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A type representation type

A type whose elements represent types:

data Rep :: x — xwhere
Rint . Rep Int
RPair :: Ya 3. Rep a — Rep 8 — Rep («, 3)

The term rt :: Rep T represents the type 7.

|:| Rep is a first-class phantom type (aka inductive type, guarded type,

equality-qualified type).
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A simple generic function that adds integers contained in a value:

type Sum « = a — Int

SUMm 2 V7.Repm— Sum T
sum (RInt) i =

sum (RPair ra vb) (a,b) = sum ra a+ sum rb b
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Unfortunately, ...

Rep is not a valid Haskell 98 type.

For now, we have to encode Rep.
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Zero ::
Suce

data Nat :

x*where

Nat
Nat — Nat
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¢ Church encoding (Béhm, Berarducci, 1985)

The type T'=F T isencodedas T'=V7.(F 17— 7)) — 7.

Using the law of exponentials, in particular,

(A+B)—- C=(A— C)x(B— (), we obtain:

data Nat = Nat{apply :: Vnat . Fold nat — nat }
data Fold nat = Fold{
cZero :: nat,

cSuce > nat — nat

}
Nat (Ac — cZero c)
Nat (A¢c — cSucc ¢ (apply n c))

ZET0
succ n

|:| An element of Nat corresponds to a fold (aka catamorphism, iterator).
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¢ Parigot encoding (1992)

Thetype T=F T isencodedas T =V7.(F T — 1) — T.

Using the law of exponentials, in particular,

(A+B) - C=(A— C)x (B — (), we obtain:

data Nat = Nat{apply :: Vnat . Case nat — nat }
data Case nat = Case{
czero :: nat,

cSuce :: Nat — nat

}
Nat (Ac — cZero c)
Nat (Ae¢ — c¢Succe ¢ n)

ZET0
succ n

|:| An element of Nat corresponds to a case-analysis.
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data Rep :: x — xwhere
Rint :: Rep Int
RPair :: Ya 3. Rep o — Rep 8 — Rep («, 5)
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¢ The Parigot encoding of Rep

data Rep 7 Rep{rep ::Vrep . Case rep — rep T}
data Case rep = Case{
cInt :: rep Int,
cPair :Va 3. Rep o — Rep B — rep («, 3)

}

|:| Rep and Case are defined by mutual recursion.
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(Parigot encoding—type representations

rint . Rep Int

rint = Rep (A¢ — cInt ¢)

rPair . Ya B.Rep a — Rep 8 — Rep («, 3)
rPair ra tb = Rep (A¢ — cPair ¢ ra rb)

|:| The type representation is passed to the “recursive” case.
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¢ Parigot encoding—generic functions

data Sum a = Sum{applySum :: o — Int}
gsum . V7.Rep T — Sum T
gsum rt = rep rt (Casef
cInt = Sum (\i — 1),
cPair = Ara rb —
Sum (A(a, b) —
sum ra a + sum rb b)

})
sum . V7.Rep 7 — (T — Int)
sum 1t = applySum (gsum rt)

Example: sum (rPair rint rint) (47,11) = 58.
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(Parigot encoding with type classes )

Type classes allow us to pass arguments implicitly.

class Rep 7 where
rep  : (Case rep) = rep T
class Case rep where

cInt :: rep Int
cPair = Ya (. (Rep a, Rep B) = rep (a, 5)

|:| Rep and Case are mutually recursive.

|:| rep - V7. (Rep 7) = Vrep.(Case rep) = rep T can be seen as the mother
of all generic functions.
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¢ Type classes—type representations

instance Rep Int where

rep = cint
instance (Rep a, Rep ) = Rep (a, ) where
rep = cPair
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(" Type classes—generic functions

data Sum o = Sum{ applySum :: o — Int}
instance Case Sum where

cInt = Sum (Ni — 1)

cPair = Sum (Aa, b) — sum a + sum b)
sum . V7. (Rep 7) = 7 — Int
sum = applySum rep

Example: sum (47,11) = 58.
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¢ The Church encoding of Rep

data Rep 7 = Rep{rep::Vrep. Fold rep — rep 7}
data Fold rep = Fold{
cInt :: rep Int,
cPair :Ya B.rep a — rep § — rep («, ()

}

|:| Rep and Fold are not mutually recursive.
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¢ Church encoding—type representations

rint . Rep Int

rint = Rep (Ac — cInt ¢)

rPair . Ya 8. Rep a — Rep 3 — Rep (a, §)
rPair ra rb = Rep (A¢ — cPair ¢ (rep ra c) (rep b ¢))

|:| The generic function (not the type representation) is passed to the
“recursive’ case.
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¢ Church encoding—generic functions

data Sum o« = Sum{applySum :: o« — Int}
gsum o Vr.Repm— Sum T
gsum (Rep rt) = rt (Fold{
cInt = Sum (A\i — 1),
cPair = A\ga gb —
Sum (A(a, b) —
applySum ga a
+ applySum gb b)

1)
sum . V7.Rep T — (T — Int)
sum 1t = applySum (gsum 1t)

Example: sum (rPair rint rint) (47,11) = 58.
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¢ Church encoding with type classes

Again, type classes allow us to pass arguments implicitly.

class Rep 7 where
rep = (Fold rep) = rep T
class Fold rep where
cint :: rep Int
cPair :: Ya B.rep a — rep B — rep (o, §)

|:| Rep and Fold are not mutually recursive.
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¢ Type classes—type representations

infixr 3 ®

ra @ rb = cPair ra rb

instance Rep Int where
rep = cint

instance (Rep o, Rep 3) = Rep (a, 3) where
rep = rep K rep
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(" Type classes—generic functions

data Sum o = Sum{applySum :: o — Int}
instance Fold Sum where
cInt = Sum (Ni — 1)
cPair ga gb = Sum (A a, b) — applySum ga a + applySum gb b)
sum o V7. (Rep 7) = 7 — Int
sum = applySum rep

Example: sum (47,11) = 58.
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The last encoding allows us to simulate open type representations,

size (ra ® ra) e where size (ra) a = 1

which in turn can be used to implement generic functions on type constructors.

size (Ara.ra @ ra) e
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data Size « = Size{ applySize :: o« — Int }
instance Fold Size where
cInt = Size (A\i — 0)
cPair ga gb = Size (A(a, b) — applySize ga a + applySize gb b)

Example: applySize rep (47,11) = 0.

ra = Size (A\i — 1)

Examples: applySize (ra @ ra) (47,11) = 2, applySize (ra @ cInt) (47,11) = 1.
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Conclusion

» You can program generically within Haskell 98.
» Thanks to type classes, the implementation of generics is quite comfortable.

» The approach can be generalised to arbitrary Haskell data types, see my
paper “Generics for the masses”.

» Both encodings have their pros and cons:

e Parigot: mutually recursive generic functions are easy, but only closed
type representations.

e Church: mutually recursive generic functions require tupling, supports
open type representations.
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