
1 JJ J I II 2

An algebra of contracts

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

August 2005

Joint work with Johan Jeuring and Andres Löh

(Pick up the slides at .../~ralf/talks.html#T43.)

2 JJ J I II 2

Der Supergau

patronus > ghc --make Main.lhs
patronus > ./a.out
a.out: Prelude.head: empty list
patronus > fgrep head *lhs | wc

102 889 7846

3 JJ J I II 2

Using contracts

patronus > ghc --make Main.lhs
patronus > ./a.out
*** assertion "head: empty list" failed:

the application at Stackless.lhs:182:68 is to blame.

4 JJ J I II 2

Outline of the talk

✖ Syntax of contracts

✖ Contracts are not . . .

✖ Semantics of contracts

✖ Examples

✖ Properties of contracts

5 JJ J I II 2

Syntax: contract comprehensions

A contract specifies a desired property of an expression. For instance,

nat :: Contract Int
nat = { i | i > 0 }

restricts the value of an expression to the natural numbers.

☞ If x is a variable of type σ and e a Boolean expression, then { x | e } is a
contract of type Contract σ, a so-called contract comprehension.

nonempty :: Contract [α]
nonempty = { x | not (null x) }

☞ Contracts are first-class citizens: they can be named, passed to functions etc.

6 JJ J I II 2

Syntax: contract comprehensions—cont.

The two most extreme contracts are

false, true :: Contract α
false = { x | False }
true = { x | True }

The contract false is very demanding, in fact, too demanding, while true is very
liberal, in fact, some might say, too liberal.

7 JJ J I II 2

Syntax: dependent function contracts

Using contract comprehensions we can define contracts for values of arbitrary
types, including function types.

{ f | f 0 0 } :: Contract (Int → Int)

However, since the formula is restricted to a Boolean expression, that is, a Haskell
expression, we cannot state, for example

{ f | ∀n :: Int . n > 0 ⇒ f n > 0 } -- not valid

☞ Therefore, we introduce a new combinator that allows us to specify the
domain and codomain of a function.

nat 7→ nat

8 JJ J I II 2

Syntax: dependent function contracts—cont.

Unfortunately, the new combinator is still not sufficient. Often we want to relate
the argument to the result (”the result is greater than the argument”). To this
end we generalise e1 7→ e2 to the dependent function contract (x :: e1) 7→ e2.

(n :: nat) 7→ { r | n < r }

☞ If x is a variable of type σ1, e1 is a contract of type Contract σ1, e2 is a
contract of type Contract σ2, then (x :: e1) 7→ e2 is a contract of type
Contract (σ1 → σ2).

(x :: nat) 7→ { r | r ∗ r 6 x < (r + 1) ∗ (r + 1) }

9 JJ J I II 2

Syntax: assertions

Contracts are attached to expressions using assert :

head ′ :: [α] → α
head ′ = assert "head"

(nonempty 7→ true)
head

The string ”head” describes the expression, here head .

isqrt ′ :: Int → Int
isqrt ′ = assert "isqrt"

((x :: nat) 7→ { r | r ∗ r 6 x < (r + 1) ∗ (r + 1) })
isqrt

☞ Convention: f ′ is the ‘contracted’ version of f .

10 JJ J I II 2

Blame assignment

inc ′ = assert "inc" (nat → nat) (λn → n + 1)
dec ′ = assert "dec" (nat → nat) (λn → n − 1)

Contracts may be violated. Who is to blame?

Main〉 inc ′ �1 5
6
Main〉 inc ′ �1 (−5)
*** assertion failed: application ‘1’ is to blame.
Main〉 dec ′ �1 5
4
Main〉 dec ′ �1 0
*** assertion failed: ‘dec’ is to blame.

☞ � is function application made visible.

11 JJ J I II 2

Syntax: dependent pair contracts

We also offer a dependent pair contract:

(n :: nat)× ({ i | i 6 n } 7→ true)

☞ If x is a variable of type σ1, e1 is a contract of type Contract σ1, e2 is a
contract of type Contract σ2, then (x :: e1)× e2 is a contract of type
Contract (σ1, σ2).

☞ If x does not appear in e2, we can simply write e1 × e2. In this case, the two
components are independent.

12 JJ J I II 2

Syntax: contracts for data types

In general, we need a contract combinator for every data type—we will see later
that these combinators can be defined generically.

Here, we confine ourselves to lists

list nat
list (nat 7→ nat)

☞ Using list we cannot relate elements of a list. For this purpose we have to
use contract comprehensions—which, on the other hand, cannot express
list (nat 7→ nat).

13 JJ J I II 2

Syntax: conjunctions

Finally, contracts may be combined using conjunction.

nat & { n | n 6 4711 }

☞ We do not, however, offer negation or disjunction.

14 JJ J I II 2

Outline of the talk

✔ Syntax of contracts

✖ Contracts are not . . .

✖ Semantics of contracts

✖ Examples

✖ Properties of contracts

15 JJ J I II 2

Contract are not assertions

GHC already offers assertions: assert :: Bool → α → α.

You can write, for example,

head x = assert
(not (null x))

(case x of a : → a)

However,

I assertions do not assign blame; if an assertion fails, the source location of the
assertion is printed.

I assertions do not have structure; they are not type-directed.

16 JJ J I II 2

Contracts are not dependent types

Contracts look like dependent types, but, of course, contracts are not types.

I Contracts are dynamically checked and

I they dynamically change the behaviour of the program:

g :: (Int ↪→ Int) ↪→ (Int ↪→ Int)
g = assert "g" ((nat 7→ nat) 7→ true) (λf ↪→ f)

The function g is the identity, but

Main〉 g �1 (λx ↪→ x) �2 (−7)
*** assertion failed: application ‘2’ is to blame.

17 JJ J I II 2

Contracts are not algebraic properties

I Contracts specify pre- and postconditions, but not general algebraic properties
such as associativity or monotonicity.

We may, however, specify that a function is idempotent:

f ′ = assert "f"
(true 7→ { y | y f y })

f

I Contracts are attached to program points; algebraic properties can, in
general, not be attached to program points.

I Contracts complement tools such as QuickCheck.

18 JJ J I II 2

Outline of the talk

✔ Syntax of contracts

✔ Contracts are not . . .

✖ Semantics of contracts

✖ Examples

✖ Properties of contracts

19 JJ J I II 2

Semantics

☞ We specify the semantics of contracts by providing a Haskell implementation.

Though the syntax of contracts is somewhat special it can be easily translated
into Haskell syntax.

concrete syntax Haskell syntax

{ x | p x } Prop (λx → p x)
c1 7→ c2 Function c1 (const c2)
(x :: c1) 7→ c2 x Function c1 (λx → c2 x)
c1 × c2 Pair c1 (const c2)
(x :: c1)× c2 x Pair c1 (λx → c2 x)
list c List c
c1 & c2 And c1 c2

20 JJ J I II 2

Semantics: a generalized algebraic data type

Using generalized algebraic data types we can represent contracts directly in
Haskell.

data Contract α where
Prop :: (α → Bool) → Contract α
Function :: Contract α → (α → Contract β) → Contract (α → β)
Pair :: Contract α → (α → Contract β) → Contract (α, β)
List :: Contract α → Contract [α]
And :: Contract α → Contract α → Contract α

21 JJ J I II 2

Semantics: without blame assignment

Recall: using assert we attach contracts to expressions.

assert :: Contract α → (α → α)
assert (Prop p) a | p a = a

| otherwise = error ("assertion failed")
assert (Function c1 c2) f = λx → (assert (c2 x) · f · assert c1) x
assert (Pair c1 c2) (a1, a2) = (assert c1 a1, assert (c2 a1) a2)
assert (List c) as = map (assert c) as
assert (And c1 c2) a = (assert c2 · assert c1) a

☞ assert c is the identity except when c is violated, in which case an error is
raised.

☞ Contracts are a lot like projections (π v id and π · π = π).

☞ List is mapped to map; And to composition.

22 JJ J I II 2

Semantics: with blame assigment

Blame assignment is easy for non-functional values: assert takes an extra string
which is used to point to the location of the expression in case of a contract
violation.

In case of functional values, the caller is to blame if the precondition is violated
and the callee is to blame if the postcondition is violated. For that reason, we
arrange that every function call takes an additional argument, the location of the
caller.

infixr ↪→
data α ↪→ β = Fun{apply :: Loc → α → β}

We use e1 � e2 as an abbreviation for apply e1 ` e2 where ` is the location of the
application.

23 JJ J I II 2

Semantics:

data Contract α where
Function :: Contract α → (α → Contract β) → Contract (α ↪→ β)
. . .

assert :: Loc → Contract α → (α → α)
assert ` (Prop p) a

| p a = a
| otherwise = error ("assertion failed: ‘" ++

` ++ "’ is to blame.")
assert ` (Function c1 c2) f

= Fun (λ`′ x → (assert ` (c2 x) · apply f `′ · assert `′ c1) x)
assert ` (Pair c1 c2) (a1, a2) = (assert ` c1 a1, assert ` (c2 a1) a2)
assert ` (List c) as = map (assert ` c) as
assert ` (And c1 c2) a = (assert ` c2 · assert ` c1) a

24 JJ J I II 2

Outline of the talk

✔ Syntax of contracts

✔ Contracts are not . . .

✔ Semantics of contracts

✖ Examples

✖ Properties of contracts

25 JJ J I II 2

Examples: factorization

factors ′ :: Int ↪→ [Int]
factors ′ = assert "factors"

((n :: pos) 7→ { r | product r n })
(λn ↪→ factors n)

☞ factors is the functional inverse of product . We can capture this idiom as a
contract combinator:

inverse :: (Eq β) ⇒ (α → β) → Contract (β ↪→ α)
inverse f = (x :: true) 7→ { y | f y x }

factors ′ :: Int ↪→ [Int]
factors ′ = assert "factors"

((pos 7→ true) & inverse product)
(λn ↪→ factors n)

26 JJ J I II 2

Examples: sorting

The contract ord constrains lists to ordered lists.

ord :: (Ord α) ⇒ Contract [α]
ord = { x | ordered x }

ordered :: (Ord α) ⇒ [α] → Bool
ordered [] = True
ordered [a] = True
ordered (a1 : as@(a2 :)) = a1 6 a2 ∧ ordered as

27 JJ J I II 2

Examples: sorting—cont.

Insertion sort:

insert ′ :: (Ord α) ⇒ α ↪→ [α] ↪→ [α]
insert ′ = assert "insert"

(true 7→ ord 7→ ord)
(λa ↪→ λx ↪→ insert a x)

The function insertionSort returns an ordered list:

insertionSort ′ :: (Ord α) ⇒ [α] ↪→ [α]
insertionSort ′ = assert "insertionSort"

(true 7→ ord)
(λx ↪→ insertionSort x)

☞ We did not specify that the output list is a permutation of the input list.

28 JJ J I II 2

Examples: sorting—cont.

Assuming a function bag :: [α] → Bag α that turns a list into a bag, we can fully
specifiy insertionSort .

insertionSort ′ :: (Ord α) ⇒ [α] ↪→ [α]
insertionSort ′ = assert "insertionSort"

(true 7→ ord & (x :: true) 7→ { s | bag x bag s })
(λx ↪→ insertionSort x)

☞ In a sense, insertionSort preserves the ‘baginess’ of lists. Again, we can
single out this idiom as a combinator:

preserve :: (Eq β) ⇒ (α → β) → Contract (α ↪→ α)
preserve f = (x :: true) 7→ { r | f x f r }

insertionSort ′ = assert "insertionSort"
(true 7→ ord & preserve bag) -- weaker: preserve len

(λx ↪→ insertionSort x)

29 JJ J I II 2

Examples: sorting—cont.

Alternatively, we can specify insertionSort in terms of a trusted sorting routine.

insertionSort ′ = assert "insertionSort"
((x :: true) 7→ { s | s trustedSort x })

(λx ↪→ insertionSort x)

Again, we can capture this idiom:

is :: (Eq β) ⇒ (α → β) → Contract (α ↪→ β)
is f = (x :: true) 7→ { y | y f x }

insertionSort ′ = assert "insertionSort"
(is trustedSort)

(λx ↪→ insertionSort x)

30 JJ J I II 2

Examples: while

Control constructs do not need a special (extra-linguistic) treatment.

while :: (α → Bool) → (α → α) → (α → α)
while p f a = if p a then while p f (f a) else a

while ′ :: Contract α → (α → Bool) ↪→ (α ↪→ α) ↪→ (α ↪→ α)
while ′ inv = assert "while"

(true 7→ (inv 7→ inv) 7→ (inv 7→ inv))
(λp ↪→ λf ↪→ λa ↪→ while p (λx → f � x) a)

☞ We pass a contract to while ′.

31 JJ J I II 2

Examples: foldr

The technique of passing invariants is also applicable to foldr .

foldr ′ :: Contract β → (α ↪→ β ↪→ β) ↪→ β ↪→ [α] ↪→ β
foldr ′ inv = assert "foldr"

((true 7→ inv 7→ inv) 7→ inv 7→ true 7→ inv)
(λf ↪→ λe ↪→ λx ↪→ foldr (λa → λb → f � a � b) e x)

insertionSort ′ = foldr ′ ord � (λa ↪→ λx ↪→ insert a x) � []

32 JJ J I II 2

Outline of the talk

✔ Syntax of contracts

✔ Contracts are not . . .

✔ Semantics of contracts

✔ Examples

✖ Properties of contracts

33 JJ J I II 2

Properties

false = prop (λa → False)

true = prop (λa → True)

prop p1 & prop p2 = prop (λa → p1 a ∧ p2 a)

false & c = false

c & false = false

true & c = c

c & true = c

c1 & c2 = c2 & c1

☞ The last property, commutativity of ‘&’, only holds in a strict setting where
every contract satisfies: c x ∈ {⊥, x }.

34 JJ J I II 2

Properties

Since list , ‘7→’ and ‘×’ are essentially maps, we have the familar functor laws :

list true = true

list (c1 & c2) = list c1 & list c2

true 7→ true = true

(pre1 7→ post 1) & (pre2 7→ post 2) = (pre2 & pre1) 7→ (post 1 & post 2)

true × true = true

(pre1 × post 1) & (pre2 × post 2) = (pre1 & pre2)× (post 1 & post 2)

35 JJ J I II 2

Outline of the talk

✔ Syntax of contracts

✔ Contracts are not . . .

✔ Semantics of contracts

✔ Examples

✔ Properties of contracts

