
A Simple Implementation Technique for
Priority Search Queues

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University

Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/~ralf/

March, 2001

(Pick the slides at .../~ralf/talks.html#T20.)

Aim of the talk

• advertize priority search queues

• describe a new implementation technique for priority search queues

• promote views

1

Recap: views

A view allows any type to be viewed as a free data type. The following
view (minimum view) allows any list to be viewed as an ordered list.

view (Ord a) ⇒ [a] = Empty | Min a [a] where
[] → Empty
a1 : Empty → Min a1 []
a1 : Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

A view declaration for a type T consists of an anonymous data type, the
view type, and an anonymous function, the view transformation, that shows
how to map elements of T to the view type.

2

Recap: views (continued)

The view constructors, Empty and Min, can now be used to pattern match
elements of type [a] (where a is an instance of Ord).

selection-sort :: (Ord a) ⇒ [a] → [a]
selection-sort Empty = []
selection-sort (Min a as) = a : selection-sort as.

3

Priority search queues: signature

Priority search queues are conceptually finite maps that support efficient
access to the binding with the minimum value, where a binding is an
argument-value pair and a finite map is a finite set of bindings.

Bindings are represented by the following data type:

data k 7→ p = k 7→ p
key :: (k 7→ p) → k
key (k 7→ p) = k
prio :: (k 7→ p) → p
prio (k 7→ p) = p.

4

data PSQ k p
-- constructors

∅ :: PSQ k p
{·} :: (k 7→ p) → PSQ k p
insert :: (k 7→ p) → PSQ k p → PSQ k p
from-ord-list :: [k 7→ p] → PSQ k p

-- destructors

view PSQ k p = Empty | Min (k 7→ p) (PSQ k p)
-- observers

lookup :: k → PSQ k p → Maybe p
to-ord-list :: PSQ k p → [k 7→ p]

-- modifier

adjust :: (p → p) → k → PSQ k p → PSQ k p

5

Application: single-source shortest path

Dijkstra’s algorithm maintains a queue that maps each vertex to its estima-
ted distance from the source and works by repeatedly removing the vertex
with minimal distance and updating the distances of its adjacent vertices.

The update operation is typically called decrease:

decrease :: (k 7→ p) → PSQ k p → PSQ k p
decrease (k 7→ p) q = adjust (min p) k q
decrease-list :: [k 7→ p] → PSQ k p → PSQ k p
decrease-list bs q = foldr decrease q bs.

6

Application: single-source shortest path (continued)

type Weight = Vertex → Vertex → Double
dijkstra :: Graph → Weight → Vertex

→ [Vertex 7→ Double]
dijkstra g w s = loop (decrease (s 7→ 0) q0)

where
q0 = from-ord-list [v 7→ +∞ | v ← vertices g]
loop Empty = []
loop (Min (u 7→ d) q)

= (u 7→ d) : loop (decrease-list bs q)
where bs = [v 7→ d + w u v | v ← adjacent g u]

7

Tournament trees

Ade 4 Doaitse 2 Eelco 1 Johan 6 Lambert 3 Nigel 7 Piet 5 Vladimir 8

Doaitse 2 Eelco 1 Lambert 3 Piet 5

Eelco 1 Lambert 3

Eelco 1

8

Heaps — priority search trees

Vladimir 8

Ade 4 Johan 6 Nigel 7 Piet 5

Doaitse 2 Lambert 3

Eelco 1

9

Semi-heaps — priority search pennants

Ade 4 Johan 6 Nigel 7 Vladimir 8

Doaitse 2 Piet 5

Lambert 3

Eelco 1

10

Priority search pennants: adding split keys

E1
V

L3
J

D2
D

A4
A

J6
E

P5
N

N7
L

V 8
P

11

Priority search pennants: data types

The Haskell data type for priority search pennants is a direct implementation
of the ideas.

data PSQ k p = Void | Winner (k 7→ p) (LTree k p) k
data LTree k p = Start | Loser (k 7→ p) (LTree k p) k (LTree k p)

NB. Winner b t m ∼= Loser b t m Start .

The maximum key is accessed using the function max-key.

max-key :: PSQ k p → k
max-key (Winner b t m) = m

12

Priority search pennants: invariants

Semi-heap conditions: 1) Every priority in the pennant must be less than
or equal to the priority of the winner. 2) For all nodes in the loser
tree, the priority of the loser’s binding must be less than or equal to the
priorities of the bindings of the subtree, from which the loser originates.
The loser originates from the left subtree if its key is less than or equal
to the split key, otherwise it originates from the right subtree.

Search-tree condition: For all nodes, the keys in the left subtree must be
less than or equal to the split key and the keys in the right subtree must
be greater than the split key.

Key condition: The maximum key and the split keys must also occur as
keys of bindings.

Finite map condition: The pennant must not contain two bindings with
the same key.

13

Constructors: ∅ and {·}

∅ :: PSQ k p
∅ = Void
{·} :: (k 7→ p) → PSQ k p
{b} = Winner b Start (key b).

14

Playing a match

b1
m2

b2
m1

t1 t2

b16b2⇐=

b1
m1

t3

&

b2
m2

t3

b1>b2=⇒

b2
m2

b1
m1

t1 t2

NB. b1 6 b2 is shorthand for prio b1 6 prio b2.

15

Playing a match (continued)

(&) :: PSQ k p → PSQ k p → PSQ k p
Void & t ′ = t ′

t & Void = t
Winner b t m & Winner b′ t ′ m ′

| prio b 6 prio b′ = Winner b (Loser b′ t m t ′) m ′

| otherwise = Winner b′ (Loser b t m t ′) m ′

16

Constructors: from-ord-list

from-ord-list :: [k 7→ p] → PSQ k p
from-ord-list = foldm (&) ∅ · map (λb → {b})

NB. foldm folds a list in a binary-sub-division fashion.

17

Destructors

view PSQ k p = Empty | Min (k 7→ p) (PSQ k p) where
Void → Empty
Winner b t m → Min b (second-best t m)

The function second-best determines the second-best player by replaying
the tournament without the champion.

second-best :: LTree k p → k → PSQ k p
second-best Start m = Void
second-best (Loser b t k u) m
| key b 6 k = Winner b t k & second-best u m
| otherwise = second-best t k & Winner b u m

18

Priority search pennants as tournament trees

view PSQ k p = ∅ | {k 7→ p} | PSQ k p & PSQ k p
where
Void → ∅
Winner b Start m → {b}
Winner b (Loser b′ tl k tr) m
| key b′ 6 k → Winner b′ tl k & Winner b tr m
| otherwise → Winner b tl k & Winner b′ tr m

NB. We have taken the liberty of using ∅, {·} and ‘&’ also as constructors.

19

Observers: to-ord-list

to-ord-list :: PSQ k p → [k 7→ p]
to-ord-list ∅ = []
to-ord-list {b} = [b]
to-ord-list (tl & tr) = to-ord-list tl ++ to-ord-list tr

20

Observers: lookup

lookup :: k → PSQ k p → Maybe p
lookup k ∅ = Nothing
lookup k {b}
| k key b = Just (prio b)
| otherwise = Nothing

lookup k (tl & tr)
| k 6 max-key tl = lookup k tl
| otherwise = lookup k tr

21

Observers: adjust

adjust :: (p → p) → k → PSQ k p → PSQ k p
adjust f k ∅ = ∅
adjust f k {b}
| k key b = {k 7→ f (prio b)}
| otherwise = {b}

adjust f k (tl & tr)
| k 6 max-key tl = adjust f k tl & tr
| otherwise = tl & adjust f k tr

22

Constructors: insert

insert :: (k 7→ p) → PSQ k p → PSQ k p
insert b ∅ = {b}
insert b {b′}
| key b < key b′ = {b} & {b′}
| key b key b′ = {b} -- update
| key b > key b′ = {b′} & {b}

insert b (tl & tr)
| key b 6 max-key tl = insert b tl & tr
| otherwise = tl & insert b tr

23

Adding a balancing scheme

One of the strengths of priority search pennants as compared to priority
search trees is that a balancing scheme can be easily added.

Most balancing schemes use rotations to restore balancing invariants. Ho-
wever, rotations do not preserve the semi-heap property:

F2
E

D5
B

t1 t2

t3

=⇒

D5
B

t1

F2
E

t2 t3

24

Single rotation

b1
k2

b2
k1

t1 t2

t3

(b2 & b1) & −∞

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (b1 & −∞)

b1
k2

b2
k1

t1 t2

t3

(b1 & b2) & −∞

=⇒

b1
k1

t1

b2
k2

t2 t3

b1 & (b2 & −∞)
25

Single rotation (continued)

b1
k2

b2
k1

t1 t2

t3

(b2 & −∞) & b1

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (−∞ & b1)

b1
k1

t1

b2
k2

t2 t3

−∞ & (b2 & b1)

b16b2⇐=

b1
k2

b2
k1

t1 t2

t3

(−∞ & b2) & b1

b1>b2=⇒

b2
k1

t1

b1
k2

t2 t3

−∞ & (b2 & b1)
26

Summary

• Priority search queues are a versatile ADT.

• They can be easily implemented by priority search pennants—using an
arbitrary balancing scheme.

• Views were very helpful:

– they provide a convenient interface to the ADT and
– they enhance both the readability and the modularity of the code.

27

Appendix

foldm :: (a → a → a) → a → [a] → a
foldm (∗) e as
| null as = e
| otherwise = fst (rec (length as) as)
where rec 1 (a : as) = (a, as)

rec n as = (a1 ∗ a2, as2)
where m = n ‘div ‘ 2

(a1, as1) = rec (n −m) as
(a2, as2) = rec m as1

28

