II 2

Preliminaries—skewed reductions

If we arrange that applications of ‘⊕’ are only nested to the right, or to the left,
we obtain skewed reductions:

class Reduce ϕ where
reducer :: (α → β → β) → (ϕ α → β → β)
reducel :: (β → α → β) → (β → ϕ α → β)

☞ Skewed reductions need not be written by hand; they can be defined
generically for arbitrary ϕ-structures.

6 JJ J I II 2

Reductions—continued

Alternative reading: reducer (�) lifts the operation ‘�’ to ϕ-structures.

toList :: (Reduce ϕ) ⇒ ϕ α → [α]
toList s = s :′ [] where (:′) = reducer (:)

Think of s as being cons’ed to the empty list.

7 JJ J I II 2

Outline of the talk

✔ Preliminaries (4–6)

✖ Finger trees and catenation (8–16)

✖ Annotated finger trees and splitting (18–25)

✖ Applications (27–30)

8 JJ J I II 2

2-3 nodes

Finger trees are constructed from 2-3 nodes:

data Node α = Node2 α α | Node3 α α α

☞ 2-3 nodes contain two or three subtrees, but no keys; all data is stored in the
leaves of the tree.

9 JJ J I II 2

2-3 trees

Conventional 2-3 trees can be defined as follows:

data Tree α = Zero α | Succ (Tree (Node α))

☞ The Tree type is an example of a non-regular or nested type.

A typical 2-3 tree:

t h i s i s n o t a t r e e

All leaves of a 2-3 tree are at the same depth, the left and right spines have the
same length.

10 JJ J I II 2

2-3 finger trees

If we take hold of the end nodes of a 2-3 tree and lift them up together, we obtain
a tree that looks like this:

t h

i s i s n o t a t

r e e

Each pair of nodes on the central spine is merged into a single node (called Deep).

☞ A sequence of n elements is represented by a tree of depth Θ(log n); an
element d positions from the nearest end is stored at a depth of Θ(log d).

11 JJ J I II 2

2-3 finger trees—continued

Finger trees provide efficient access to the ends of a sequence:

data FingerTree α = Empty
| Single α
| Deep (Digit α) (FingerTree (Node α)) (Digit α)

The top level contains elements of type α, the next of type Node α, and so on:
the nth level contains elements of type Noden α, namely 2-3 trees of depth n.

☞ The FingerTree type is a second example of a non-regular or nested type.

A digit is a buffer of one to four elements, represented as a list to simplify the
presentation.

type Digit α = [α]

12 JJ J I II 2

Finger trees—reductions

instance Reduce Node where
reducer (�) (Node2 a b) z = a � (b � z)
reducer (�) (Node3 a b c) z = a � (b � (c � z))

instance Reduce FingerTree where
reducer (�) Empty z = z
reducer (�) (Single x) z = x � z
reducer (�) (Deep pr m sf) z = pr �′ (m �′′ (sf �′ z))

where (�′) = reducer (�)
(�′′) = reducer (reducer (�))

13 JJ J I II 2

Finger trees—deque operations

Adding a new element to the left of the sequence:

(/) :: α → FingerTree α → FingerTree α
a / Empty = Single a
a / Single b = Deep [a] Empty [b]
a / Deep [b, c, d , e] m sf = Deep [a, b] (Node3 c d e / m) sf
a / Deep pr m sf = Deep ([a] ++ pr) m sf

We classify digits of two or three elements (which correspond to nodes) as safe,
and those of one or four elements as dangerous.

☞ A deque operation may only propagate to the next level from a dangerous
digit, but in doing so it makes that digit safe, so that the next operation to reach
that digit will not propagate.

☞ Lazy evaluation guarantees that the amortised bound of Θ(1) also holds in a
persistent setting.

14 JJ J I II 2

Deque operations—continued

In the sequel we shall also require the lifting of ‘/’:

(/′) :: (Reduce ϕ) ⇒ ϕ α → FingerTree α → FingerTree α
(/′) = reducer (/)

Conversion to a finger tree may be defined using ‘/′’:

toTree :: (Reduce ϕ) ⇒ ϕ α → FingerTree α
toTree s = s /′ Empty

15 JJ J I II 2

Finger trees—concatenation

Concatenation of two Deep trees:

Deep pr 1 m1 sf 1 ./ Deep pr 2 m2 sf 2 = Deep pr 1 . . . sf 2

We can use the prefix of the first tree as the prefix of the result, and the suffix of
the second tree as the suffix of the result.

To combine the rest to make the new middle subtree, we require a function of type

FingerTree (Node α) → Digit α → Digit α → FingerTree (Node α) →
FingerTree (Node α)

For simplicity, we combine the two digit arguments into a list of Nodes.

16 JJ J I II 2

Concatenation—continued

app3 :: FingerTree α → [α] → FingerTree α → FingerTree α
app3 Empty ts xs = ts /′ xs
app3 xs ts Empty = xs .′ ts
app3 (Single x) ts xs = x / (ts /′ xs)
app3 xs ts (Single x) = (xs .′ ts) . x
app3 (Deep pr 1 m1 sf 1) ts (Deep pr 2 m2 sf 2)

= Deep pr 1 (app3 m1 (nodes (sf 1 ++ ts ++ pr 2)) m2) sf 2

☞ nodes groups a list of at most 12 elements into a list of 2-3 nodes.

(./) :: FingerTree α → FingerTree α → FingerTree α
xs ./ ys = app3 xs [] ys

☞ The recursion terminates when we reach the bottom of the shallower tree, so
the total time taken is Θ(log(min{n1, n2})).

17 JJ J I II 2

Outline of the talk

✔ Preliminaries (4–6)

✔ Finger trees and catenation (8–16)

✖ Annotated finger trees and splitting (18–25)

✖ Applications (27–30)

18 JJ J I II 2

Annotations

An annotation represents a cached reduction with some monoid.

class (Monoid ν) ⇒ Measured α ν where
‖ · ‖ :: α → ν

Think of α as the type of some tree and ν as the type of an associated
measurement.

☞ The Measured class is an example of a multiple parameter type class.

19 JJ J I II 2

Annotated 2-3 nodes

Measurements are cached in 2-3 nodes:

data Node ν α = Node2 ν α α | Node3 ν α α α

The smart constructor node2 automatically adds an explicit annotation

node2 :: (Measured α ν) ⇒ α → α → Node ν α
node2 a b = Node2 (‖a‖ ⊕ ‖b‖) a b

which is then looked-up by the measure function:

instance (Monoid ν) ⇒ Measured (Node ν α) ν where
‖Node2 v ‖ = v
‖Node3 v ‖ = v

20 JJ J I II 2

Annotated 2-3 finger trees

Measurements are cached in deep nodes:

data FingerTree ν α
= Empty
| Single α
| Deep ν (Digit α) (FingerTree ν (Node ν α)) (Digit α)

21 JJ J I II 2

Annotated finger trees—splitting

The central operation that puts the annotations to good use is splitting a
sequence on properties of an accumulated measurement.

Example: accumulating the size of subtrees yields the positions of elements.

To represent a container split around a distinguished element, with containers of
elements to its left and right, we introduce the data type

data Split τ α = Split (τ α) α (τ α)

☞ Splitting a finger tree provides us with a third finger besides the ones at the
left and right ends of the tree.

22 JJ J I II 2

Splitting—specification

The function splitTree, which splits a finger tree, expects three arguments: a
predicate on measurements, an accumulator, and a finger tree.

Specification:

¬p i ∧ p (i ⊕ ‖t‖) =⇒
let Split l x r = splitTree p i t
in toList l ++ [x] ++ toList r = toList t

∧ ¬p (i ⊕ ‖l‖) ∧ p (i ⊕ ‖l‖ ⊕ ‖x‖)

First conjunct: Split l x r is actually a split of t .

Second conjunct: splitTree splits t at a point where p applied to the
accumulated measurement changes from False to True.

☞ The split is unique for monotonic predicates satisfying p x =⇒ p (x ⊕ y).

23 JJ J I II 2

Specification of splitting—continued

i
¬p

x1

v1

x2

v2
. . .

· · · · · ·

. . .

xn−1

vn−1

xn

vn

p. . . unknown . . .

⇓

i

x1

v1

x2

v2

· · · xi−1

vi−1
¬p

xi

vi

p

xi+1 · · · xn−1

vn−1

xn

vn

where vj = i⊕ ‖x1‖ ⊕ · · · ⊕ ‖xj‖ is the accumulated measurement.

☞ xi is the distinguished element where p changes from False to True.

24 JJ J I II 2

Splitting a tree

splitTree :: (Measured α ν) ⇒
(ν → Bool) → ν → FingerTree ν α → Split (FingerTree ν) α

splitTree p i (Single x) = Split Empty x Empty
splitTree p i (Deep pr m sf)

| p vpr = let Split l x r = splitDigit p i pr
in Split (toTree l) x (deepL r m sf)

| p vm = let Split ml xs mr = splitTree p vpr m
Split l x r = splitDigit p (vpr ⊕ ‖ml‖) (toList xs)

in Split (deepR pr ml l) x (deepL r mr sf)
| else = let Split l x r = splitDigit p vm sf

in Split (deepR pr m l) x (toTree r)
where vpr = i ⊕ ‖pr‖

vm = vpr ⊕ ‖m‖

☞ deepL is a smart variant of Deep that allows the prefix to be empty;
splitDigit splits a digit.

25 JJ J I II 2

Splitting—continued

Using splitTree we can define a function split that produces two sequences:

split :: (Measured α ν) ⇒
(ν → Bool) → FingerTree ν α → (FingerTree ν α,FingerTree ν α)

split p Empty = (Empty ,Empty)
split p xs

| p ‖xs‖ = (l , x / r)
| else = (xs ,Empty)
where Split l x r = splitTree p ∅ xs

☞ We require ¬p ∅ to establish the invariant of splitTree.

☞ Interestingly, the specification of splitTree can be strengthened so that we
don’t need any preconditions on p!

26 JJ J I II 2

Outline of the talk

✔ Preliminaries (4–6)

✔ Finger trees and catenation (8–16)

✔ Annotated finger trees and splitting (18–25)

✖ Applications (27–30)

27 JJ J I II 2

Application—random-access sequences

Random-access sequences support fast positional operations. To this end we
annotate finger trees with sizes:

newtype Size = Size{getSize :: Nat }
instance Monoid Size where
∅ = Size 0
Size m ⊕ Size n = Size (m + n)

newtype Seq α = Seq (FingerTree Size (Elem α))

newtype Elem α = Elem{getElem :: α}
instance Measured (Elem α) Size where
‖Elem ‖ = Size 1

☞ Think of Elem as a marker for elements.

28 JJ J I II 2

Random-access sequences—continued

The length of a sequence can be computed in constant time:

length :: Seq α → Nat
length (Seq xs) = getSize ‖xs‖

Splitting a sequence at a certain position is simply a matter of calling split with
the appropriate arguments:

splitAt :: Nat → Seq α → (Seq α, Seq α)
splitAt i (Seq xs) = (Seq l , Seq r)

where (l , r) = split (Size i <) xs

29 JJ J I II 2

Application—ordered sequences

Another possibility is to annotate with split or signpost keys:

data Key α = NoKey | Key{getKey :: α}
instance Monoid (Key α) where
∅ = NoKey
k ⊕ NoKey = k
⊕ k = k

If we maintain the sequence in key order, we have an implementation of ordered
sequences:

newtype OrdSeq α = OrdSeq (FingerTree (Key α) (Elem α))

instance Measured (Elem α) (Key α) where
‖Elem x‖ = Key x

30 JJ J I II 2

Ordered sequences—continued

Partitioning before the first element > k :

partition :: (Ord α) ⇒ α → OrdSeq α → (OrdSeq α,OrdSeq α)
partition k (OrdSeq xs) = (OrdSeq l ,OrdSeq r)

where (l , r) = split (> Key k) xs

Perhaps surprisingly, insertion can also be defined in terms of split :

insert :: (Ord α) ⇒ α → OrdSeq α → OrdSeq α
insert x (OrdSeq xs) = OrdSeq (l ./ (Elem x / r))

where (l , r) = split (> Key x) xs

31 JJ J I II 2

Outline of the talk

✔ Preliminaries (4–6)

✔ Finger trees and catenation (8–16)

✔ Annotated finger trees and splitting (18–25)

✔ Applications (27–30)

32 JJ J I II 2

Conclusion

Other applications:

I max-priority queues (annotation: priorities),

I order statistics (annotation: sizes and split keys),

I interval trees (annotation: split keys and priorities).

Variations:

I a more accurate and efficient implementation of Digit :

data Digit α = One α
| Two α α
| Three α α α
| Four α α α α

I the reliance on a right identity (a ⊕ ∅ = a) can be removed.

