
1 JJ J I II 2

Typed Type Representations

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

June, 2004

(Pick the slides at .../~ralf/talks.html#T34.)



2 JJ J I II 2

A type representation type

A type whose elements represent types:

data Rep :: ? → ?where
RInt :: Rep Int
RPair :: ∀α β .Rep α → Rep β → Rep (α, β)

The term rt :: Rep τ represents the type τ .

☞ Rep is a first-class phantom type (aka inductive type, guarded type,
equality-qualified type).



3 JJ J I II 2

Generic functions

A simple generic function that adds integers contained in a value:

type Sum α = α → Int

sum :: ∀τ .Rep τ → Sum τ
sum (RInt) i = i
sum (RPair ra rb) (a, b) = sum ra a + sum rb b



4 JJ J I II 2

Unfortunately, . . .

Rep is not a valid Haskell 98 type.

For now, we have to encode Rep.



5 JJ J I II 2

Reminder: encodings of data types

data Nat :: ?where
Zero :: Nat
Succ :: Nat → Nat



6 JJ J I II 2

Church encoding (Böhm, Berarducci, 1985)

The type T = F T is encoded as T = ∀τ . (F τ → τ ) → τ .

Using the law of exponentials, in particular,
(A + B) → C ∼= (A → C )× (B → C ), we obtain:

data Nat = Nat{apply :: ∀nat .Fold nat → nat }
data Fold nat = Fold{

cZero :: nat ,
cSucc :: nat → nat

}
zero = Nat (λc → cZero c)
succ n = Nat (λc → cSucc c (apply n c))

☞ An element of Nat corresponds to a fold (aka catamorphism, iterator).



7 JJ J I II 2

Parigot encoding (1992)

The type T = F T is encoded as T = ∀τ . (F T → τ ) → τ .

Using the law of exponentials, in particular,
(A + B) → C ∼= (A → C )× (B → C ), we obtain:

data Nat = Nat{apply :: ∀nat .Case nat → nat }
data Case nat = Case{

cZero :: nat ,
cSucc :: Nat → nat

}
zero = Nat (λc → cZero c)
succ n = Nat (λc → cSucc c n)

☞ An element of Nat corresponds to a case-analysis.



8 JJ J I II 2

The type Rep

data Rep :: ? → ?where
RInt :: Rep Int
RPair :: ∀α β .Rep α → Rep β → Rep (α, β)



9 JJ J I II 2

The Parigot encoding of Rep

data Rep τ = Rep{rep :: ∀rep .Case rep → rep τ }
data Case rep = Case{

cInt :: rep Int ,
cPair :: ∀α β .Rep α → Rep β → rep (α, β)

}

☞ Rep and Case are defined by mutual recursion.



10 JJ J I II 2

Parigot encoding—type representations

rInt :: Rep Int
rInt = Rep (λc → cInt c)

rPair :: ∀α β .Rep α → Rep β → Rep (α, β)
rPair ra rb = Rep (λc → cPair c ra rb)

☞ The type representation is passed to the “recursive” case.



11 JJ J I II 2

Parigot encoding—generic functions

data Sum α = Sum{applySum :: α → Int }
gsum :: ∀τ .Rep τ → Sum τ
gsum rt = rep rt (Case{

cInt = Sum (λi → i),
cPair = λra rb →

Sum (λ(a, b) →
sum ra a + sum rb b)

})
sum :: ∀τ .Rep τ → (τ → Int)
sum rt = applySum (gsum rt)

Example: sum (rPair rInt rInt) (47, 11) = 58.



12 JJ J I II 2

Parigot encoding with type classes

Type classes allow us to pass arguments implicitly.

class Rep τ where
rep :: (Case rep) ⇒ rep τ

class Case rep where
cInt :: rep Int
cPair :: ∀α β . (Rep α,Rep β) ⇒ rep (α, β)

☞ Rep and Case are mutually recursive.

☞ rep :: ∀τ . (Rep τ ) ⇒ ∀rep . (Case rep) ⇒ rep τ can be seen as the mother
of all generic functions.



13 JJ J I II 2

Type classes—type representations

instance Rep Int where
rep = cInt

instance (Rep α,Rep β) ⇒ Rep (α, β) where
rep = cPair



14 JJ J I II 2

Type classes—generic functions

data Sum α = Sum{applySum :: α → Int }
instance Case Sum where

cInt = Sum (λi → i)
cPair = Sum (λ(a, b) → sum a + sum b)

sum :: ∀τ . (Rep τ ) ⇒ τ → Int
sum = applySum rep

Example: sum (47, 11) = 58.



15 JJ J I II 2

The Church encoding of Rep

data Rep τ = Rep{rep :: ∀rep .Fold rep → rep τ }
data Fold rep = Fold{

cInt :: rep Int ,
cPair :: ∀α β . rep α → rep β → rep (α, β)

}

☞ Rep and Fold are not mutually recursive.



16 JJ J I II 2

Church encoding—type representations

rInt :: Rep Int
rInt = Rep (λc → cInt c)

rPair :: ∀α β .Rep α → Rep β → Rep (α, β)
rPair ra rb = Rep (λc → cPair c (rep ra c) (rep rb c))

☞ The generic function (not the type representation) is passed to the
“recursive” case.



17 JJ J I II 2

Church encoding—generic functions

data Sum α = Sum{applySum :: α → Int }
gsum :: ∀τ .Rep τ → Sum τ
gsum (Rep rt) = rt (Fold{

cInt = Sum (λi → i),
cPair = λga gb →

Sum (λ(a, b) →
applySum ga a
+ applySum gb b)

})
sum :: ∀τ .Rep τ → (τ → Int)
sum rt = applySum (gsum rt)

Example: sum (rPair rInt rInt) (47, 11) = 58.



18 JJ J I II 2

Church encoding with type classes

Again, type classes allow us to pass arguments implicitly.

class Rep τ where
rep :: (Fold rep) ⇒ rep τ

class Fold rep where
cInt :: rep Int
cPair :: ∀α β . rep α → rep β → rep (α, β)

☞ Rep and Fold are not mutually recursive.



19 JJ J I II 2

Type classes—type representations

infixr 3 ⊗
ra ⊗ rb = cPair ra rb

instance Rep Int where
rep = cInt

instance (Rep α,Rep β) ⇒ Rep (α, β) where
rep = rep ⊗ rep



20 JJ J I II 2

Type classes—generic functions

data Sum α = Sum{applySum :: α → Int }
instance Fold Sum where

cInt = Sum (λi → i)
cPair ga gb = Sum (λ(a, b) → applySum ga a + applySum gb b)

sum :: ∀τ . (Rep τ ) ⇒ τ → Int
sum = applySum rep

Example: sum (47, 11) = 58.



21 JJ J I II 2

Generic functions on type constructors

The last encoding allows us to simulate open type representations,

size (ra ⊗ ra) e where size (ra) a = 1

which in turn can be used to implement generic functions on type constructors.

size (Λra . ra ⊗ ra) e



22 JJ J I II 2

Generic functions on type constructors

data Size α = Size{applySize :: α → Int }
instance Fold Size where

cInt = Size (λi → 0)
cPair ga gb = Size (λ(a, b) → applySize ga a + applySize gb b)

Example: applySize rep (47, 11) = 0.

ra = Size (λi → 1)

Examples: applySize (ra ⊗ ra) (47, 11) = 2, applySize (ra ⊗ cInt) (47, 11) = 1.



23 JJ J I II 2

Conclusion

I You can program generically within Haskell 98.

I Thanks to type classes, the implementation of generics is quite comfortable.

I The approach can be generalised to arbitrary Haskell data types, see my
paper “Generics for the masses”.

I Both encodings have their pros and cons:

Parigot: mutually recursive generic functions are easy, but only closed
type representations.

Church: mutually recursive generic functions require tupling, supports
open type representations.


