The Algebra of Programming in Haskell

Bruno Oliveira

Datatype Generic Programming - Motivation/Goals

- The project is to develop a novel mechanism for parameterizing programs, namely parametrization by a datatype or type constructor.
- We aim to develop a calculus for constructing datatype-generic programs.
- Ultimate goal of improving the state of the art in generic object-oriented programming, as occurs for example in the C++ Standard Template Library.

Introduction - Algebra of Programming

In the excellent book *Algebra of Programming*, Bird and de Moor show us how to *calculate programs* in a very elegant way. Further, the problems that they solve are datatype-generic. As they note:

"... The problems are abstract in the sense that they are parameterized by one or more datatypes. ... "

The Algebra of Programming provides us:

- A mathematical framework based in a *categorical calculus of relations*
- The categorical calculus allow us to formulate algorithmic strategies without reference to specific datatypes.
- An important subset of generic functions.

Notation

$f \circ g$	function composition
id	identity function
<u>k</u>	constant function
f^{\longrightarrow}	curry function
$f^{ imes}$	uncurry function
i_1	left injection to sum
i_2	right injection to sum
π_1	left component of product
π_2	right component of product
1	unit type and value
f arpropto g	fork over product
$f \bigtriangledown g$	either function
f + g	sum mapping
f imes g	product mapping

A Theory of Lists

Consider the Haskell [A] (we use capitals instead of lower case to denote types) datatype. A possible definition for it, could be:

data [A] = [] | A : [A]

You can view this data definition as the following isomorphism:

A Theory of lists

A well known function on lists is the foldr function:

foldr f k [] = kfoldr f k (x : xs) = f x (foldr f k xs)

 $\begin{bmatrix} A \end{bmatrix}$ $\int_{B} foldr f k$

foldr and its dual *unfoldr* are the basis for many definitions on lists. "Uncurried" versions of this functions, are the basis for much of the theory presented in the book.

A Theory of Lists - Morphisms

We call *catamorphism* to the "uncurried" version of foldr and we denote it as $(|f|)_{[]}$.

The Algebra of Programming in Haskell - p.7/21

Functors - Generalizing the Theory

By using *functors*, we can generalize the theory. For instance, we could abstract the *expansion* of [A] to:

$$F X \cong 1 + A \times X$$

Parameterizing *F* with [A], we would obtain $1 + A \times [A]$. A catamorphism could be expressed generically by:

Functional Dependencies

Allow programmers to specify multiple parameter classes more precisely. For instance:

class $C \ a \ b$ class $D \ a \ b \mid a \rightarrow b$ class $E \ a \ b \mid a \rightarrow b, b \rightarrow a$

From these definitions we can tell that:

- Class *C* is a binary relation.
- Class *D* is not only a relation, but actually a (partial) function.
- Class *E* represents a (partial) one-one mapping.

Related Work - PolyP

PolyP

The original PolyP system allows us to write generic definitions for regular datatypes of kind $* \rightarrow *$. The system works by using a type based translation from PolyP to Haskell at compile time.

PolyP 2

More recently, PolyP 2 introduces a novel translation mechanism allowing PolyP code to be translated to Haskell classes and instances. The structure of a regular datatype is described by its *pattern functor*. For instance:

data List $a = Nil | Cons \ a \ (List \ a)$ type $ListF = Empty + Par \times Rec$ Related Work - PolyP 2

All pattern functors (except \rightarrow) are instances of the class *P_fmap2*:

class $P_fmap2 \ f$ where $fmap2 :: (a \to c) \to (b \to d) \to (f \ a \ b \to f \ c \ d)$

To convert between a datatype and its pattern functor, the multi-parameter type class *FunctorOf* is used:

class FunctorOf $f \ d \mid d \to f$ where $inn :: f \ a \ (d \ a) \to d \ a$ $out :: d \ a \to f \ a \ (d \ a)$

Having these, we could define, for instance:

 $([f]) = f \circ fmap2 \ id \ ([f]) \circ out$ $[(f]) = inn \circ fmap2 \ id \ [(f]) \circ f$

APLib

In the Algebra of Programming Library (APLib) we show a similar framework working for regular datatypes of all kinds.

The class Iso acts like an "weak" *isomorphism* by establishing an one-one mapping between A and B

Class *MorphArrows* contains more information than *Functor*.

APLib - Morphisms

By using *MorphArrows* we can define *catamorphisms* as:

Defining *anamorphisms* and *hylomorphisms* is easy:

 $[[f]] = inn \circ up [[f]] \circ f$ $[[f,g]] = ([f]) \circ [[g]]$

APLib - Example

data Expr op a = Leaf a| Binary op (Expr op a) (Expr op a)

data $Op = Sum \mid Sub$

instance MorphArrows $(Expr \ op \ a)$ $(a + op \times Expr \ op \ a \times Expr \ op \ a)$ $(a + op \times b \times b)$ b where $down \ f = id + id \times f \times f$ $up \ f = id + id \times f \times f$

Calculating the value of an expression:

 $eval :: Expr \ Op \ Int \to Int$ $eval = (| \ id \ \bigtriangledown \ evalOp \ |)$ where $evalOp = ((+)^{\times} \circ \pi_2 \ \bigtriangledown \ (-)^{\times} \circ \pi_2) \circ (isSum \circ \pi_1)?$

APLib - Defining Generic Map

We can define a generic map by having a class MapArrows which transforms the *Functor* that we are working with. The parameters f and g are similar to *kind-indexed types*.

Specializations

Two possible approaches to specializations:

1. By Type - define a new function with a more restrictive type. Usefull for having less generic functions.

 $\begin{aligned} & cata_{* \to *} :: MorphArrows \ (f \ a) \ u \ c \ b \Rightarrow (c \to b) \to f \ a \to b \\ & cata_{* \to *} \ g = (\mid g \mid) \end{aligned}$

2. By Definition - define a new function based on the definition of the most generic one, but specific to a type. Useful for optimization.

 $out_{[]} = (\underline{1} + head \ \triangle \ tail) \circ (\equiv [])?$ $down_{[]} \ g = id + id \times g$ $(|f|)_{[]} = f \circ down_{[]} \ (|f|)_{[]} \circ out_{[]}$

Abstract Data Types

data Ord $a \Rightarrow BTree \ a =$ Empty | Branch a (BTree a) (BTree a) class OrdList f where $isNil :: f a \rightarrow Bool$ nil :: f a $add :: Ord a \Rightarrow a \rightarrow f a \rightarrow f a$ $getNext :: Ord a \Rightarrow f a \rightarrow Maybe (a, f a)$

The instance for *BTree* a could be:

instance (*OrdList* f, *Ord* a) \Rightarrow *Iso* (f a) (1 + a × f a) **where** $out = (\underline{1} + fromJust \circ getNext) \circ isNil?$ $inn = (\underline{nil} \lor add^{\times})$

Given that, we could define a sorting function:

$$sort :: [Int] \rightarrow [Int]$$
$$sort = (|inn|) \circ ([(out)] :: [Int] \rightarrow BTree Int)$$

Future Research

- Generate the instance for *MorphArrows* and *MapArrows* automatically. *Template Haskell* seems to fit well. A mechanism like *Derivable type classes* might be another possibility.
- Try to minimize the number of classes/instances.
- Consider a larger range of datatypes: Ian Bailey and Paul Blampied work.
- Consider using the framework in a dependent type system.

Future and Related Work - Type Transformers

Type transformers allow us define types and definitions based on types. For instance, for *out* we could have:

The type is given by: The definition is given by:

 $\theta < Type > :: Type \qquad \qquad out < T > :: T \to \theta < T >$

This would fit nicely into classes with functional dependencies.

class Iso $T \theta \mid T \rightarrow \theta, \ \theta \rightarrow T$ where $out < T > :: T \rightarrow \theta$ $inn < \theta, T > :: \theta \rightarrow T$

When defining *out*, we will be interested in matching the recursive pattern of T in F T.

 $out < T > :: T \rightarrow \theta$ out < Data T > = out' < T, Data T >

Future and related work - Type Transformers

$$\begin{array}{l} out' < T, Rec > ::: T \rightarrow \ \theta \\ out' < Rec, Rec > = id \\ out' < 1, _> = (\underline{)} \\ out' < Prim, _> = id \\ out' < Data \ t, Rec > = t \ out' < t, Rec > \\ out' < a + b, Rec > = out' < a, Rec > + out' < a, Rec > \\ out' < a \times b, Rec > = out' < a, Rec > \times out' < b, Rec > \\ out' < Con \ c, Rec > = out' < a, Rec > \circ isC? \end{array}$$

$$\begin{array}{l} \theta < T, Rec > ::Type \\ \theta < Rec, Rec > = Rec \\ \theta < 1, _> = () \\ \theta < Prim, _> = Prim \\ \theta < Data \ t, Rec > = t \ \theta < t, Rec > \\ \theta < a + b, Rec > = \theta < a, Rec > + \theta < a, Rec > \\ \theta < a \times b, Rec > = \theta < a, Rec > \times \theta < b, Rec > \\ \theta < Con \ c \ a, Rec > = \theta < a, Rec > \circ isC? \end{array}$$

Conclusions

- Theory based on categorical calculus of relations allows us to reason about the programs.
- Integrates nicely with other features of Haskell (ex. type classes)
- Possible application for optimization.
- Support for regular datatypes with no restriction on the kind.
- Restricted support for generic functions.
- Still not "quite" right: no explicit Functor concept, need for dual definitions.