HASKELL DOES IT WITH CLASS

RALF HINZE

Institute of Information and Computing Sciences
Utrecht University
Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/"ralf/

May, 2001

(Pick the slides at .../"ralf/talks.html#T24.)

A programming challenge

Implement a typed version of printf in Haskell (the format string has
been replaced by a more algebraic description).

Main> :t printf (lit "hello world")

String

Main> :t printf (int - lit "Lisy" - str)

Int — String — String

Main> let ng = succ (succ (succ zero))

Main> :t printf (lit "three ints:" - rep ng (lit "," - int))
Int — Int — Int — String

An implementation for Standard ML (without rep) has been given by
Olivier Danvy [JFP 8(6), Functional unparsing]. We will come back
to this later.

Simulating dependent types in Haskell

Using singleton types, multiple parameter type classes, and functional
dependencies we can simulate dependent types in Haskell—well, to a
certain extent.

[] Example 1: Variable-argument functions.

] Example 2: Functional unparsing.

This part of the talk is heavily inspired by recent work of Conor
McBride [Faking It—Simulating Dependent Types in Haskell|.

Example 1: Variable-argument functions

Say, we would like to implement the following family of functions that
sum up their integer arguments.

sum, : Inti— ---— Int, — Int

Sumn — Ailﬁ"'HAinHil_F"'—l_Ain

Example 1: Mathematically

To define sum, we use a helper function sum’, with an accumulating

parameter.
Sumg = Int
SuMmq, 11 = Int — Sum,
SUM., o Sum,
SUM., = sum’, 0
sum’, . Int — Sum,
sum’qy acc = acc
sum’,11 acc = Ai — sum/, (acc + 1)

Example 1: Cayenne

In a language with dependent types, such as Cayenne, we can directly
encode Sum, and sum,,.

data Nat = Zero | Succ Nat

Sum .. Nat — #

Sum (Zero) = Int

Sum (Succ n) = Int — Sum n

sum . (n: Nat) — Sum n

sum n = sum’' n 0

sum/ 2 (n: Nat) — Int — Sum n
sum’ (Zero) acc = acc

sum’ (Succ n) acc = Ii — sum’ n (acc+ 1)

Example 1: Haskell

First Idea: Haskell offers type classes that allow us to write functions
that depend on types. This suggests lifting Nat to the type level using
singleton types.

data Zero = Jero

data Succ nat = Sucec nat

Now, every natural number has a distinct type.

Zero 2 Jero

Suce Zero it Suce Zero
Succ (Succ Zero) = Succ (Succ Zero)

Second Idea: to specify the type of sum’ we use multiple parameter
type classes with functional dependencies.

sum 2 (Sum nat z) = nat —
sum n = sum’ n 0

class Sum nat x | nat — = where

sum’ -+ nat — Int — x

instance Sum Zero Int where

sum’ (Zero) acc = acc
instance Sum n x = Sum (Succ n) (Int — x) where
sum’ (Succ n) acc = Mi — sum’ n (acc + 1)

The function Sum has been replaced by a (functional) relation.
However, the code is identical!

Example 1: An example session

Main> :t sum Zero

Int
Main> :t sum (Succ Zero)
Int — Int

Main> :t sum (Succ (Succ Zero))

Int — Int — Int

Main> :t sum (Succ (Succ (Succ Zero)))
Int — Int — Int — Int

Main> sum (Succ (Succ (Succ Zero))) 123
6

Example 2: Cayenne

We introduce a tailor-made algebraic data type—essentially a list—
instead of a format string.

data Format = FEnd

L String Format
S Format

I Format

Again, we have to use a helper function.

Printf . Format — #
Printf (End) = String
Printf (L _ fmt) = Printf fmt

String — Printf fmt
Int — Printf fmt

(
(
Printf (S fmt)
Printf (I fmt)

printf’ 2 (fmt :: Format) — String — Printf fm
printf’ (End) out
printf’ (L s fmt) out
printf’ (S fmt) out
printf’ (I fmt) out

out

printf’ fmt (out + s)

As — printf’ fmt (out H s)

At — printf’ fmt (out H show 1)

10

Example 2: Cayenne—cosmetics

We want to write printf (int - lit "Lisy" - str).

FormatT .

FormatT = Format — Format

(+) 2 (a,b,c:#)—(b—c)—(a—b) = (a— c)
fg = Xa— f(ga)

lit = L

str = 5

int = I

printf 2 (f :: FormatT) — Printf (f End)

printf f = printf’ (f End) Nil

11

Example 2: Haskell

Again, we use singleton types to lift Format to the type level.

data End = FEnd

data L format = L String format
data S format = § format
data [format = 1 format

Actually, L format is not a singleton type. This is fine, however, since
the type of printf’ is independent of L's first argument.

12

class Printf format x | format — x where
printf’ .. format — String — x
instance Printf End String where
printf’ (End) out = out
instance (Printf fmt x) = Printf (L fmt) x where
printf’ (L s fmt) out = printf’ fmt (out + s)
instance (Printf fmt x) = Printf (S fmt) (String — z) where

printf’ (S fmt) out = As — printf’ fmt (out + s)
instance (Printf fmt x) = Printf (I fmt) (Int — x) where
printf’ (I fmt) out = Xi — printf’ fmt (out H show 1)

Again, the code is identical!

13

Example 2: Haskell—cosmetics

We want to write printf (int - lit "Lisy" - str).

(+) 2 (b—c¢)—=(a—b)— (a— ¢

f-9g = Xa—f(ga)

lit = L

str = S

int = 1

printf = (Printf format) = (End — format) — x
printf f = printf’ (f End) ""

NB. Actually, the real type of printf is (Printf (f End) z) =
(Va.a — f a) — x, but this type does not go well with Haskell’s
kinded first-order unification. We will come back to this later.

14

Example 2: An example session

Main> :t (int - lit "L is," - str)
Va.a — I (L (S a))

Main> :t printf (int - lit "Lisy" - str)

Int — String — String

Main> printf (int - lit "Lisy" - str) 5 "five"
"5 ,i1is ,five"

15

Example 2: The Haskell solution is extensible

Since we have lifted the elements of Format to the type level, and
since Haskell has open type classes, we can easily extend printf.

data F format = F (Maybe Int) format
| F (Maybe Int) format

instance (Printf fmt x) = Printf (E fmt) (Double — z) where
printf’ (E p fmt) out = Xd — printf’ fmt
(out H showEFloat p d "")
printf’ (F p fmt) out = Xd — printf’ fmt
(out H showFFloat p d "")

In Cayenne, we have to modify the source and add new cases to the
Format data type and to the definition of printf’.

16

The drawback of open classes is, of course, that the report of ‘type
errors’ may be delayed. For instance,

double n = sum n n -- sum's first argument is missing
has type
double :: (Sum nat (nat — a)) = nat — a.

An error is only reported when double is called.

17

Example 2: The Cayenne solution is extensible

Elements of type Format are first-class values; we can easily define

functions that construct formats.

append
append (End) y
append T)y

rep’

rep’ (Zero) x
rep’ (Suce n) x

Format — Format — Format
Yy

L s (append z y)

S (append x y)

I (append x y)

Nat — Format — Format
End
append z (rep’ n x)

18

Using append and rep’ we can implement the rep function, that
repeats a given format a number of times.

rep .. Nat — FormatT — FormatT
repn fx = append (rep’ n (f End)) z

NB. 7rep can be defined more elegantly and more efficiently if we
abstract away from Format. We will come back to this later.

19

Example 2: The Haskell solution is also extensible

Never fear, using our secret weapons we can easily implement append
and rep’.

class Append x y z | ¢ y — 2z where
append 1 T — Y — 2

instance Append End y y where

append (End) y =y

instance (Append © y z) = Append (L x) y (L z) where
append (L s x) y = L s (append x y)

instance (Append = y z) = Append (S x) y (S z) where
append (S z) y = 8 (append x y)

instance (Append = y z) = Append (I z) y (I z) where
append (I) y = I (append x y)

20

class Rep nat z y | nat x+ — y where
rep’ onat — 1 — Yy
instance Rep Zero x End where
rep’ (Zero) = FEnd

instance (Append © y z, Rep n x y) = Rep (Succ n) ¢ z where

rep’ (Succ n) x = append x (rep’ n x)

rep . (Append x y z, Rep nat w x) =
nat — (End — w) — y — 2

repn fx = append (rep’ n (f End)) x

21

Example 2: Prolog strikes back

The class and instance definitions are actually horn clause programs
with the functional dependencies specifying the input/output modes.

app (end, Y, Y)

app (1 (X), Y, 1(Z)) <« app (X,Y,Z).
app (s (X),Y,s(Z)) «— app (X,Y, 7).
app (1 (X),Y,i(Z)) «— app (X,Y,Z).

rep (zero, X, end) .

22

Stocktaking

We can go a long way. Cayenne versus Haskell:

[] Computational model:
Cayenne: FP on the value and on the type level.
Haskell: LP on the type and FP on the value level.
[] Extensibility: Haskell wins?

[] Expressiveness: Cayenne wins!

23

Example 2r: More elegance, more type safety

In Cayenne, rep can be defined far more elegantly and efficiently if we
make it polymorphic.

rep . (a:#)— Nat — (a — a) — (a — a)
rep (Zero) f = id
rep (Succn) f = f-repnf

24

Example 2r: More elegance, more type safety

Never fear, we can roughly achieve the same in Haskell. We haven't yet
used our secret weapons of type constructors and constructor classes.

In Cayenne, printf operates on functions of type Format — Format.
This suggests to operate on types of kind # — # in Haskell.

newtype T'f = T (Va.a — f a)
printf . (Printf (f End) x) = T f — x
printf (T f) = printf’ (f End) ""

NB. T has kind (# — #) — #.

25

Example 2r: Basic functors

it o String — T L
lits = T (Aa— Lsa)
str = TS

str - = T (Aa— S a)
it T 1

int = T (Aa—1 a)

26

Example 2r: The identity functor

newtype Id a = Ida
vd . T Id
id = T (Aa— Id a)

instance (Printf a x) = Printf (Id o) x where
printf’ (Id fmt) out = printf’ fmt out

NB. If we ignore T and Id, then id is just the identity.

27

Example 2r: Composition of functors

newtype (f - g) a = C(f (ga))
(+) 2 Tf—=Tg—T(fg)
Tf-Tg T (Aa— C(f (g9 a)))

instance (Printf (f (g)) r) = Printf ((f-¢) a) r where
printf’ (C fmt) out = printf’ fmt out

NB. If we ignore T and C, then (-) is just functional composition.

NB. Since the instance head is not simple, we have to set the GHC
option -fallow-undecidable-instances.

28

Example 2r: Repetition

class Rep nat f g | nat f — g where
rep 2 onat—- T f— Ty

instance Rep Zero f Id where

rep (Zero) f = id
instance (Rep n f g) = Rep (Succ n) f (f - g) where
rep (Succn) f = f-repnf

The class Rep is a multi parameter constructor class with functional
dependencies. Wow!

29

Example 2r: An example session

Main> :t (int - lit "L is," - str)

T(I-L-S)

Main> :t printf (int - lit "Lisy" - str)

Int — String — String

Main> printf (int - lit "Lisy" - str) 5 "five"

"5 ,i1is ,five"

Main> :t (lit "three_ints:" - rep ng (lit """ - int))
T(L-L-T-L-T-L-1I-1Id)

Main> :t printf (lit "three ints:" - rep ng (lit "," - int))
Int — Int — Int — String

Main> printf (lit "three ints:" - rep ng (lit "," - int)) 123
"three ints: ,1,2,3"

30

Example 27%: Hey, this is generic programming

Recall that we have lifted Format to the type level. This turns printf’
into a type-indexed function and Printf into a type-indexed type!

Printf f...
Printf g, 4

Printf g

Printf ¢ fmt

Printf ; fmt

printf’ .4
printf'p . (End) out
printf’y 4 (L s fmt) out
printf’s q.. (S fmt) out
printf’; p. (I fmt) out

#
String

Printf .,

String — Printf fmt

Int — Printf fmt

fmt — String — Printf 4,

out

printf'y., fmt (out + s)

As — printf's., fmt (out + s)

Ai — printf’,., fmt (out + show i

31

Let us specialize Printf and printf’ to the four format types.

Printf g,

Printf ;

Printf ¢

Printf ;

printf'p , (End) out
printf’, pr (L s fmt) out
printf’s pr (S fmt) out
printf’; pr (I fmt) out

String

Id

(String —)
(Int —)

out

pr fmt (out H s)

As — pr fmt (out H s)

Ai — pr fmt (out H show 1)

32

Note that the type of printf’,, where F' has kind # — #, is

Va x.(a — String — =) — (F a — String — Printfp z).

Now, all format types are singletons (except L), so we can throw away
the value arguments. If we rename printf’, appropriately, we obtain
essentially Olivier Danvy's solution (see next slide).

newtype T'f = T (Vx.(String — x) — (String — f z))
printf T f — f String
printf (T f) = f (Aout — out) "" -~ first version

33

Example 2r%: Basic functors

it 0 String — T Id
lits = T (Apr out — Id (pr (out H+ s)))

(
(Apr out — Ai — pr (out H show 1))
(
(

Apr out — As — pr (out H s))

34

Example 2r°: ldentity functor

newtype Id a = Id a
vd . T Id
T (Apr out — Id (pr out))

id

NB. Again, if we ignore T and Id, then id is just the identity.

35

Example 2r?: Composition of functors

newtype (f - g) a = C(f (g a))

() 2 Tf—=Tg—T(f-g)
Tf-Tg = T (Apr out — C (f (g pr) out))

NB. Again, if we ignore T and C, then (-) is just functional
composition.

36

Example 2r%: Repetition

We apply the same technique to rep—and obtain the Church numerals.

Unfortunately, now we have to get rid of the data constructors Id and
C' introduced by the newtype declarations.

37

Example 2r?: Casting

class Cast a b | a — b where
cast oa— b
instance Cast String String where

cast s S
instance (Cast a ©) = Cast (Id a) x where
cast (Id a)
instance (Cast (
cast (C a)
instance (Cast x y) = Cast (a — =) (a — y) where
cast f Aa — cast (f a)

cast a
(g a)) z) = Cast ((f - g) a) x where
cast a

= |

printf . (Cast (f String) b) = T f — b
printf (T f) = cast (f (Aout — out) "") -- final version

38

Example 2r2: An example session

Main> :t (int - lit " is," - str)

T ((Int —) - Id - (String —))

Main> :t printf (int - lit "Lisy" - str)

Int — String — String

Main> printf (int - lit ",isy" - str) b "five"

"5 is five"

Main> :t (lit "three_ints:" - rep ng (lit "," - int))

T (Id-1d-(Int —)-1d-(Int —)-1d - (Int —) - Id)

Main> :t printf (lit "three ints:" - rep ng (lit "," - int))
Int — Int — Int — String

Main> printf (lit "three ints:" - rep ng (lit "," - int)) 123
"three ints: 1.,2,,3"

39

Example 27%: Olivier Danvy’s solution

We simple use Hindley-Milner types (alas, rep does not work anymore).

lit ;. String — (String — ans) — String — ans
lit s k out = k (out + s)

int 2 (String — ans) — String — Int — ans

int k out = Mi — k (out H show 1)

str .. (String — ans) — String — String — ans
str k out = As — k (out + s)

printf . ((String — String) — String — ans) — ans
printf fmt = fmt (Aout — out) ""

Olivier thinks the k's are continuations whereas | like to think of them
as dictionaries.

40

Stocktaking

Cayenne: functions with dependent types (types that depend
on values).

Generic programming: via lifting we obtain type-indexed
functions that have type-indexed types.

Haskell: we can simulate (to a certain extent) dependent
types using multiple parameter type classes and functional
dependencies. This also means, that we can implement type-
indexed types using these features—except that we have to
write the instances by hand.

41

| can see more clearly now.

— Mac McDougal / Aron Kozac - Trolltech

42

