Typed Type Representations

RALF HINZE

Institut für Informatik III, Universität Bonn Römerstraße 164, 53117 Bonn, Germany Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf

June, 2004

(Pick the slides at .../~ralf/talks.html#T34.)

A type whose elements represent types:

data $Rep :: \star \to \star$ where RInt :: Rep Int $RPair :: \forall \alpha \ \beta . Rep \ \alpha \to Rep \ \beta \to Rep \ (\alpha, \beta)$

The term $rt :: Rep \ \tau$ represents the type τ .

 \iff Rep is a first-class phantom type (aka inductive type, guarded type, equality-qualified type).

A simple generic function that adds integers contained in a value:

type Sum α	$= \alpha \rightarrow Int$
sum	$:: \forall \tau . Rep \ \tau \to Sum \ \tau$
sum (RInt) i	= i
$sum (RPair \ ra \ rb) \ (a, b)$	= sum ra a + sum rb b

Unfortunately, ...

- Rep is not a valid Haskell 98 type.
- For now, we have to encode Rep.

Reminder: encodings of data types

data $Nat :: \star$ where Zero :: Nat $Succ :: Nat \rightarrow Nat$

Church encoding (Böhm, Berarducci, 1985)

The type T = F T is encoded as $T = \forall \tau . (F \ \tau \to \tau) \to \tau$.

Using the law of exponentials, in particular, $(A+B) \rightarrow C \cong (A \rightarrow C) \times (B \rightarrow C)$, we obtain:

data Nat	=	$Nat\{apply :: \forall nat . Fold \ nat \rightarrow nat\}$
data Fold nat	=	$Fold\{$
		cZero::nat,
		$cSucc :: nat \rightarrow nat$
		}
zero	=	$Nat \ (\lambda c \to cZero \ c)$
succ n	=	$Nat \ (\lambda c \to cSucc \ c \ (apply \ n \ c))$

An element of *Nat* corresponds to a fold (aka catamorphism, iterator).

Parigot encoding (1992)

The type T = F T is encoded as $T = \forall \tau . (F \ T \to \tau) \to \tau$.

Using the law of exponentials, in particular, $(A+B) \rightarrow C \cong (A \rightarrow C) \times (B \rightarrow C)$, we obtain:

data Nat	=	$Nat\{apply :: \forall nat . Case \ nat \rightarrow nat\}$
data Case nat	=	$Case\{$
		cZero::nat,
		$cSucc :: Nat \rightarrow nat$
		}
zero		$Nat \ (\lambda c \to cZero \ c)$
succ n	=	$Nat \ (\lambda c \to cSucc \ c \ n)$

 $rac{1}{2}$ An element of *Nat* corresponds to a **case**-analysis.

The type *Rep*

data $Rep :: \star \to \star$ where RInt :: Rep Int $RPair :: \forall \alpha \ \beta . Rep \ \alpha \to Rep \ \beta \to Rep \ (\alpha, \beta)$

The Parigot encoding of *Rep*

 $rac{}{>}$ Rep and Case are defined by mutual recursion.

Parigot encoding—type representations

The type representation is passed to the "recursive" case.

Parigot encoding—generic functions

Example: sum (rPair rInt rInt) (47, 11) = 58.

Parigot encoding with type classes

Type classes allow us to pass arguments implicitly.

class $Rep \ \tau$ where rep :: $(Case \ rep) \Rightarrow rep \ \tau$ class $Case \ rep \$ where cInt :: $rep \ Int$ cPair :: $\forall \alpha \ \beta . (Rep \ \alpha, Rep \ \beta) \Rightarrow rep \ (\alpha, \beta)$

rightarrow Rep and Case are mutually recursive.

 $\textcircled{P} rep :: \forall \tau . (Rep \ \tau) \Rightarrow \forall rep . (Case \ rep) \Rightarrow rep \ \tau \ \text{can be seen as the mother of all generic functions.}$

Type classes—type representations

instance Rep Int where

$$rep = cInt$$

instance $(Rep \ \alpha, Rep \ \beta) \Rightarrow Rep \ (\alpha, \beta)$ where
 $rep = cPair$

Type classes—generic functions

data $Sum \alpha = Sum \{ apply Sum :: \alpha \to Int \}$				
instance Case Sum where				
cInt	=	$Sum \ (\lambda i \rightarrow i)$		
cPair	=	$Sum \ (\lambda(a, b) \rightarrow sum \ a + sum \ b)$		
sum	::	$\forall \tau . (Rep \ \tau) \Rightarrow \tau \to Int$		
sum	=	applySum rep		

Example: sum (47, 11) = 58.

The Church encoding of *Rep*

 $rac{P}{P}$ Rep and Fold are not mutually recursive.

Church encoding—type representations

The generic function (not the type representation) is passed to the "recursive" case.

Church encoding—generic functions

data Sum α = Sum{ applySum :: $\alpha \rightarrow Int$ } $:: \forall \tau . Rep \ \tau \to Sum \ \tau$ qsum $gsum (Rep \ rt) = rt (Fold \{$ $cInt = Sum \ (\lambda i \to i),$ $cPair = \lambda qa \ qb \rightarrow$ Sum $(\lambda(a, b) \rightarrow$ applySum ga a $+ applySum \ gb \ b)$ }) $\therefore \forall \tau . Rep \ \tau \to (\tau \to Int)$ sum = applySum (qsum rt)sum rt

Example: sum (rPair rInt rInt) (47, 11) = 58.

Church encoding with type classes

Again, type classes allow us to pass arguments implicitly.

class $Rep \ \tau$ where rep :: $(Fold \ rep) \Rightarrow rep \ \tau$ class Fold rep where cInt :: $rep \ Int$ cPair :: $\forall \alpha \ \beta . rep \ \alpha \rightarrow rep \ \beta \rightarrow rep \ (\alpha, \beta)$

rightarrow Rep and Fold are not mutually recursive.

Type classes—type representations

infixr 3 \otimes $ra \otimes rb = cPair \ ra \ rb$ instance $Rep \ Int$ where rep = cIntinstance $(Rep \ \alpha, Rep \ \beta) \Rightarrow Rep \ (\alpha, \beta)$ where $rep = rep \otimes rep$

Type classes—generic functions

Example: sum (47, 11) = 58.

Generic functions on type constructors

The last encoding allows us to simulate open type representations,

size $(ra \otimes ra)$ e where size (ra) a = 1

which in turn can be used to implement generic functions on type constructors.

size $(\Lambda ra. ra \otimes ra) e$

Generic functions on type constructors

data Size
$$\alpha$$
 = Size{applySize :: $\alpha \rightarrow Int$ }
instance Fold Size where
 $cInt$ = Size ($\lambda i \rightarrow 0$)
 $cPair ga gb$ = Size ($\lambda(a, b) \rightarrow applySize ga a + applySize gb b$)

Example: $applySize \ rep \ (47, 11) = 0.$

 $ra = Size (\lambda i \rightarrow 1)$

Examples: $applySize (ra \otimes ra) (47, 11) = 2$, $applySize (ra \otimes cInt) (47, 11) = 1$.

- ► You can program generically within Haskell 98.
- ▶ Thanks to type classes, the implementation of generics is quite comfortable.
- The approach can be generalised to arbitrary Haskell data types, see my paper "Generics for the masses".
- Both encodings have their pros and cons:
 - Parigot: mutually recursive generic functions are easy, but only closed type representations.
 - Church: mutually recursive generic functions require tupling, supports open type representations.

