
Lectures 1 and 2:
Generalising Relational Algebra and Programming

with Collection Types

Peter Buneman

August 2002

Generic Programming Summer School

GPSS Lectures 1&2 1

Outline

Lectures 1&2 Establish the connection between traditional database query languages

(relational algebra, datalog, f.o. logic) and functional programming paradigms (structural

recursion, monads)

Lectures 3&4 Development of languages for semistructured data and XML

GPSS Lectures 1&2 2

Background: Relational Database Query Languages

Relational databases have dominated the “market” for 20 years. Why?

• The relational model is a simple abstraction of data, and relational algebra is the interface.

Often called a “logical” model.

• The relational algebra is simple and its operations can be efficiently implemented.

• There is a close relationship between relational algebra and first-order logic – clear

semantics.

• Relational algebra allows rewriting – optimization.

• Relational decomposition may help in transaction processing.

GPSS Lectures 1&2 3

The relational model and algebra

Munros: MId MName Lat Long Height Rating

1 The Saddle 57.167 5.384 1010 4
2 Ladhar Bheinn 57.067 5.750 1020 4
3 Schiehallion 56.667 4.098 1083 2.5
4 Ben Nevis 56.780 5.002 1343 1.5

Hikers: HId HName Skill Age

123 Edmund EXP 80
214 Arnold BEG 25
313 Bridget EXP 33
212 James MED 27

Climbs: HId MId Date Time

123 1 10/10/88 5
123 3 11/08/87 2.5
313 1 12/08/89 4
214 2 08/07/92 7
313 2 06/07/94 5

GPSS Lectures 1&2 4

The Schema

CREATE TABLE Hikers (HId INTEGER,
HName CHAR(30),
Skill CHAR(3),
Age INTEGER,
PRIMARY KEY(HId))

CREATE TABLE Climbs (HId INTEGER,
MId INTEGER,
Date DATE,
Time INTEGER,
PRIMARY KEY (HId, MId),
FOREIGN KEY(HId) REFERENCESHikers(HId),
FOREIGN KEY(MId) REFERENCESMunros(MId))

Updates that violate key constraints are rejected.

GPSS Lectures 1&2 5

Relational databases are in first normal form. The entries in a table are “atomic” types.

Schemas consists of types and constraints. Without the key and inclusion (foreign key)

constraints, the schema looks much like a record (struct) type declaration.

GPSS Lectures 1&2 6

Relational Algebra

Six operations all, of which are functions that create tables from existing tables.

Three operations – union, difference, and selection – are familiar operations on sets.

A B
1 3
4 5

∪
A B
1 3
5 6

=

A B
1 3
4 5
5 6

A B
1 3
4 5

\
A B
1 3
5 6

=
A B
4 5

σA=1∨B<A

0B@ A B
1 3
4 5
4 1

1CA =
A B
1 3
4 1

GPSS Lectures 1&2 7

Projection and Product

projection extracts columns:

π{A,C}

0BB@ A B C

1 3 6

4 5 7

4 1 7

1CCA =

A C

1 6

4 7

product (not quite cartesian product):

A B

1 3

2 3

×
C D

3 31

4 41

5 51

=

A B C D

1 3 3 31

2 3 3 31

1 3 4 41

2 3 4 41

1 3 5 51

2 3 5 51

GPSS Lectures 1&2 8

Also common

natural join: columns with the same label are identified.

renaming (column relabelling)

GPSS Lectures 1&2 9

Why Relational Algebra?

• Efficient implementation of individual operations, especially join.

• Query rewriting

σC∧D(R)× S = σC(R)× S ∪ σD(R)× S

• “Equivalence” with f.o. logic:

{x | ∀y(∃z(R(y, z) → R(x, z)))} = πA(R) \ πA(πA(R)× πB(R) \R)

• But {x | ¬(R(x, x))} = ???

GPSS Lectures 1&2 10

Why not relational algebra?

• First normal form condition is annoying. Why not freely combine set and tuple (record)

types?

• Why not lists and multisets? (Some multiset operations are available in SQL)

GPSS Lectures 1&2 11

Example – Swissprot (one entry)

ID 11SB_CUCMA STANDARD; PRT; 480 AA.

AC P13744;

DT 01-JAN-1990 (REL. 13, CREATED)

DT 01-JAN-1990 (REL. 13, LAST SEQUENCE UPDATE)

DT 01-NOV-1990 (REL. 16, LAST ANNOTATION UPDATE)

DE 11S GLOBULIN BETA SUBUNIT PRECURSOR.

OS CUCURBITA MAXIMA (PUMPKIN) (WINTER SQUASH).

OC EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; DICOTYLEDONEAE;

OC VIOLALES; CUCURBITACEAE.

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=CV. KUROKAWA AMAKURI NANKIN;

RX MEDLINE; 88166744.

RA HAYASHI M., MORI H., NISHIMURA M., AKAZAWA T., HARA-NISHIMURA I.;

RL EUR. J. BIOCHEM. 172:627-632(1988).

RN [2]

RP SEQUENCE OF 22-30 AND 297-302.

RA OHMIYA M., HARA I., MASTUBARA H.;

RL PLANT CELL PHYSIOL. 21:157-167(1980).

CC -!- FUNCTION: THIS IS A SEED STORAGE PROTEIN.

CC -!- SUBUNIT: HEXAMER; EACH SUBUNIT IS COMPOSED OF AN ACIDIC AND A

CC BASIC CHAIN DERIVED FROM A SINGLE PRECURSOR AND LINKED BY A

CC DISULFIDE BOND.

CC -!- SIMILARITY: TO OTHER 11S SEED STORAGE PROTEINS (GLOBULINS).

GPSS Lectures 1&2 12

Swissprot continued

DR EMBL; M36407; G167492; -.

DR PIR; S00366; FWPU1B.

DR PROSITE; PS00305; 11S_SEED_STORAGE; 1.

KW SEED STORAGE PROTEIN; SIGNAL.

FT SIGNAL 1 21

FT CHAIN 22 480 11S GLOBULIN BETA SUBUNIT.

FT CHAIN 22 296 GAMMA CHAIN (ACIDIC).

FT CHAIN 297 480 DELTA CHAIN (BASIC).

FT MOD_RES 22 22 PYRROLIDONE CARBOXYLIC ACID.

FT DISULFID 124 303 INTERCHAIN (GAMMA-DELTA) (POTENTIAL).

FT CONFLICT 27 27 S -> E (IN REF. 2).

FT CONFLICT 30 30 E -> S (IN REF. 2).

SQ SEQUENCE 480 AA; 54625 MW; D515DD6E CRC32;

MARSSLFTFL CLAVFINGCL SQIEQQSPWE FQGSEVWQQH RYQSPRACRL ENLRAQDPVR

RAEAEAIFTE VWDQDNDEFQ CAGVNMIRHT IRPKGLLLPG FSNAPKLIFV AQGFGIRGIA

IPGCAETYQT DLRRSQSAGS AFKDQHQKIR PFREGDLLVV PAGVSHWMYN RGQSDLVLIV

FADTRNVANQ IDPYLRKFYL AGRPEQVERG VEEWERSSRK GSSGEKSGNI FSGFADEFLE

EAFQIDGGLV RKLKGEDDER DRIVQVDEDF EVLLPEKDEE ERSRGRYIES ESESENGLEE

TICTLRLKQN IGRSVRADVF NPRGGRISTA NYHTLPILRQ VRLSAERGVL YSNAMVAPHY

TVNSHSVMYA TRGNARVQVV DNFGQSVFDG EVREGQVLMI PQNFVVIKRA SDRGFEWIAF

KTNDNAITNL LAGRVSQMRM LPLGVLSNMY RISREEAQRL KYGQQEMRVL SPGRSQGRRE

//

GPSS Lectures 1&2 13

If fully normalized, Swissprot requires 20 or more tables.

Artificial identifiers need to be introduced

Most queries require joins

Lists are needed (and arrays?)

GPSS Lectures 1&2 14

Before leaving relational algebra

It has been well studied, but there are still some interesting open issues to do with finding

“generic” types for the operations (natural join and relabelling are the problems)

Didier Rémy, Typing Record Concatenation for Free. In Nineteenth Annual Symposium on

Principles Of Programming Languages, pages 166–176, 1992.

Peter Buneman and Atsushi Ohori. Polymoprhism and Type Inference in Database

Programming. ACM Transactions on Database Systems, March 1996.

Jan Van den Bussche, Emmanuel Waller: Type Inference in the Polymorphic Relational Algebra.

PODS 1999 : 80-90

GPSS Lectures 1&2 15

From structural recursion to database queries.

A relation can be taken as a set of records. An alternative approach is therefore to study the

operations associated with these two data types.

The operations for records are well-known.

Record construction: [Name = ”Joe”, SS# = 123456789, Dept = ”Sales”]

Record decomposition (field selection): r.Dept

Together with the equations:

• [. . . , li = x, . . .].li = x

• [l1 = r.l1, . . . , ln = r.ln] = r

GPSS Lectures 1&2 16

For sets, the problem is more subtle.

Two choices of primitives for set construction are

“Insert presentation”: Empty set: {}
Insertion: x↗S

“Union presentation”: Empty set: {}
Singelton: {x}
Union: S1 ∪ S2

GPSS Lectures 1&2 17

Primitives to decompose sets should follow the construction primitives, by structural recursion.

Example: using the “insert presentation”, find the maximum of a set of natural numbers:

fun set max({}) = 0

| set max(x↗S) = max(x, set max(S))
set max : {nat} → nat

Example: counting a set using the “union presentation” (?)

fun count({}) = 0

| count{x} = 1

| count(S1 ∪ S2) = count(S1) + count(S2)

count : {τ} → nat

From which

1 = count({x}) = count({x} ∪ {x}) =

count({x}) + count({x}) = 1 + 1 = 2 !!!

GPSS Lectures 1&2 18

Conditions that ensure well-defined programs on sets

For the “insert presentation”:

fun g({}) = e

| g(x↗S) = i(x, g(S))

g : {σ} → τ

when e : τ and i : σ × τ → τ

Notation: g = sri(i, e).

This is well defined when i is commutative [i(x, i(y, S)) = i(y, i(x, S))] and idempotent

[i(x, (x, S)) = i(x, S)].

For the “union presentation”:

fun h({}) = e

| h({x}) = f(x)

| h(c1 ∪ c2) = u(h(c1), h(c2))

h : {σ} → τ

when e : τ, f : σ → τ,

and u : τ × τ → τ

Notation: h = sru(u, f, e)

This is well defined if (τ, u, e) is a commutative, idempotent monoid.

GPSS Lectures 1&2 19

Examples

Use sru(u, f, e) for “union representation” structural recursion.

map f = sru(∪, λx.{x},)

flatten = sru(∪, id,)

pairwith(x, S) = map (λy.(x, y)) S

cartprod(S1, S2) = flatten(map (λx.pairwith(x, S2)) S1)

powerset = sru((λp.map ∪(cartprod p)), (λx.{x}), {{}})

All these generalize to bags and lists.

GPSS Lectures 1&2 20

A Natural Fragment of Structural Recursion

This limited form of structural recursion is always well-defined:

fun h({}) = {}
| h({x}) = f(x)

| h(c1 ∪ c2) = h(c1) ∪ h(c2)

Call this ext(f). Equivalently, ext(f) = sru(∪, f, {})
We can Build a language using:

• For sets: {}, {x}, S1 ∪ S2, ext(f)S

• For records: Formation and field selection.

• Lambda abstraction, but only over variables that represent complex objects. I.e. no “higher

order” abstraction.

GPSS Lectures 1&2 21

To simplify things, use pairs rather than records (which can be simulated by nesting pairs). Our

complex-object types are given by:

τ ::= b | unit | τ × τ | {τ}
where b ranges over base types, and unit is the “nullary” product, inhabited only by (). Note that

this allows nested sets.

We have seen how cartesian product can be implemented with these primitives. So can

relational projection:

Πi R = map (πi) R

Using {} and {()}, the two values of type, {unit}, to represent false and true, respectively, we

can implement selection.

select (p) S = flatten(map (λx.Π1(cartprod({x}, p x))) S)

We have all the operations of the relational algebra except difference.

GPSS Lectures 1&2 22

A calculus – MC

Variables and constants

x : Type(x) c : Type(c) p : DType(p) → CType(p)

Abstraction and application

e : τ

λx.e : Type(x) → τ

e1 : σ → τ e2 : σ

e1e2 : τ

Pairing

e1 : σ e2 : τ

(e1, e2) : σ × τ

e : σ × τ

π1e : σ π2e : τ () : unit

Sets

e : τ

{e} : {τ}
e : σ → {τ}

ext(e) : {σ} → {τ} {}τ : {τ}
e1 : {τ} e2 : {τ}

e1 ∪ e2 : {τ}
c ranges over primitive constants with o-type Type(c)

p ranges over primitive functions with type DType(p) → CType(p)

Σ – The signature of primitive constants and functions.

MC(Σ) – the language over this signature.

GPSS Lectures 1&2 23

A Monad “Algebra” – MA(Σ)

Kc : unit → Type(c) p : DType(p) → CType(p)

f : σ → τ g : τ → υ

g ◦ f : σ → υ idσ : σ → σ

f1 : σ → τ1 f2 : σ → τ2

(f1, f2) : σ → (τ1 × τ2) fstσ,τ : σ × τ → σ sndσ,τ : σ × τ → τ

f : σ → τ

map f : {σ} → {τ} sngτ : τ → {τ} flattenτ : {{τ}} → {τ}

ρ2σ,τ : σ × {τ} → {σ × τ} tτ : τ → unit

K{} : unit → {τ} union : {τ} × {τ} → {τ}24
Kx : unit → Type(x)

35
GPSS Lectures 1&2 24

Theorem. For any signature Σ,MC(Σ) 'MA(Σ) [
def= M(Σ)]

Theorem. Set intersection is not definable inM().

Theorem. For any signature Σ,

M(∩,Σ) 'M(=, Σ) 'M(difference, Σ) '
M(⊆, Σ) 'M(∈,Σ) 'M(nest, Σ)

Theorem. Every query expressible inM(=) can be computed in polynomial time with respect

to input size. Hence powerset 6∈ M(=)

Claim. M(=, Σ) is the “right” nested relational algebra.

Theorem (Wong; Paredaens& Van Gucht). M(=) is a conservative extension of flat relational

algebra. Hence parity, transitive closure 6∈ M(=)

Let us use NRA forMA(=)

GPSS Lectures 1&2 25

Further use of Structural Recursion

It is easy to define R1 ◦R2, the composition of R1 and R2 in NRA
Defining i : (α× α)× {α× α} → {α× α} as

i(r, T) = {r} ∪ T ∪ {r} ◦ T ∪ T ◦ {r} ∪ T ◦ {r} ◦ T

gives us transitive closure:

fun TC({}) = {}
| TC(s↗R) = i(s, TC(R))

We have to check that i satisfies the idempotence and commutativity conditions for this form of

structural recursion.

Warshall’s algorithm can be defined in a similar fashion. With some extra manipulation, efficient

implementations of these algorithms can be derived.

GPSS Lectures 1&2 26

Powerset

We have seen that powerset is definable with sru

The Abiteboul and Beeri algebra (A&B)is obtained by adding powerset operator to a nested

relational calculus.

It can express equal cardinality, parity and transitive closure.

Let C be a signature of object types, i.e. no functions.

Theorem. A&B(C) 'M(=, powerset, C) ' SR(=, C)

The proof of this relies on our well-definedness conditions for SR(C)

However,

Theorem. There are (very simple) signatures Σ for which SR(Σ) cannot be polymorphically

translated intoA&B(Σ).

Also, transitive closure, expressed inA&B(C), requires the use of powerset . Any algorithm to

express transitive closure in A&B requires exponential space [Suciu&Paredaens, PODS’94]

GPSS Lectures 1&2 27

Connections with Other Languages

Over complex objects fixpoints (inflationary, partial) can compute powerset.

However we can restrict the expressive power of a fixpoint operator by bounding its output.

f : {σ} → {σ} B : {σ}
bfix(f, B) : {σ} → {σ}

bfix(f,B) = fix(g) where g(S) = f(S) ∩B

NRA+ bfix is conservative over FO + fix (inflationary Datalog).

Hence NRA + bfix cannot compute parity.

GPSS Lectures 1&2 28

• NRA + rational arithmetic + aggregate summation (
def
= NRAQ) is conservative over its

first-order fragment (Libkin & Wong).

• The following languages

– NRAQ + transitive closure + linear order

– NRAQ + bounded fixed point + linear order (inflationary or partial semantics)

are conservative over their respective first-order fragments (Libkin & Wong).

• NRAQ + powerset + linear order is conservative over its second-order fragment (Libkin &

Wong).

GPSS Lectures 1&2 29

Bag Languages

Nested Bag Algebra is defined in the same way as NRA, but bag semantics are used.

BQL def
= Nested Bag Algebra + monus + unique

Results for bag languages:

1. BQL + (insert) structural recursion expresses exactly the class of all primitive recursive

functions (Libkin & Wong).

2. BQL + powerbag expresses exactly the class of all Kalmar-elementary functions (Libkin &

Wong).

GPSS Lectures 1&2 30

Comprehensions

Wadler has shown a nice connection between “comprehensions” and the operations of NRA.

Comprehensions “look like” Zermello-Fraenkel set notation. They look even more like practical

database query langauges.

They can be interpreted for sets, bags, lists and, ...

They can be used with ML-style pattern matching, and better

They can be transformed into NRA using rewrite rules such as

{e′ | x ← e . . .} Ã ext(λx.{e′ | . . .}) e

{e′ |} Ã {e}

GPSS Lectures 1&2 31

Optimizations arise systematically from categorical descriptions, and are best exploited using

the syntax of comprehensions [Wong, PhD thesis]. Examples (µ = flatten):

For all collections:

• µ{e1 | x ← {e2}} e1[e2/x]

• µ{{x} | x ← S} S

• µ{e1 | x ← µ{e2 | y ← e3}} µ{µ{e1 | x ← e2} | y ← e3}
(vertical loop fusion)

For sets and bags:

• µ{e1 | x ← e} ∪ µ{e2 | x ← e} µ{e1 ∪ e2 | x ← S}
(horizontal loop fusion)

From this last equation one can derive that {τ + σ} ∼= {τ} × {σ}. This is I believe,one of the

reasons for the usefulness of relational databases.

GPSS Lectures 1&2 32

An application – NCBI’s GenBank

GenBank, the most comprehensive source of biosequence information, is distributed in ASN.1

(Abstract Syntax Notation) format.

This is a “structured file”; it is not a database.

ASN.1 Standard Our notation
terminology terminology

sequence of list [τ]
set of set {τ}

sequence record (l1 : τ1 . . . ln : τn)
set tuple ?? τ1 ∗ . . . ∗ τn

choice variant << l1 : τ1 . . . ln : τn >>

An ASN.1 type (part of GenBank):

[(em:Date, cit:Cit-art, gene: {string }, ...)]

where Cit-art = (title: string, authors: Auth-list, ...)

Auth-list = [(name:string,...)]

GPSS Lectures 1&2 33

A sample query:

{[title = x.cit.title, gene = x.gene]|

\x <- Medline-data;

x.em.year = 1989;

[name = "J.Doe", ...] <- x.cit.authors }
c.f. SQL - (as it should be!)

SELECT title = x.cit.title, gene = x.gene

FROM Medline-data x

WHERE x.em.year = 1989

AND "J.Doe" IN

SELECT Name

FROM x.cit.authors

GPSS Lectures 1&2 34

Another example, involving variants:

{[abstract = x.abstract, volume = v]|

\x <- Medline-data;

x.em.year = 1989;

<<journal = [title = [name = "J.Irrep.Res", ...],

imprint = [vol = \v,...]. ...]>>

<- x.cit.from }

GPSS Lectures 1&2 35

Further Reading

Serge Abiteboul, Richard Hull and Victor Vianu, Foundations of Databases. Addison-Wesley,

1995.

Peter Buneman, Shamim A. Naqvi, Val Tannen, Limsoon Wong: Principles of Programming with

Complex Objects and Collection Types. TCS 149(1): 3-48 (1995)

L. Fegaras and D. Maier. Towards an Effective Calculus for Object Query Languages. In ACM

SIGMOD International Conference on Management of Data, San Jose, California, pp 47-58,

May 1995.

The Penn web site: http://db.cis.upenn.edu

R. G. G. Cattell at al., The Object Data Standard 3.0. Morgan Kaufmann (2000)

GPSS Lectures 1&2 36

Lectures 3 and 4:
From Semistructured Data to XML

Peter Buneman

August 22, 2002

Generic Programming Summer School

GPSS Lectures 3&4 1

Motivation

Some data really is unstructured. Examples:

• The World-Wide Web

• Data exchange formats

• ACeDB – a database used by biologists.

GPSS Lectures 3&4 2

Motivation – the Web

Why do we want to treat the Web as a database?

• To maintain integrity

• To query based on structure (as opposed to content)

• To introduce some “organization”.

But the Web has no structure. The best we can say is that it is an enormous graph.

GPSS Lectures 3&4 3

Motivation – Data Formats

Much (probably most) of the world’s data is in data formats. These are formats defined for the

interchange and archiving of data.

Data formats vary in generality. ASN.1 and XDR are quite general. Scientific data formats tend

to be “fixed schema” (NetCDF is an exception.)

The textual representation given by data formats is sometimes not immediately translatable into

a standard relational/object-oriented representation.

GPSS Lectures 3&4 4

Some examples of structured text and data formats
Identification_Information:

Citation:

Citation_Information:

Originator: OL-A, Air Force Combat Climatology Center (AFCCC)

Originator: Air Force Global Weather Central (AFGWC) (comp)

Publication_Date: 19960621

Title: PIBAL - Upper Air Pilot Balloon Observations (PIBAL)

Publication_Information:

Publication_Place: ASHEVILLE, NC

Publisher: OL-A, AFCCC

Description:

Abstract: The PIBAL database includes rawinsonde, pilot ...

Spatial_Domain:

Bounding_Coordinates:

West_Bounding_Coordinate: -180.0000000000

East_Bounding_Coordinate: 180.0000000000

North_Bounding_Coordinate: 90.0000000000

South_Bounding_Coordinate: -90.0000000000

Stratum:

Stratum_Keyword_Thesaurus: None

Stratum_Keyword: Troposphere

Stratum_Keyword: Stratosphere

Stratum_Keyword: Mesophere

GPSS Lectures 3&4 5

Another example: ACeDB

ACeDB (A C. elegans Database) is popular with biologists for its flexibility and its ability to

accommodate missing data.

An ACeDB schema (with some liberties):

person name firstname unique string — at most one first name

lastname unique string — at most one last name

tel int — several numbers

book authors person — means set of persons

title unique string — at most one title

chapter-headings int unique string — an array of strings

...

GPSS Lectures 3&4 6

Some ACeDB data

ASmith person name firstname "Alan" --- ASmith is key/OID

lastname "Smith"

LH17.23.15 book authors ASmith

JDoe

title "A very brief history of time"

chapter-headings 1 "The Beginning"

2 "The Middle"

3 "The End"

GK12.23.45 book authors "K. Ludwig"

...

GPSS Lectures 3&4 7

ACeDB continued

An ACeDB type is an infinite tree, and an instance as a finite subtree of the type.

In fact ACeDB has a parameterized type list. list(int) stands for int int int ... – an infinitely

branching, infinitely deep, tree

An example of an instance of list(int):

2 3 2 4

2 5

4 1

4 2 7

3 1

2

Although ACeDB has a schema (and might not be regarded as semistructured) the schema only

places rather weak “outer bounds” on the data.

GPSS Lectures 3&4 8

A format for data exchange – Tsimmis

The Object Exchange Model provides a syntax for describing objects.

It describes a flexible data structure in which many other conventional data structures may be

represented.

〈bib, set, {doc1, doc2 . . . docn}〉
doc1 : 〈doc,set, {au1, top1, cn1}〉

au1 : 〈authors, set, {au1
1}〉

au1
1 : 〈author-ln, string, “Ullman”〉

top1 : 〈topic, string, “Databases”〉
cn1 : 〈local-call#, integer, 25〉

doc2 : . . .

doc3 : . . .

. . .

The general form is oid : 〈label, type-indicator , value〉. Note that records and sets are

represented in the same way.GPSS Lectures 3&4 9

XML

〈person 〉
〈name〉 Malcolm Atchison 〈/name 〉
〈tel 〉 0141 247 1234 〈/tel 〉
〈tel 〉 0141 898 4321 〈/tel 〉
〈email 〉 mp@dcs.gla.ac.sc 〈/email 〉

〈/person 〉
person

name tel tel email

Malcolm Atchison 0141 247 1234 0141 898 4321 mp@dcs.gla.ac.sc

In XML the (horizontal) order of nodes is important.GPSS Lectures 3&4 10

Motivation – Browsing

To query a database one needs to understand the schema.

However schemas have opaque terminology and the user may want to start by querying the

data with little or no knowledge of the schema.

• Where in the database is the string "Casablanca" to be found?

• Are there integers in the database greater than 216?

• What objects in the database have an attribute name that starts with "act"

While extensions to relational query languages have been proposed for such queries, there is no

generic technique for interpreting them.

GPSS Lectures 3&4 11

What is the model for semistructured data?

• A familiar representation for semistructured (unstructured) data?

• An attempt at a definition.

• Semistructured data as a labelled graph.

• A syntax for data.

• Examples.

GPSS Lectures 3&4 12

Lisp – A language for unstructured data?

Lisp (basic Lisp) has one data structure that is used to represent a variety of data types.

Lisp has a syntax for building values, but has no separate syntax of types.

The basic constructor is CONS, which forms a tuple of its two arguments. The CONS of x and y

is written (CONS x y) and can be depicted as a tree:

x y

A variety of data structures, lists, trees, records, functions, may be represented using this

constructor.

There are a number of extensions to Lisp (CLOS, LOOPS) and a “struct” definition in Common

Lisp that add a syntax for types.

GPSS Lectures 3&4 13

Representing Data in Lisp

A List

1

NIL3

2

(CONS 1 (CONS 2 (CONS 3 (CONS NIL))))

A Record

"Sales"21

’Name "J.Doe"

’Age ’Dept

(CONS (CONS ’Name ”Joe”)

(CONS (CONS ’Age 21)

(CONS ’Dept ”Sales”)))

A Binary Tree (data at internal nodes)

3 4 1 2 7 8

3

(CONS (CONS 3 (CONS 4 1)

(CONS 3 (CONS 2 (CONS 7 9)))))

GPSS Lectures 3&4 14

Describing Lisp Data

A Lisp value has a simple description. It is one of:

• a number, written 1,2,3 ...,

• a string, written ”cat”, ”dog”, ...,

• a symbol, written ’Name, ’Age, ...,

• NIL, or

• a pair of values, written (CONS x y)

This can be summarized in the type equation

τ = number | string | symbol |NIL| τ × τ

GPSS Lectures 3&4 15

A Definition of Semistructured Data?

As a partial definition, a semistructured data model is a syntax for data with no separate syntax

for types.

That is, no schema language or data definition language.

“Self describing” might be a better term, but this is used for data formats (e.g. ASN.1) that do

have a syntax for types.

The Lisp data model is too “low-level” Coding a relational database as a Lisp value is possible

(and often done) but the coding does not suggest any natural language for such values.

We would like a set type (or some collection type) to be explicit in our model.

Semistructured data is usually “mostly structured”. We are typically trying to capture data that

has only minor deviations from relational / nested relational / object-oriented data. For example...

GPSS Lectures 3&4 16

A Semistructured Movie Database

Entry Entry Entry

Movie Movie TV Show

Title Cast Director Title Cast Director Title Cast Episode

1 2 3

Special Guests

“Casablanca” “Bogart” “Bacall”
“Play it again, Sam”

Credit Actors

“Allen”

1.2E6

Director

“Allen”

References
Is

re
fe

re
nc

ed
 in

Actors

GPSS Lectures 3&4 17

Semistructured Data as a Labeled Graph

We want to put data (base types) int, string, video, audio into our graph. We also want symbols.

The names we use for attributes, relation names etc.

• Labels (symbols and data) on edges only (UnQL):

type label = int | string | ... | symbol

type tree = set(label× tree)

• Symbols on edges, data at leaves (Lorel):

type base = int | string |...
type tree = base | set(symbol× tree)

• Symbols on edges, data on levaes nodes. (Simplified XML)

type base = string

type tree = label× list(tree)

• Object identities at nodes – to be discussed later.

GPSS Lectures 3&4 18

What are the differences between these models?

1. Labels (symbols and data) on edges only.

2. Symbols on edges, data at leaves.

3. Data on edges and (all) nodes.

It is easy to define mappings between any two of these.

Having data on edges makes for nice representations of arrays (see ACeDB)

(3) has the mild disadvantage that taking a union of two graphs cannot be performed just by

gluing together their roots.

Caution. There is a great distance between defining semistructured data as untyped or

“schema-less” and adopting one of these models. There are all sorts of other models that may

prove equally interesting.

I shall (not quite arbitrarily) adopt (1)

GPSS Lectures 3&4 19

A Syntax for Data

The type definition almost determines a syntax for data. Here are some of the details.

• Usual syntax for numbers

• ”cat”, ”dog”, etc. for strings

• Unquoted strings Age, Name, etc. for symbols (drop the Lisp “quote”).

• {l1 : t1, . . . , ln : tn} – for a tree whose out-edges are l1, l2, . . . , ln connected to trees

t1, t2, . . . , tn.

• Shorthand l for l : {} (terminal leaves).

GPSS Lectures 3&4 20

Example: Representing Relational Data

R1

A B C

”a” 2 3

”b” 4 5

R2

C D

3 ”c”

5 ”d”

5 ”e”

?
”a”

?
2

?
3

?
”b”

?
4

?
5

?
3

?
”c”

?
5

?
”d”

?
5

?
”e”

¢
¢

¢®A ?B

A
A
AUC

¢
¢

¢®A ?B

A
A
AUC

¤
¤
¤²C

C
C
CWD

¤
¤
¤²C

C
C
CWD

¤
¤
¤²C

C
C
CWD

¶
¶

¶/
Tup

S
S

Sw
Tup

¡
¡

¡ª
Tup

?
Tup

@
@

@R
Tup

©©©©©©¼
R1

HHHHHHj
R2

{R1 : {Tup : {A : ”a”, B : 2, C : 3}, Tup : {A : ”b”, B : 4, C : 5}},
R2 : {Tup : {C : 3, D : ”c”}, Tup : {C : 5, D : ”d”}, Tup : {C : 5, D : ”e”}}}

GPSS Lectures 3&4 21

Querying Semistructured Data

There are (at least) three approaches to this problem

• Add arbitrary features to SQL or to your favorite query language. This is the least likely to

produce coherent results and may end up being the least useful.

• Find some principled approach to programs that are based on the type of the data.

• Represent the graph (or whatever the structure is) as appropriate predicates and use some

variety of datalog on that structure.

GPSS Lectures 3&4 22

The “Graph Datalog” approach

I shall not cover this approach in detail. Some remarks later

Please see references to WebSQL and WebLog.

The general approach is to represent a graph by two relations whose schemas are:

Node(oid, data) For nodes. oid is the node identifier data is the data at that node.

Edge(oid, label, oid) For edges. label carries edge information (may be the same as data).

We can only expect a query to produce results on that part of the graph reachable from the root.

GPSS Lectures 3&4 23

The “Extend SQL approach”

Having criticized this, it is the one I shall adopt (initially)!

In fact it is an attempt to extend the philosophy of OQL and comprehension syntax to these new

structures.

It is the approach taken in the design of UnQL and also of Lorel.

In UnQL the syntax of the language is an extension of the syntax of the data.

GPSS Lectures 3&4 24

Queries – in UnQL

select t

where R1 : \t ← DB

“Compute the union of all trees t such that DB contains an edge R1 : t emanating from the

root.”

There is only one such edge; this query returns the set of tuples in R1. The result is:

{ Tup : {A : ”a”, B : 2, C : 3},
Tup : {A : ”b”, B : 4, C : 5}}

• This is not SQL (No “from” clause).

• The form (R1 : \t) ← DB is a generator. Parentheses show grouping.

• R1 : \t is a pattern

• Introduction of a variable is explicit (\x). There are other approaches.
GPSS Lectures 3&4 25

A heterogeneous result

select t

where \l : \t ← DB

The result is the union of all tuples in both relations—a heterogeneous set that cannot be

described by a single relation.

• The label variable \l is used to match any edge emanating from the root.

• In UnQL variables may be label variables or tree variables.

GPSS Lectures 3&4 26

A join

select {Tup : {A : x,D : z}}
where R1 : Tup : {A : \x,C : \y} ← DB,

R2 : Tup : {C : y,D : \z} ← DB

We join R1 and R2 on their common attribute C and then project onto A and D.

• R1 : Tup : {A : \x,C : \y} is a tree pattern.

• Note that the variable y is bound in the pattern of one generator and then used as a

constant in the pattern of the second.

GPSS Lectures 3&4 27

A group-by

select {x : (select y

where R2 : Tup : {C : x, D : \y} ← DB

)}
where R2 : Tup : C : \x : {} ← DB

A group-by operation on R2 along the C column.

• \x : {} binds x to an edge label rather than a tree.

• In contrast, \y ranges over trees.

• The result is {3 : {”c”}, 5 : {”d”, ”e”}}.

GPSS Lectures 3&4 28

At the movies – A

select {Tup : {Title : x, Cast : y}}
where Entry : : {Title : \x,Cast : \y} ← DB

The titles and casts of all movies.

• The “wildcard” symbol matches any edge label.

• The result is a set of tuples of trees.

GPSS Lectures 3&4 29

At the movies – B

select {Tup : {Actor : x, T itle : y}}
where Entry : Movie : {Title : \y, Cast : \z} ← DB,

\x : {} ← z union (select u where : \u ← z),

isstring(x)

A binary relation consisting of actress/actor and title tuples for movies.

• We assume that the names we want will be found immediately below the Cast edge or one

step further down.

• Note the use of a condition.

GPSS Lectures 3&4 30

More on Types

Recall our recursive equation

type tree = set(label × tree)

The type set is itself recursive, and can be constructed from

• The empty set {}
• The singleton set {l : t}
• The union of sets t1 union t2

This decomposition suggests certain natural forms of programming via structural recursion. The

general form is

f({}) = e

f({l : t}) = s(l, t)

f(t1 union t2) = u(f(t1), f(t2))

where e, s, u are “simpler” functions.
GPSS Lectures 3&4 31

However, a special case of this form gives us some interesting results:

f({}) = {}
f({l : t}) = s(l, t)

f(t1 union t2) = f(t1) union f(t2)

This restricted form of structural recursion is determined by the function s and defines a function

ext(s) whose meaning is (informally)

ext(s){l1 : t1, l2 : t2, . . . ln : tn} = s(l1, t1) union s(l2, t2) union . . . union s(ln, tn)

I.e., apply s to each member of the tree (taken as a set) and union together the results:

f({}) = {}
f({l : t}) = if l = R1 then t else {}

f(t1 union t2) = f(t1) union f(t2)

This is our first query that selects a relation from the database.
GPSS Lectures 3&4 32

Some Basic Results

We can build a language EXT in which the only “computation” on

sets is given by ext . The other things we need are:

• For sets: empty set, {}, singleton, {l : t}, and union, (t1 union t2)

• Decomposition of l : t (pattern matching).

• A conditional expression if . . . then . . . else . . .

• Equality on labels, an emptiness test, predicates on labels e.g., isstring(l).

GPSS Lectures 3&4 33

EXT has some important properties:

• The select . . . where . . . language, as informally described to this point, can be

implemented with EXT .

• On the “natural” encoding of relations as trees, (nested) relational queries can be

implemented in EXT .

• Queries in EXT that take (nested) relations as inputs and produce (nested) relations as

output can be implemented in (nested) relational algebra.

• I.e. EXT is a natural extension of (nested) relational algebra.

GPSS Lectures 3&4 34

“Deep” structural recursion

We could try to generalize the recursive function that defined EXT to

• a definition of the form

f({}) = {}
f({l : t}) = s(l, f(t))

f(t1 union t2) = f(t1) union f(t2)

• or possibly

f({}) = {}
f({l : t}) = s(l, t, f(t))

f(t1 union t2) = f(t1) union f(t2)

In which the function f is called on subtrees.

GPSS Lectures 3&4 35

Consider special cases of this:

strings({}) = {}
strings({l : t}) = (if isstring(l) then {l} else {}) union strings(l)

strings(t1 union t2) = strings(t1) union strings(t2)

paths({}) = {}
paths({l : t}) = {l} union select {l : t} where \t ← paths(t)

paths(t1 union t2) = paths(t1) union paths(t2)

On trees they are both well defined when considered as equations or as programs.

On cyclic structures the first has a well-defined solution, but as a program it would recurse

indefinitely.

On cyclic structures the second does not have a finite solution as data. What kind of restriction

do we need to avoid this, and how do we implement the well-defined cases?
GPSS Lectures 3&4 36

Going Deep

Let’s try to resolve the issue again by “adding features”!!!

select {l}
where ∗ : \l : ← DB, isstring(l)

Find all the strings in the database

• The ∗ is a “repeated wildcard” that matches any path.

The use of a leading ∗ is so common that we shall use a special abbreviation p ←← t for

∗ : p ← t. So:

select {l}
where \l : ←← DB, isstring(l)

GPSS Lectures 3&4 37

Doubly deep

select {Movie : x}
where Movie : \x ←← DB,

”Bogart” : ←← x,

”Bacall” : ←← x

We use consecutive “deep” generators to find all the movies involving “Bogart” and “Bacall”:

GPSS Lectures 3&4 38

The error corrected

select {Movie : x}
where Movie : \x ←← DB,

[ˆMovie]∗ : ”Bogart” : ← x,

[ˆMovie]∗ : ”Bacall” : ← x

Following grep , the pattern [ˆMovie]∗ matches any path that does not contain the label Movie.

Arbitrary regular expressions may be used on labels.

GPSS Lectures 3&4 39

A “deep” version of EXT

Recall the definition of ext :

ext(s){l1 : t1, l2 : t2, . . . ln : tn} = s(l1, t1) union s(l2, t2) union . . . union s(ln, tn)

Read as “replace each element x in a set by s(x) and ‘glue together’ the results”

We are going to generalize this operation to graphs, but it is easier to descibe the syntax with

pictures:

GPSS Lectures 3&4 40

Suppose our function s acts on individual edges to produce a graph with n inputs and n outputs

s

Apply this funtion in parallel to each edge of the input tree and glue together corresponding

inputs and outputs.

gext(s)

* *

By default the top left vertex of the new graph is chosen as the new root.

(The function does not have to preserve the shape of the graph, but the number of inputs and

outputs must be the same in all cases.)

GPSS Lectures 3&4 41

Some Examples of gext

l l
ε l a a

l l

εif isstring(l)

otherwise

if l=a

otherwise

All the strings in a tree The union of all the trees at the ends of a∗ paths

GPSS Lectures 3&4 42

ε-edges represent unions. The operation on graphs is to eliminate them by rewriting:

ε

b

a

b

b

a

Elimination of ε-edges is similar to transitive closure.

GPSS Lectures 3&4 43

Results concerning GEXT

GEXT is, by analogy with EXT , the language obtained by using gext to compute with graphs.

GEXT is (fairly obviously) well defined for cyclic structures.

GEXT can also be used to implement “deep” select . . . where . . . fragment of UnQL with

arbitrary regular expressions on paths.

GEXT Can also be use to transform a graph. E.g. to correct the egregious mistake in the cast of

“Casablanca”.

However the extent to which GEXT can modify a graph is limited. It cannot, for example, add the

reverse of every edge to a graph.

GEXT allows similar optimizations in the “vertical” dimension to the “horizontal” optimizations of

EXT – many of the relational algebra optimizations.

GPSS Lectures 3&4 44

Conclusions and Prospects

The select . . . where . . . fragment of UnQL and Lorel have very similar syntax.

Lorel has some additional constructs for dealing with object identity.

This raises an interesting question of what various languages can “observe” about a graph.

UnQL observes graphs up to bisimulation. If two graphs are bisimilar, UnQL queries will produce

the same ouptut. If they are not bisimilar, there is an UnQL query that distinguishes them.

GPSS Lectures 3&4 45

Separating Pairs

a

b c

aaa

b c

a
a

b
a

b

b
a b

a a

Graph isomorphism

Distingushed by graph datalog with node equality.

First-order Equivalence

Distinguished by graph datalog.

Bisimilarity

Distinguished by UnQL
GPSS Lectures 3&4 46

Lots more to do ...

Is the model right? What about lists rather than sets for building trees? Not so easy to write

“nicely behaved” programs on cyclic data.

Is semistructured data a good idea? Why not get the structure right in the first place? (But

existing data models do not accommodate structures like ACeDB.)

GPSS Lectures 3&4 47

Schemas. See Suciu and Goldman for ideas on how schemas can be used for optimization.

These (respectively) use similarity and NDFSA equivalence to define schemas.

Browsing There ought to be some principles here. Semistructured data is a good model for

browsing, but we need to convey the structure to the user at the same time.

Finding structure How do we extract/infer structure from semistructured data?

GPSS Lectures 3&4 48

Conversion standards? There is more than one way of representing even a relational database

as semistructured data. Which is “right”?

Creating semi-structured data How do we rapidly parse/extract semistructured data from text

formats?

GPSS Lectures 3&4 49

Co-existence of structured and semistructured data

Our languages ought to allow us to handle both types (structured and semistructured) of data in

the same framework.

Our implementations ought to make efficient use of structure when it exists. They should allow

both forms to coexist.

We should not have to use semistructured data just because our languages or implementations

are weak in representing structure.

GPSS Lectures 3&4 50

XML – the reality

A series of prototype query languages, UnQL, Lorel, XML-QL, . . . led to the present state of

affairs, XQuery. This consists of two parts.

• XPath – a language for identifying sets of nodes in an XML tree.

• XQuery – Comprehension syntax surrounding XPath

The problem is that XPath has a life of its own, and does not have any primcipled basis in, e.g.,

some algebra.

GPSS Lectures 3&4 51

XPath

Navigation is remarkably like navigating a unix-style directory.

 aaa aaa

 aaa aaa

 ccc

 ccc bbb

3

Context node

21

4 5 6 7

All paths start from some context node.

aaa all the child nodes of the context node labeled aaa {1,3}
aaa/bbb all the bbb children of aaa children of the context node {4}
*/aaa all the aaa children of any child of the context node {5,6}.

. the context node

/ the root node

GPSS Lectures 3&4 52

XPath- child axis navigation (cont)

/doc all the doc children of the root

./aaa all the aaa children of the context node (equivalent to aaa)

text() all the text children of the context node

node() all the children of the context node (includes text and attribute nodes)

.. parent of the context node

.// the context node and all its descendants

// the root node and all its descendants

//para all the para nodes in the document

//text() all the text nodes in the document

@font the font attribute node of the context node

GPSS Lectures 3&4 53

Predicates

[2] the second child node of the context node

chapter[5] the fifth chapter child of the context node

[last()] the last child node of the context node

person[tel="12345"] the person children of the context node that have one

or more tel children whose string-value is "1234" (the

string-value is the concatenation of all the text on descen-

dant text nodes)

person[.//name = "Joe"] the person children of the context node that have in their

descendants a firstname element with string-value "Joe"

From the XPath specification ($x is a variable – see later):

NOTE: If $x is bound to a node set then $x = "foo" does not mean the same as

not ($x != "foo") .

GPSS Lectures 3&4 54

Unions of Path Expressions

• employee | consultant – the union of the employee and consultant

nodes that are children of the context node

• For some reason person/(employee|consultant) – as in general regular

expressions – is not allowed

• However person/node()[boolean(employee|consultant)] is allowed!!
From the XPath specification:

The boolean function converts its argument to a boolean as follows:

• a number is true if and only if it is neither positive or negative zero nor NaN

• a node-set is true if and only if it is non-empty

• a string is true if and only if its length is non-zero

• an object of a type other than the four basic types is converted to a boolean in a way that is

dependent on that type.

GPSS Lectures 3&4 55

A Query in XPath

SELECT age FROM employee WHERE name = "Joe"

We can write an XPath expression:

//employee[name="Joe"]/age

Find all the employee nodes under the root. If there is at least one name child node whose

string-value is "Joe" , return the set of all age children of the employee node.

Or maybe

//employee[//name="Joe"]/age

Find all the employee nodes under the root. If there is at least one name descendant node

whose string-value is "Joe" , return the set of all age descendant nodes of the employee

node.

N.B. This returns a set of nodes, not XML

GPSS Lectures 3&4 56

Why isn’t XPath a query language?

It doesn’t return XML – just a set of nodes.

It cant do complex queries invoking joins.

We’ll turn to XQery shortly, but there’s a bit more on XPath.

GPSS Lectures 3&4 57

XPath – navigation axes

In Xpath there are several navigation axes. The full syntax of XPath specifies an axis after the

/ . E.g.,

ancestor::employee : all the employee nodes directly above the context node

following-sibling::age : all the age nodes that are siblings of the context node

and to the right of it.

following-sibling::employee/descendant::age : all the age nodes

somewhere below any employee node that is a sibling of the context node and to the

right of it.

/descendant::name/ancestor::employee : Same as

//name/ancestor::employee or //employee[boolean(.//name)]

GPSS Lectures 3&4 58

So XPath consists of a series of navigation steps. Each step is of the form: axis::node

test[predicate list]

Navigation steps can be concatenated with a /

If the path starts with / or // , start at root. Otherwise start at context node.

The following are abbreviations/shortcuts.

• no axis means child

• // means /descendant-or-self::

The full list of axes is: ancestor, ancestor-or-self, attribute, child,

descendant, descendant-or-self, following,

following-sibling, namespace, parent, preceding,

preceding-sibling, self .

GPSS Lectures 3&4 59

The XPath axes

ancestor

descendant

followingpreceding

following− siblingpreceding− sibling

child

at t r ibute

namespace

self

GPSS Lectures 3&4 60

XQuery

XPath is central to XQuery. In addition to XPath, XQuery provides:

• XML “glue” that turns XPath node sets back into XML.

• Variables that communicate between XPath and XQuery.

• It is “reverse” comprehension syntax, so that you can do things like joins, aggregates and

more sophisticated conditions than those in XPath.

A simple query. The {... } embeds XPath expressions in XML. (XPath in orange):

〈answer 〉{document("bib.xml")//title }〈/answer 〉
produces:

〈answer 〉
〈title 〉... 〈/title 〉
〈title 〉... 〈/title 〉
...

〈/answer 〉
GPSS Lectures 3&4 61

“Select-Project” in XQuery

for $x in document("payroll.xml")//employee

where $x/age = "25"

return $x/name

• $x gets bound to each node in the set of nodes produced by the XPath expression

document("payroll.xml")//employee .

• $x/age produces a set of nodes. As in XPath, $x/age = "25" is true if at least one

element in $x/age has string value "25" .

GPSS Lectures 3&4 62

Join in XQuery

〈results 〉
for $x in document("payroll.xml")//employee

$d in document("organization.xml")//department

where value-equals($x/DeptId , $d/DeptId)

return 〈result 〉{$x/name }{$x/name }〈/result 〉
〈/results 〉
What happens if a department has two names, or an employee has two names, or both?

GPSS Lectures 3&4 63

Group by

〈answer 〉
for $a in distinct-values(document("payroll.xml")//employee/age)

return

〈age-group 〉
{ $a }
{

for $e in document("payroll.xml")//employee

where value-equals($a, $e/age)

return $a/name

}
〈/age-group 〉

〈/answer 〉

GPSS Lectures 3&4 64

Examples from XQuery

Use of aggregate functions

List each publisher and the average price of their books.

for $p in distinct(document("bib.xml")//publisher)

let $a := avg(document("bib.xml")//book[publisher = $p]/price)

return

〈publisher 〉
〈name〉{$p/text() }〈/name 〉
〈avgprice 〉{$a}〈/avgprice 〉

〈/publisher 〉
let binds a new variable.

GPSS Lectures 3&4 65

Examples from XQuery (cont)

List the publishers who have published more than 100 books.

〈big-publishers 〉
{

for $p in distinct(document("bib.xml")//publisher)

let $b := document("bib.xml")//book[publisher = $p]

where count($b) > 100

return $p

}
〈/big-publishers 〉
Note that let binds to a set – it does not cause another iteration.

GPSS Lectures 3&4 66

Document Type Descriptors

XML has gained acceptance as a standard for data interchange. There are now hundreds of

published DTDs. DTDs are described in the XML standard and in most XML tutorials.

• A Document Type Descriptor (DTD) constrains the structure of an XML document.

• There is some relationship between a DTD and a schema, but it is not close – hence the

need for additional “typing” systems, such as XML-Schema.

• The unlike an E-R diagram, a DTD is a syntactic specification. Its connection with any

conceptual model may be quite remote.

GPSS Lectures 3&4 67

Example: The Address Book

〈person 〉
〈name〉 MacNiel, John 〈/name 〉 must exist

〈greet 〉 Dr. John MacNiel 〈/greet 〉 optional

〈addr 〉 1234 Huron Street 〈/addr 〉 as many address lines as needed

〈addr 〉 Rome, OH 98765 〈/addr 〉
〈tel 〉 (321) 786 2543 〈/tel 〉 0 or more tel and faxes in any order

〈fax 〉 (123) 456 7890 〈/fax 〉
〈tel 〉 (321) 198 7654 〈/tel 〉
〈email 〉 jm@abc.com 〈/email 〉 0 or more email addresses

〈/person 〉

GPSS Lectures 3&4 68

Specifying the Structure

name to specify a name element

greet? to specify an optional (0 or 1) greet elements

name,greet? to specify a name followed by an optional greet

addr* to specify 0 or more address lines

tel | fax a tel or a fax element

(tel | fax)* 0 or more repeats of tel or fax

email* 0 or more email elements

GPSS Lectures 3&4 69

Specifying the structure (cont)

So the whole structure of a person entry is specified by

name, greet?, addr*, (tel | fax)*, email*

This is a regular expression in slightly unusual syntax. Why is it important?

GPSS Lectures 3&4 70

A DTD for the address book

〈!DOCTYPE addrbooktype [

〈!ELEMENT addressbook (person*) 〉
〈!ELEMENT person (name, greet?, addr*, (fax|tel)*, email*) 〉
〈!ELEMENT name (#PCDATA)〉
〈!ELEMENT greet (#PCDATA) 〉
〈!ELEMENT addr (#PCDATA) 〉
〈!ELEMENT tel (#PCDATA) 〉
〈!ELEMENT fax (#PCDATA) 〉
〈!ELEMENT email (#PCDATA) 〉

] 〉

GPSS Lectures 3&4 71

XDuce - a Typed XML programming Language

• DTDs (and XML-Schema) constrain the tags and order of subelements.

• For most query languages DTDs and XML-Schema do not act as stype type systems.

• Validation 6= typechecking. Incorrect queries yield empty answers.

• An exception is XDuce ...

GPSS Lectures 3&4 72

Yet another syntax..

〈addrbook 〉
〈name〉Jane Dee 〈/name 〉
〈addr 〉NYC〈/addr 〉
〈tel 〉213 1234 〈/tel 〉
〈tel 〉213 7654 〈/tel 〉
〈name〉John Doe 〈/name 〉
〈addr 〉Neasden 〈/addr 〉
〈tel 〉745 0011 〈/tel 〉

〈/addrbook 〉

−→

addrbook[

name["Jane Dee"],

addr["NYC"],

tel["213 1234"],

tel["213 7654"],

name["John Doe"],

addr["Neasden"],

tel["745 0011"]]

GPSS Lectures 3&4 73

Also for the types...

〈!ELEMENT addrbook (name, addr, tel*)* 〉
〈!ELEMENT name (#PCDATA)〉
〈!ELEMENT addr (#PCDATA) 〉
〈!ELEMENT tel (#PCDATA) 〉

−→

type Addrbook = addrbook[(Name,Addr,Tel*)*]

type Name = name[Str]

type Addr = addr[Str]

type Tel = tel[Str]

GPSS Lectures 3&4 74

Subtyping

Types denote sequences of values, e.g.

tel["1234"],tel["2345"] : Tel*

Subtyping is derived from containment of regular expressions and denotes “sub-forests”, e.g.

Tel <: Tel*

Name, Addr <: Name, Addr, Tel*

addrbook[Name,Addr,Name,Addr,Tel],addrbook[(Name,Addr)*]

<: Addrbook

XDuce types are more general than DTDs. Example: a[b[c[Str]],b[d[Str]]]

GPSS Lectures 3&4 75

Pattern Matching and Functions

fun mkAddrList: (Name,Addr,Tel*)* -> (Name, Addr)* =

name[n: Str],addr[a: Str], tels : Tel* , rest : (Name,Addr,Tel*)*

->name[n],addr[a],mkAddrList(rest)

| () -> ()

fun mkTelList (Name,Addr,Tel*)* -> (Name, Tel)* =

name[n: Str],addr[a: Str],tels:[t : Tel , restT : Tel*],

rest : (Name,Addr,Tel*)

-> name[n], tel[t], mkTelList(name[n],addr:[a],tels[restT], rest)

| name[n: Str], addr[a: Str], rest : (Name,Addr,Tel*)*

-> mkTelList(rest)

| () -> ()

GPSS Lectures 3&4 76

About XDuce

• It is a full programming language. Substantial applications (e.g. an XML Schema validator)

have been written in it.

• Subtyping and type equivalence are non-trivial.

• “Width” (record) subtyping has also been added. But this may need further work.

• The expected “type-safety” theorems hold.

GPSS Lectures 3&4 77

The future

• The big question is whether we can store large quantities of (typed?) XML and query them

efficiently – as we can for relational databases.

• To what extent can we type-check X-Query?

• What is the “right” way of combining regular expression types with familiar (record,

variant,...) data types?

• Can we make XDuce a higher-order language? Can we add parametric polymorphism?

• Can we find an optimisable “algebra”?

• DTDs and (worse) XML-Schema are complicated, and there are no clean underlying

principles. Can we find something that is close and clean?

• Similarly for XPath.

The list is endless ...

GPSS Lectures 3&4 78

Bibliography

Serge Abiteboul, Peter Buneman and Dan Suciu. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, 1999.

Peter Buneman, Mary Fernandez and Dan Suciu. UnQL: A Query Language and Algebra for

Semistructured Data Based on Structural Recursion. VLDB Journal 9(1), 75-110, 2000.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom and Janet L. Weiner. The Lorel

Query Language for Semistructured Data. Journal of Digital Libraries, volume 1:1, 1997.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, Dan Suciu. XML-QL: A Query

Language for XML. http://www.w3.org/TR/NOTE-xml-ql

Mary Fernandez, Jerome Simeon, Philip Wadler. An Algebra for XML Query. FST TCS, Delhi,

December 2000.

Haruo Hosoya, Benjamin C. Pierce. XDuce: A Typed XML Processing Language. Int’l Workshop

on the Web and Databases (WebDB) 2000

And, of course, http://www.w3.org/XML/

GPSS Lectures 3&4 79

〈/lecture 〉

GPSS Lectures 3&4 80

