Theory and Practice of Software Architecture

José Fiadeiro

LabMOL/University of Lisbon and ATX Software
PORTUGAL

Summer School and Workshop on Generic Programming
St Anne's College, Oxford, UK
August 26-30 2002

)bjectives

-
To provide mathematical foundations to the
Theory and Practice of Software Architectures

— abstracting a mathematical semantics from existing
languages and models

— using it to generalise these ideas to other contexts
— explore useful generalisations of existing concepts

capitalizing on research on SA, Reconfigurable Distributed
Systems and Coordination Languages and Models

Jutline

e
Motivation and overview

CommUnity: Parallel program design and architectural
design using CT

Coordination in CommUnity, characterisation in CT and
examples

Software Architectures in Coordinated Categories
Software Evolution through Dynamic Reconfiguration

Motivation

nvisaged development process

“ = F

Nl g

“structural objects” “business rules”

. » ™ N ™
E Evolution E

>
Construction

Mhy Software Architectures ?

-
SA addresses the gross decomposition of systems in
terms of components and the connectors that define how
they interact.

An attempt (the best we know...) at tackling the
complexity of system development:
— Leads to "standard” ways of constructing systems - architectural

styles - reflecting the structure of the application/business
domain.

— Allows systems to evolve based on a black-box view of components
- non-intrusive, dynamic reconfiguration - reflecting directly
changes that take place in the domain.

Mhy Coordination ?

e
“Recent” languages like Linda, Gamma, Manifold, ... have

promoted the separation between computation (what is
responsible for the functionality of services in basic
components) and coordination (the mechanisms that are
made available for components to interact);

“Programming by emergence”: local functionalities +
inferactions

Black-box view of components: interactions can evolve
without changing the computations.

Mhy Category Theory ?

The mathematical tool, par excellence, for addressing
"structure" and "modularity”.

In Category Theory, entities are characterised in terms of
the relationships they have to other entities and not in
terms of their internal representation.

— The information one gets from the structure of an entity is
determined from the way that entity "interacts" with the other

entities.

— This is analogous, for instance, to the encapsulation mechanisms
made available by Abstract Data Types and Object-Oriented
Programming.

Category theory vs Set theory

—> =
Implicit Explicit
External Internal

Black-box White-box

“Social” “Physiological”

‘ategory theory vs Set theory

-
-xample
power amplifier in set theory

power amplifier in category theory

SPEAKERS TUNER PHONO CD

O O O O O
O O O O O

>et theory in Category theory

L
, The social life of sets;

» Characterisation of the empty sef;

» Characterisation of singleton sefts;

» Characterisation of the (disjoint) union;
» What makes a "social life" a category?

Jses of Category theory in Computing

e
» The "arrows as computations” paradigm

» The "arrows as interpretations” paradigm
— General Systems Theory;

— Abstract Data Types:
— Concurrency Theory

Introduction to Category Theory

yraphs

-
\ graph is a tuple
(6y,64,src,trg)
/here.
— 6, is a collection (of nodes),
— G, is a collection (arrows),

— src maps each arrow to a node (the source of the node)
— trg maps each arrow to a node (the target of the node)

Ve usually write f:x—y to indicate that src(f)=x and trg(f)=y.

etween two nodes there may exist no arrows, just one in either
irection, or several arrows, possibly in both directions.

-xamples

C
\round sets:

— The most "popular” graph is the graph whose nodes are the sets
and whose arrows are the total functions.

— Another useful example is the graph that has exactly the same
nodes (sets) but whose arrows are partial functions.

"here are many other examples in Computing:

lass inheritance hierarchies

=
These are graphs whose nodes are object classes and for which the
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

address

insured_value : :
In class inheritance

hierarchies, there
exists at most one
arrow between two
hodes. However,
rename insured_value qrpows can carry more

as residence_value)]
HOME information.

BUSINESS

BUSINESS RESIDENCE

name insured_value
5 business_value

lass inheritance hierarchies

These are graphs whose nodes are object classes and for which the
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

{address,insured_value}

SN

{address,insured_value,A} {address,insured_value,B}

rename insured_value rename insured_value
as business value as residence_value

{address,residence_value,business_value,A,B,C}

‘ransition systems

Every transition system constitutes a graph whose nodes
are the states and whose arrows are the transitions

forks T 7@
@ forks+

‘

bc_hungry

-onsequence systems

One of the possible views that one can have of a "logic" is through the
notion of a sentence being a consequence of, or derivable from,
another sentence. This notion of consequence can be represented by
a graph whose nodes are sentences and whose arrows correspond to

"logical implication".

AV =} AvB CAB

O B o - Y

roof systems

.
Every proof system constitutes a graph whose nodes are formulae and
whose arrows are proofs.

AV =

O
ANB ANB

AVB v ! v AVB

aths

-
et G be a graph and x,y nodes of G.

\ path from x to y of length k>0 is a sequence f,...f; of
rrows of G (not necessarily distinct) such that

1. src(f)=x

2. trg(f,)=src(f.,) for 1ci<k-1

3. trg(f,)-=y.

or every X, the path of length O at x (the empty path at x)
rom x to x is by convention the empty sequence.

aths

-
"he collection of paths of G of length k is denoted by 6,.

lence,
— 6, corresponds to the co

— 6, corresponds to the co

— 6, corresponds to the co
composable arrows.

ection of nodes,
ection of arrows,
ection of pairs of

sraph Homomorphism

\ homomorphism of graphs r
¢:6—>H | —
s a pair of maps i1 :_/
0o:60—>Hg and ¢:6,—>H;, " E : E
uch that chh - T
for each arrow f:x—y of G, . - y P

P1(f):po(x)—>0p(y) in H.

"hat is, nodes are mapped to nhodes and arrows to arrows but
reserving sources and targets.

.ategory

ey
\ category C is a triple (G,;,id) where:
— G is a graph,
— . isamap from G, into G,
— id is a map from G, into G,
uch that
— src(f.g)=src(f),
— trg(f.g)=trg(9)
— (f:9):h = f:(g:h)
— src(id,)=trg(id,)=x,
— for each fix—y of 6, fiid, = id,.f = f.

-xamples

SET -
objects: sets identities: identity functions
arrows: total functions composition: functional
SRAPH -
objects: graphs identities: identity functions
arrows: graph homorphisms composition:
functional
'ROOF -
objects: sentences identities: empty

Eroofs

re -orders

=
very pre-order <S <> defins a category S, as follows:

objects: elements of S

arrows: there is morphism x—y iffxzy;

identities: reflexivity law;

composition: transitive law.

OGI -

objects: sentences
arrows: existence of a logical implication;

Ancestor

In Eiffel, given an inheritance graph & between classes, the category
ancestor(G) is generated by completing the graph with the arrows
that result from reflexivity (identities) and transitivity

RN
\

(compositions).

“ategory generated from a graph

e
very graph & generates a category cat(G) as follows:

objects: nodes

arrows: paths

identities: empty paths;
composition: path concatenation.

uns (T) - for every transition system T
objects: states
arrows: finite runs;

Adding structure

The most typical way of building a new category is,
perhaps, by adding "structure" to the objects of a given
category (or a subset thereof).

The expression "adding structure" has, of course, a broad
meaning...

The morphisms of the new category are then the
morphisms of the old category that "preserve"” the
additional structure.

ointed sets

e
ET, -

objects: pairs <A,L,> where A isasetand L,cA
arrows: fi<A,L,> —><B, 1> is f:A — B s.t. f(L,)=1;
identities: those of SET

composition: that of SET

proof obligations:
well-formedness of identities;
closure of composition

rocesses

e
Pointed sets can be interpreted as process alphabets:

— Elements denote events;
— The designated element denotes an environment event;
— Morphisms identify sub-components of processes.

We can associate trajectories (full behaviours) with
alphabets and their morphisms:

tra(A)={L:0—>A}
tra(f:A—>B)(L)=1;f:0—B

rocesses

E————————————,
ROC -

objects: pairs <A,,A> where A,: SET, and Actra(A)
arrows: fi<A A>—<B, M>is f:A,—»B, s.t. tra(f)(A)=M
identities: those of SET,

composition: that of SET,

proof obligations:

well-formedness of identities:
closure of composition

rocesses

e
)yrocess VM is

Ilphabet co, ca, ci
ehaviour
A:=1°| 1col® | (L'coL™{ca,ci})A

)rocess RVM is
Ilphabet co, ca, ci
ehaviour
A:=1°] 1"col® | (L'coLl’ca)A

"emporal specifications

E————————————,
SET -

objects: finite sets arrows: total functions

inear temporal language PROP(Y) over a finite set X
dp:i=beg|aeZ | ¢ | d;2d, | ;U ¢,

ranslation defined by f:X—>¥'
f(¢) == beg | f(a)eX | -f(9) | £(¢1) > £(¢2) | £(¢1) U £(¢2)

"emporal specifications

E————————————,
>emantics of PROP(Z) over (2%)®

L. aiff ae(i)

A, 'beg iff i=0,

A, = iff it is not the case that A, ¢

A, oo, iff &, 1, implies A, ¢y,

A, i9Uo, iff, for some jbi, &, ', and, for every ick<j, 1, k¢,

AL, oiff L, ¢ for every i
O, ¢ iff, for every &, A, @ implies A, ¢

"emporal specifications

E————————————,
"HEO-

objects: theories <Z,®> such that @ is closed
arrows: i< ®>—<X' @ is f:T-5X' s.t. f(D)c=D’

RES-
objects: theory presentations <X, o>
arrows: <X d>—><' @' is f:X >3 s.t. f(D)c=c(P)
where ¢c(®)={¢: O, ¢}

"emporal specifications

-
ypecification vending machine is

ignature coin, cake, cigar

xXioms
beg o -caken-cigar A (coinv(-cakea-cigar)Wcoin)
coin O (ncoin)W(cakevcigar)

(cakevcigar) o (ncakea-cigar)Wcoin

cake o —cigar

"emporal specifications

-
pecification vending machine is

ignature coin, cake, cigar

xXioms

beg o> -cake A acigar A
(coinv(-cakea—-cigar)Wcoin)

coin D (ncoin)W(cakevcigar)

(cakevcigar) o (ncakea-cigar)Wcoin
cake o —cigar

"emporal specifications

=
ypecification is

ignature tri, ted

xioms
beg o

What relationships can be established between vendmg
machine, vending machine and

‘unctors
- the social life of categories

s
7iven a category C

— |C| denotes the collection of nodes of C
— Hom/(x,y) denotes the collection of morphisms from x toy.

et C and D be categories.

\ functor ©:C—D is a graph homomorphism from the graph
f C into the graph of D such that:

— @,(f.g) = ©(f).®,(g) for each path gf in C,

— @y(id,) = idgex for each x in C,,

‘unctors

-
-xamples

Sign:PRES—fSET s.t. Sign(<Z,0>)=X

Alph:PROC—SET, s.t. Alph(<A | ,A>)=A;

These are examples of forgetful functors: they "forget”
part of the structure of the source category.

Sem: PRES—PROC®F s 1.
— Sem(<Z,®>)=<2% {L:0—>2% | L f D)
— Sem(f<X,0>—<X', @'>)=f-1:.2% 2=

Jniversal Constructions

somorphisms

et C be a category and X,y objects of C.

\ morphism f:x—y of C is said to be an isomorphism iff
here is a morphism g:y—x of C such that:

f:g=id,and g:f = id,.
n these conditions, x and y are said to be isomorphic.

Jniversal Constructions

E——
nitial objects

\n object x of a category C is said fo be initial iff, for each
bject y of C, there is a unique morph. from x to y.

‘wo initial objects are isomorphic. Hence, we usually refer to
he initial object of a category, if it exists.

"erminal objects

\n object is terminal in a category C iff it is initial in C°P.
"hat is, x is terminal in C iff, for each object y of C, there is
_unique morphism fromy to x.

>ums / Coproducts

et C be a category and x,y objects of C.

"he object z is said to be the sum (or coproduct) of x and y
jith injections i,:x—z and i, :y—z iff for any object v and

air f,:x—v, f,;y—>v of C there is a unique k:z—v in C such
hat ik = f,and iy k = f,.

f the sum of x and y exists, it is
nique up to isomorphism (denoted x+y).

Jniversal Constructions

\malgamated Sums / Pushouts

et C be a category and f:x—y, g:x—>z morphisms of C. The
malgamated sum (or pushout) of f and g consists of two
orphisms f':y—w and g':z—w such that
—f.f =99
— for any other f":y—v and g":z—v
such that f;f" = g.g, there is a unique

morphism kiw—v in C such that
fk=f"and g'k = g".

Specification channel is signature a, b

pecification vending
machine is

- t : L E—oT Specification is

ignature coin, cake; Cigar Haetene tri, ted

S : axioms -
beg o> —cakea-cigar A beg >

| (coinv(-cakea—-cigar)Wcoi
n

Specification vending machine is

signature coin, cake, cigar
axioms
beg o —cake A ~cigar A (coinv(—cakea-cigar)Wcoin)

coin D (ncoin)W(cakevcigar)

(cakevcigar) o (ncakea-cigar)Wcoin
cake o —cigar

diagrams

e
et C be a category and I a graph. A diagram in C with shape
“is a graph homomorphism 8:I—-6(C) where 6(C) is the
nderlying graph of C.

— The homomorphism corresponds to a labelling of the graph I.

— A diagram in a category can be seen as a graph whose nodes are
labelled with objects and the arrows are labelled with morphisms of
that category.

— The diagram & is said to commute iff, for every pair x,y of nodes
and every pair of paths w=u,....u;, w'=v,...v; from x to y in graph I,
§yn°...08,4=8,,°...°8 4 holds in C.

;ocones

et 3:I—>C be a diagram in a category C. A cocone with base 5
s an object z of C together with a family {p,:6,—2},.1 of
orphisms of C, usually denoted by p:6—z.

The object z is said to be the vertex of the cocone, and, for

each aeI,, the morphism p, is said to be the edge of the cocone
at point a.

A cocone p with base 5:I—C and vertex z
is said to be commutative iff for every
arrow s:a—b of graph I, p,°, = p,.

olimits

et 3:I—>C be a diagram in a category C.

\ colimit of 5 is a commutative cocone p:3—z such that, for
very other commutative cocone p':8—z', there is a unique
orphism f:z—z" such that f°p=p’,ie. f°p,=p’, for every
dge.

ocompleteness

-
A category is (finitely) cocomplete if all (finite) diagrams
have colimits.

There are several results on the (finite) co completeness
of categories. A commonly used one is:

A category C is finitely cocomplete
iff

it has initial object and pushouts of all pairs of morphisms
with common source.

'arallel Program Design using CT

CT can be used as a mathematical framework in which
designs, configurations and relationships between designs,
such as refinement, can be formally described

We shall illustrate this ability using a parallel program
design language - COMMUNITY

‘OMMUNITY: Designing the components

\n example

| design that models a naive bank account

design n-account is

out num:nat, bal:int

in v: nat

do dep: true — bal:=vtbal

[] wit: bal2v — bal:=bal-v |
dep wit

v n-account
bal num

desighing the components

\nother example

he design of a VIP-account that may accept a withdrawal when the
alance together with a given credit amount is greater than the
equested amount.

design vip-account[CRE:nat] is
out num: nat, bal:int

in v: nat

do dep[bal]: true — bal’=v+bal

[] wit[bal]: bal+CRE2v, bal2v — bal’<bal-v

desighing the components

design P[X] is
out out (V)
in in (V)

prv pxrv (V)
do [prv] g[D(g)] : L(g), U(g) — R(g)

>: an algebraic specification of the underlying data types
D(g)cout(V)uprv(V): local vars that can be modified by g.
L(g), U(g): two conditions on V s.t. L(g)oU(g). They define
an interval in which the enabling condition of any guarded
command that implements g must lie.

R(g): a condition on V, D(g) and D(g)' . I+ defines
requirements over the values of variables in D(g), after

- the executionofg.

Jperational Semantics

When, for every action g,
— L(g) and U(g) coincide
— R(g) defines a conditional multiple assignment

the design is a program.

Execution of a closed program (no input vars):

— at each step, one of the actions whose enabling condition holds is
selected and its assignments are executed atomically

— shared actions can be selected by the environment

— private actions are internally selected in a fair way: every private
action that is infinitely often enabled is selected an infinite
number of times

>uperposition

A structuring mechanism for the design of systems that
allows to build on already designed components by
“augmenting” them while "preserving” their properties.

Typically, the additional behaviour results from the
introduction of new variables and corresponding
assignments (that may use the values of the variables of
the base design).

pplying Superposition

n example

xtending the design of n-account to control how many days the balance
as exceed a given amount since the last reset.

design e-account[MAX:int] 1is

num: nat, bal:int

v,day:nat

count:int

d:int

dep[bal,d,count]: true — bal’=v+bal A d’'=day A
(bal2MAX O count’=count+ (day-d)) A

(bal<MAX o> count’=count)

wit[bal,d,count]: bal2v — bal’=bal-v A d’'=day A
(bal2MAX O count’=count+ (day-d)) A
(bal<MAX O count’=count)

reset: true, false —» count:=0||d’ :=day

‘haracterising Superposition

e
"he relationship between a design P, and a design P, obtained
rom P; through the superposition of additional behaviour,

an be modelled as a morphism

G:PI_)PZ

n a suitable category of designs.

superposition Morphisms

A superposition morphism o:P;—>P, consists of

 a total function 6,,.:V;—>V, s.t.
*S0rt,(6,q.(v))= sorty(v)
(out(Vy) c out(V,)

°
GVC(T‘

°5,..(in(Vy)) < out(V,) uin(P,) Sorts, privacy and availability
of vars are preserved

G, (Prv(Vy)) < prv(V,) In vars may become out vars

* a partial mapping c,.:[,>T; s.t.

c,.(sh(I',)) csh(T,)
c,.(prv(T,)) cprv(l’;) Privacy/availability
.0,.(D;(0,.(9))) =D,(g) of actions is preserved

6, (D,(5,..(V))) <Dy(v) Domains of vars are preserved

superposition Morphisms
s,

nd, moreover, for every ginT, s.t. 5 (g) is defined

* Ra(9) = o(Ry(0,(9))) Effects of actions must be preserved or
made more deterministic

* Ly(9) o o(Ly(5.(9))) | "
The bounds for enabling conditions of

actions can be strengthened but not
JUCEY(VICHE)) i ’

superposition Morphisms: Examples

design n-account is

out num:nat, bal:int

i v:nat
dep[bal]: true — bal’=v+bal
wit[bal]: bal2v — bal’=bal-v

inclusion

design e-account[MAX:int] is

out num:nat, bal:int

in v,day:nat

out count:int

prv d:int

do dep[bal,d,count]: true — bal’=v+bal A d’'=day A
(bal2MAX O count’=count+ (day-d)) A
(bal<MAX O count’=count)

[wit[bal,d,count]: bal2v — bal’=bal-v A d’=day A
(bal2MAX O count’=count+(day-d)) A
(bal<MAX O count’=count)

reset: true, false — count:=0| |d:=day

superposition Morphisms: Examples

\nother example

design account is

out num:nat, bal:int

in
do
[]

v: nat
dep: true
wit: true

— bal:
— bal:

inclusion

design n-account is

out num:nat, bal:int

in v: nat

do dep: true — bal:=v+bal

[] wit: bal2v — bal:=bal-v

-xternalising the superposed behaviour

e
"hese examples represent two typical kinds of superposition

— monitoring
— regulation
"he superposed behaviour can be captured by a component
— monitor Support reuse
— regulator

nd the new design is obtained by interconnecting the
nderlying design with this component.

-account: Externalising the counter

\ design of a counter that counts how many days a value has exceed a

iven value, since the last time it was reset

chg reset

val counter[LIM]

day

de count

design counter[LIM:int] is

in val,day:nat

out count:int

prv d:int

do chg[d,count]: true —» d’'=day A

(val2LIM O count’=count+ (day-d)) A
(val<LIM DO count’=count)
[] reset: true, false — count:=0||d’ :=day

-account: Externalising the counter

‘0 identify which variables and actions of the account are
he subject of the monitoring expressed by the counter, we
se the categorical diagram

% design channel is
\ < in x: int X
pe 2 X
- do a: true—>skip SN Q7
ae? 2 Chy

Wv

n—-account counter

"his diagram captures the configuration of a system with
wo components — n-account and counter — that are

tecconneciod thoaugh o thicd design (o communication

-onfigurations

- Using diagrams whose nodes are labelled by designs and
whose arcs are labelled by superposition morphisms, it is
possible to design large systems from simpler
components.

Interactions between components are required to be
made explicit by providing the corresponding nhame
bindings.

Name bindings are represented as additional nodes
labelled with designs and edges labelled by morphisms.

>emantics of Configurations: e-account

Vhat's the relationship between e- account and the configuration?

design channel is

in x: int
do a: true—skip

n-account

anJ
\ «Q&—K
Colimit

construction

>emantics of Configurations: e-account

desi gn channel is
in x: int
do a: true —

design n-account is

design counter[LIM:int] is

out num:nat, bal:int in val,day: nat

in v: nat out count:int

do dep: true — bal:=vt+bal prv d:int

[] wit: bal2v — bal:=bal-v do chg[d,count]: true — d’=day A

(val2LIM O count’=count+ (day-d))A
(val<LIM O count’=count)
[] reset: true,false —count:=0||d:=day

design e-account[LIM:int] is
in day:nat; v: int
out num:nat, bal,count:int
prv d:int
do dep[bal,d,count]: true — bal’=bal+v A d'=day A
(bal2LIM O count’=count+ (day-d))A
(bal<LIM O count’=count)
[1 wit[bal,d,count]: bal2v — bal’=bal-v A d’'=day A
(bal2LIM O count’=count+ (day-d))A
(bal<LIM O count’=count)
[] reset: true,false — count:=0| |d:=day

>emantics of Configurations

"he semantics of configurations is given by a categorical
onstruction: the colimit of the underlying diagram.

e
l1<—X—0, =

911 7 9 < 921

912" G2z

defines an I/0 connection

defines synchronisation sets
{911, 9213 {912, 921}

>emantics of Configurations

he colimit of such design diagrams

Amalgamates vars involved in each i/o interconnection and the result
is an output var of the system design

Represents every synchronisation set {g,,9,} by a single action g;|g,
with

— safety bound: conjunction of the safety bounds of g; and g,

— progress bound: conjuction of the progress bounds of g, and g,

— conditions on next state: conjunction of conditions of g, and g,

-onfigurations

=
Not every diagram represents a meaningful configuration.

Restrictions on diagrams that make them well-formed
configurations:

— An output variable of a component cannot be connected (directly
or indirectly through input variables) with output variables of the
same or other components.

— Private variables and private actions cannot be involved in the
connections.

These restrictions cannot be captured by the notion of
morphism because they involve the whole diagram.

-account: Externalising the regulator

desi gn channel’ is
In X: int, y:nat
do a: true—

design account is design reqg is
in v:nat in x:int, y: nat
out bal,num:int do a: x2y —

do dep: true — bal:
[] wit: true — bal:

design n-account is

in v:nat

out bal,num:int

do dep: true — bal:=bal+v
[] wit: bal2v — bal:=bal-v

vip-account: an account with a different

regulator

design account is

in v:nat

out bal,num:int

do dep: true — bal:
[] wit: true — bal:

design channel’ is
in x:int, y:nat
do a:true —

design vip-reg[C:nat] is
in x:int,y:nat
do a: x+Cy, x2y —

design vip-account[C:nat] is

in v:nat

out bal,num:int

do dep: true — bal:=bal+v

[l wit: bal+C2v, bal2v — bal:=bal-v

Separation of Coordination and Computation

e
The computational aspects do not play any role in the
interconnection of systems components.

Separation of Coordination and Computation

sitgn channel is
in x7int

do all design channel is

in x:int

do al[]: true >
ign n-account is ey e ———e e —
in :nat in ‘\Valddav:nat
out ba’ out coun’
do de design account is prv d:in design counter is

[wi in v: nat do chg[in val,day:nat
out bal,num:int [rese out count:int

do dep[bal]: ... prv d:int
[] wit[bal]l:) do chg[count,d]: .
reset[count,d]:

design e-account is -

in day:nat

out bal,num:int

prv count,d:int

do dep[bal, count,d]:
[] wit[bal,count,d]:
[] reset[count,d]:

Separation of Coordination and Computation

\Eigg\éhannel is

ir -

¢ des design channel is
in in X:..
do do a: true — skip

design D1 is design D2 is
in i in

out .. out ..
do C e do

[] e []

>eparation of Coordination and Computation

ather than using signatures and signature morphisms, a
ore user-friendly notation may be adopted

sign channel is
in x:int

—
@

chg reset

dep - wit
v
account | val counter[LIM]
num day de count

wit[bal] do chg[count,d]
[] reset[count,d]

>eparation of Coordination and Computation

L
Vhat is the mathematics of this?

-xternalise signatures/interfaces from designs through a
unctor sig:DES—SIG in a way that

» sig is faithful;
« sig lifts colimits of well-formed configurations;
* sig has discrete structures;

» given any pair of configuration diagrams dia,, dia, s.t.
dia;;sig=dia,:sig, either both are well-formed or both
are ill-formed.

NMhat does it mean?

>eparation of Coordination and Computation

-
5ig is faithful:

sig is injective on morphisms;

This means that morphisms of designs cannot induce

more relationships than those that can be established
between their underlying signatures

>eparation of Coordination and Computation

.
sig lifts colimits of well-formed configurations;

Given any well-formed configuration expressed as a diagram
dia:I>DES of designs and colimit (sig(S,)—>6)..; of the underlying
diagram of signatures, i.e. of (dia;sig), there exists a colimit (S,—S)..
of the diagram dia of designs whose signature part is the given colimit
of signatures, i.e. sig(S,—S)=(sig(S;)—0)

This means that if we interconnect system components through a
well-formed configuration, then any colimit of the underlying diagram
of signatures establishes a signature for which a computational part
exists that captures the joint behaviour of the interconnected
components.

Separation of Coordination and Computation

sitgn channel is
in x7int

do all design channel is

in x:int

do al[]: true >
ign n-account is ey e ———e e —
in :nat in ‘\Valddav:nat
out ba’ out coun’
do de design account is prv d:in design counter is

[wi in v: nat do chg[in val,day:nat
out bal,num:int [rese out count:int

do dep[bal]: ... prv d:int
[] wit[bal]l:) do chg[count,d]: .
reset[count,d]:

design e-account is -

in day:nat

out bal,num:int

prv count,d:int

do dep[bal, count,d]:
[] wit[bal,count,d]:
[] reset[count,d]:

>eparation of Coordination and Computation

-
sig has discrete structures;

« For every signature 6:SIG, there exists a design d(0):DES such
that, for every signature morphism f:6—sig(S), there is a
morphism g:d(6)—S in DES such that sig(g)=f.

« That is, every signature 6 has a "realisation” (a discrete lift) as a
design d(0) in the sense that, using 6 o interconnect a
component S, which is achieved through a morphism f:6—sig(S),
is tantamount to using d(6) through any g:d(6)—S s.t. sig(g)-=f.

» Because sig is faithful, there is only one such g, which means that
f and g are, essentially, the same. That is, sources of morphisms
in diagrams of designs are, essentially, signatures.

Separation of Coordination and Computation

\Eigg\éhannel is

ir -

¢ des design channel is
in in X:..
do do a: true — skip

design D1 is design D2 is
in i in

out .. out ..
do C e do

[] e []

>eparation of Coordination and Computation

.
jiven any pair of configuration diagrams dia;, dia,
.t. dia,;sig=dia,;sig, either both are well-formed or
oth are ill-formed.

* This ensures that the criteria for well-formed
configurations do not rely on the computational parts
of descriptions.

>eparation of Coordination and Computation

‘ategories DES for which there is a functor sig:DES—SIG

atisfying the four given properties are said to be
oordinated over SIG.

Vhich categories are coordinated?
—Processes over their alphabets;
— Theories over their signatures:;
— All topological categories;

‘rom simple to complex interaction protocols

-
The configuration diagrams presented so far express
simple and static interactions between component

—action synchronisation

—the interconnection of input variables of a component
with output variables of other components

More complex interaction protocols can also be described
by configurations...

onfigurations: more examples

\ generic sender and receiver of messages communicating

synchronously, through a bounded channel
put get rec

III%HEiHIIIHI |Iliiiiiiilil IHIHHHEHHIIII
desi gn sender[t] is

out val : t design receiver[t] is
prv rd: bool in val:t
do prod[val ,rd]:—rd, fal se—»rd’ do rec:true,fal se—>

prod send

[] send[rd]:rd,false —» —rd’

onfigurations: more examples

\ generic sender and receiver of messages communicating

synchronously, through a bounded channel
prod send rec

put get
sender[t] yql i buffer[t+K]

design buffer[t,K:nat] is
in i:t

out o:t

prv b:queue (K, t) ;rd:bool

do put:—full (q) >g:=enqueue (i, q)
[]Jprv next:—empty (g) A—rd —o:=head(q) | |g:=tail(qgq) | |rd:=true
[] get:rd > rd:=false

onfigurations: more examples

-
\ generic sender and receiver of messages communicating
hrough a pipe

prod send

psender[t] . eof preceiver[t]
val cl

design psender[t] is design preceiver[t] is
out val:t, cl:bool in val:t, eof:bool

prv rd:bool out cl:bool

do prod[val, rd] : —rda—cl, do rec:—eofA—-cl, false—>
false—rd’ []Jprv close:—cl,—clreocf —cl’

[] send[rd] :xd, false > —rd’

[]prv close[cl] :—rdAn—cl,6 false—cl’

onfigurations: more examples

\ generic sender and receiver of messages communicating
hrough a pipe

prod send rec

eof preceiver[t]

psender([t] cl

val val cl

design pipe[t,Knat] is
I N | :t, scl:bool
out o:t, eof : bool
prv b: queue(K, t); rd: bool
do put: —ful |l (g) >q: =enqueue(i, q)
[Iprv next:—empty(q)A—rd —o:=head(q)||qg:=tail(q)|]|rd:=true
[] get:rd — rd: =fal se
\ [Iprv signal:sclaenpty(q)A—rd—eof:=true /

‘nteraction protocols or Coordination Contracts

Customers may be subject to the standard rules for
withdrawing money

prod put

customer q|

dep wit dep wit
design standard is

in wval: nat; bal: int
do dep: true —

[] wit: bal =2 val —

‘nteraction protocols or Coordination Contracts

Customers may subscribe VIP-contracts that allow them
to overdraw up to some limit as long as the average
balance is greater than 1000.

dep wit dep wit
val VIP ba bal account
credite
design VIP is

in wval: nat; bal: int
prv credit:nat

prod put

customer q|

do dep: true —
[] wit: bal+credit > val —

efinement

-
"he refinement relationship between two designs can also be
wodelled as a morphism in a suitable category of designs.

\ refinement morphism
O- P1_>P2

s intended to support the identification of a way in which a
lesign P, is refined by P..

efinement morphisms

\ refinement morphism o:P;—P, consists of

» a total function c,,.:V;—>Term(V,) s.t.
*S0rty(6,q.(v))= sorty(v)

*Gyqr(0Ut (V1)) < out(Vy)
*Gyq:(in(V1)) < in(V5) Sorts are preserved as well as
G, (prv(Vy)) < Term(loc(V,)) the border between the

component and its environment

* a partial mapping c,.:,—>T; s.t.

+64o(sh(I")) csh(I;)
*Oac(prv(l2)) cprv(I’y) Domains of vars are preserved
"G, 1(9)2D, gesh(I'y) Every action that models
*c,,+(D1(c,.(9))) =D.(9) interaction has to be

*G4c(D2(0y4:(V))) =D4(v), veloc(V,) implemented

efinement morphisms
-

nd, moreover, for every ginT, s.t. 5 (g) is defined

* Ry(9) > o(Ry(a(9))) Effects of actions must be preserved or
made more deterministic.
- Ly(g) > o(Ly(c,.(9))) The interval defined by the safety and

progress bounds of each action must be
preserved or reduced

nd for every g, in T,
» 5(Uy(91)) = V{g,:5(9,)=91} Ua(9,)

efinement of vip-account

design vip-account[CRE:nat] is

out num:nat; bal:int

in v: nat : :
do dep[bal]: true —> bal’=v+bal inclusion
[] wit[bal]: bal+CRE2v, bal2v — bal’=bal-v

design vip-account2[CRE:nat] is

out num:nat; bal:int

in v,day,vip:nat

prv d,sum,count:int

do dep[bal,d,count,sum]: true — bal’=v+bal A d’'=day A
count’=count+ (day-d) A
sum’ =sum+bal* (day-d)

[] wit[bal,d,count,sum]: bal2v v (bal+CRE2vAsum/count>vip)—>
bal’=bal-v A d’'=day A
count’ =count+ (day-d) A
sum’ =sum+bal* (day-d)

reset: true, false —» count:=0||sum:=0| |d:=day

vorduser - a refinement of sender

design sender (ps+pdf) is

out val:ps+pdf

prv rd:bool

do prod[val,rd]:—rd,false—>rd’
[l send[rd]:rxd,6false —> —rd’

design user 1is

out p:ps+pdf

prv free:bool, w:MSWord

do save[w]: true,false —
pr ps: free —» p:=ps(w) | |free:=false
pr pdf: free — p:=pdf(w) | |free:=false
print: —free — free:=true

rinter: a refinement of receiver

design receiver (ps+pdf) is
in val:ps+pdf
do rec|[]:true,b false—>

design printer is

out rdoc:ps+pdf

prv busy:bool, pdoc:ps+pdf

do rec:—-busy—pdoc:=rdoc| |busy:=true
[] end print:busy,false—>busy:= false

>tructuring systems vs Refinement

e
t is essential that

the gross modularisation of a system
in terms of
components and their interconnections

e "respected” when component designs are refined into
ore concrete ones

Compositionality

>tructuring systems vs Refinement

f the descriptions of the components of a system are
efined into more concrete ones

l. It is possible to propagate the interactions
defined previously

2. The resulting description of the system refines
the previous one

>tructuring systems vs Refinement

-xample
prod send put get rec
der- vial i buffer 0 val feceiver
|

save pr_ps pr_pdf print rec end_pr

“

>tructuring systems vs Refinement

-xample
put get
save pr_ps pr_pdf priat rec end_pr

>tructuring systems vs Refinement

rec end_pr

save print pr_ps pr_pdf

user p

ompositionality ensures that properties inferred from the more
bstract description hold also for the more concrete (refined) one

g: in order message delivery does not depend on the speed at which
\essages are produced and consumed

>ystematizing Configurations

e
We have seen that

» Complex interaction protocols can be described by
configurations, independently of the concrete components

they will be applied to; they can be used in different
contexts Connector Types

» The use of such interaction protocols in a given
configuration corresponds to defining the way in which the
generic participating components are refined by the

concrete components L
Instantiation of Connectors

>ystematizing Configurations

prod send rec
. :

sender val val receiver

save pr_ps pr_pdf print rec end_pri

rdoc Printer

user p

Ve may elevate the abstractions used to describe systems
onfigurations...

>ystematizing Configurations

save pr_ps pr_pdf print rec end_pri

.and define them in terms of computational components
nd connectors

Software Architectures

Architectural Connectors

Interaction protocols can be described as Connectors

A connector consists of a configuration involving a Glue (design) and
one or more Roles (designs):

— The roles describe the behaviour required of the components so that they
can participate in the interaction (instantiate the roles);

— The glue describes how the activities of these components are
coordinated in the intended protocol.

The application of a connector to given components of a system is
defined by the instantiation of its roles. Role instantiation is
modelled through refinement morphisms.

Applying CT to Software Architecture

=
he notions we presented for CommUnity can be generalised to other
esign formalisms provided that they be presented by

— a category ¢-DESC of component descriptions in which
configurations of systems of interconnected components are
modelled through diagrams;

— a set Conf(CD) for every set of component descriptions €D,
defining the well-formed configurations over CD;

— a category r-DESC with the same objects as ¢-DESC, but in
which morphisms model refinement

nd

define an architectural school in the following sense:

Architectural Schools

e
oordination

eparation between coordination and computation materialised through a
unctor
sig: c-DESC—SIG

hat
— is faithful;
— lifts colimits of well-formed configurations;
— has discrete structures;

— given any pair of config. diagrams dia,, dia, s.t. dia,;sig=dia,;sig, either
both are well-formed or both are ill-formed.

Architectural Schools

o
efinement and Compositionality

f the descriptions of the components of a system are refined into more
oncrete ones

N

W A \
ﬁsl %i /4sk
v 27 v
.7 v /7
% i 7
4 A 7
551 §|i s.ﬁlk

. It is possible o propagate the interactions defined previously

Architectural Schools

o
efinement and Compositionality

f the descriptions of the components of a system are refined into more
oncrete ones

)
Ve
Vg

. It is possible o propagate the interactions defined previously

. The resulting description of the system is a refinement of
Fhe original one

-onnectors

A connector is a well-formed configuration of the form

0

b v !

R, R R
G is the glue and R's are the roles

Its semantics is given by the colimit of this diagram

n

-onnectors - Instantiation

e
An instantiation of a connector consists of, for each of its roles R, a
esign P together with a refinement morphism ¢:R—P

G
4
7 % %
/4 74 o
Pl Pl Pn

he semantics of a connector instantiation is the colimit of the diagram

yeneralisations

-
"his categorical framework provides

— an ADL-independent semantics for existing principles
and techniques of SA

— a basis for extending the capabilities of existing
ADLs.

Examples:
« Heterogeneous connectors
» Higher-order connectors

{eterogeneous Connectors

e
\s defined previously, in connectors

— Roles are only used for defining which are the components
admissible as instances.

— Correct instantiation defined by refinement morphisms

"his justifies the adoption of a more declarative formalism
or the specification of roles, giving rise fo Heterogeneous
onnectors

{eterogeneous Connectors

'he pipe connector again...

send

put get
psender[t] cl scl pipe[t,K] eof
val i o)

spec psender[t] is

out val:t, cl:bool
actions send

axioms cloG (—sendAacl)

rec
eof preceiver[t]
val cl

{eterogeneous Connectors

'he pipe connector again...

send

rec
eof preceiver[t]
val cl

put get
psender[t] cl scl pipe[t,K] eof
val i o)

spec preceiver|[t] is

in val:t, eof:bool
out cl:bool

actions rec

axioms cloG(—recacl)
((eofoGeof) A (ecfA—cl)) D (—recUcl)

Specifications

pecification :
spec S 1s
in in (V)
out out (V)
actions T
« V:set of vars axioms @

« T set of actions
« @: a set of propositions of linear femporal logic

| specification morphism ©:5;—>S, consists of
- a total function o,,.:V;—>V,
- a partial mapping 6,.:I',>I; s.t.
1. o, (out(Vy))cout(V,)
2. ©,,c (D)
olimits in this category join the axioms of the component specs

Specifications

e
This category of specifications is also coordinated over a

category of signatures, i.e., these signatures provide the
means for interconnecting specifications.

Signhatures of the form 6=<V,I'> can be mapped into
specifications as well as into designs and, hence, the
interconnection of a role specification with a glue design is
given by a pair of morphisms of the form

6 «— R

{eterogeneous Connectors

-
For the instantiation of roles, we need a satisfaction
relation , between design morphisms and specification
morphisms

An instantiation of a connector consists of, for each of its
roles, a design P together with a desigh morphism
¢:dsgn(0)—P s.t.

G dsgn(6) spec(6) R

o

P

R —_—

{eterogeneous Connectors

or CommUnity designs and LTL specifications

the satisfaction relation , between design morphisms and
specification morphisms is based on a notion refinement between

specifications and designs
- Part of the semantics of CommUnity designs can be encoded in LTL —
Properties(P)
- P refines S iff there exists a signature morphism n:05— 6p s.1.
Properties(P), n(Axioms(S))

P > P',0:S > S iff there exists refinements n:0s— 6, and
n':05— 0, s.t. P——> P at the signature level, commutes.

S——»S
T

{eterogeneous Connectors

S
Properties(P)

—(g o L(g)) for every gel'

— V,wowmd Vv (Xv=v)) for every veloc(V)

—(g o ©(R(g)) for every geT’, where t is a translation that
replaces every primed variable v’ by the term (Xv)

—(6FU(g) o 6Fg) for every geprv(I)

{eterogeneous Connectors

The semantics of a heterogeneous connector

properties(G)
G
% ?
dsgn(,) dsqn(6;) gn(6,)
spec(6,) spec(6;) spec(6,)

\ ! &

| n

is given by the colimit of this specification diagram.

{igher-Order Connectors

-
Current level of support and understanding of connectors

is still insufficient, far from the one components have

Need further steps for a systematic construction of new
connectors from existing ones

—Promote reuse
—Promote incremental and compositional development
—Make it easier to address complex interactions

{igher-Order Connectors

-
A specification mechanism that allows

independent aspects of interaction protocols to be
specified separately
e.g., compression, fault-tolerance,
security, monitoring
composed and integrated in existing connectors

A connector that takes a connector as a parameter
describing the capabilities that must be superposed over
the instantiation of the parameter

{igher-Order Connectors

e
Higher-Order Connector =

connector (body) + connector (formal parameter)

— The body models the nature of the service that is superposed on
instantiation of the formal parameter

— The formal parameter describes the kind of connector to which
that service can be applied

Example: Monitoring of messages in a unidirectional communication

Using a Higher-Order Connector

— A hoc can be applied to any connector that instantiates its formal
parameter, giving rise to a connector with the new capabilities

{igher-Order Connectors: An example

-
Installing a compress/decompress service over a
unidirectional communication protocol:

—modify Uni-comm in a way that messages are
compressed for transmission without intruding over the
original connection

—the outgoing messages should be compressed before
they are put into the buffer and decompressed when
they are removed from the buffer, before being
delivered to the receiver

{igher-Order Connectors: Example

T service that provides in-order message delivery in the presence of
\essage-loss and duplication faults:

* numbers the messages sent by the sender; sends each nhumbered message
until the corresponding ack is received; keeps pending messages in a queue

« sends acks for every received message; ignores the received (numbered)
messages out of order and transmits the others to the receiver (not
humbered anymore)

odelled by a HOC with two connector parameters:

« fransmission of numbered messages

 fransmission of acks (in the opposite direction)

{igher-Order Connectors

ni-comm[s*nat] Uni-comm[nat]

sender receiver

sender receiver

N e g
T, U

umber: sends repeatedly a numbered message until the
corresponding ack is received and keeps pénding messages
in a queue

lenumber: sends acks for every received message, ignores
the messages out of order and transmits the other to the

“eﬁelve“

An example

\synchronous communication through a bounded channel can
e represented by a connector Async

yith two roles —sender and receiver. The glue is a bounded
uffer with a FIFO discipline.

‘omponents A and B connected through Async

il _

An example

Suppose that the information transmitted from A to B must
e compressed.

Two alternatives:

—develop from scratch a hew connector C-Async with
the same roles but a new glue

—obtain a new connector C-Async by installing a
compress/decompress service over Async

C-Async

An example

-
nstalling a compress/decompress service over Async:

—modify Async in a way that messages are compressed
for transmission without intruding over the original
conhnection

—the outgoing messages should be compressed before
they are put into the buffer and decompressed when
they are removed from the buffer, before being
delivered to the receiver

An example

"his form of coordination can be obtained by instantiating
\sync with a component comp in the role of sender and
lecomp in the role of receiver

“ sender buffer recelver‘

decomp
sender e eceive eco receiver

An example

-
The procedure for installing the compress/ decompress
service can be applied to other connectors

The service itself can be modelled as a higher-order
connector Compression and the installation of the service
over a given connector can be obtained by a suitable
instantiation of its parameter

"he Compression Hoc: formal parameter

. The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

rec
val receiver(t]

send

put get
i glue[t] o

sender[t] yql

"he Compression Hoc: formal parameter

. The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put get rec
i glue[t] o val receiver[t]

send

sender[t] yql

design sender[t] is
out val:t
prv rd:bool

do prv prod:—rd,false—»>rd:=true||val:et
[] send:rd, false —> rd:=false

The Compression Hoc: formal parameter

. The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put get rec
i glue[t] o val receiver[t]

design receiver|[t] 1is
in val:t
do rec:true,false—>skip

send

sender[t] yql

"he Compression Hoc: formal parameter

. The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put get rec
i glue[t] o val receiver[t]

design glue[t] is
in i:t
out o:t

send

sender[t] yql

do put: true, false—>skip
[]prv prod: true,false—o:et
[] get: true,false—skip

The Compression Hoc: body connector

2. The body connector is Compression[X]

FI
di comp[z] decomp[z]
co

design comp[Z] is

in di:

out co:s

prv v:t; rd,msg:bool

send rec

val receiver[t]

sender[t] val

do drec: —msg — v:=di| |msg:=true
[] prv comp:—rdAamsg — co:=comp (v) | | rd:=true
[] csend:rd — rd:=false| |msg:=false

The Compression Hoc: body connector

2. The body connector is Compression[X]

FI
di comp[z] decomp[z]
co

design decomp[X] is

in ci:s

out do:t

prv v:s,; rd,msg:bool

send rec

val receiver[t]

sender[t] val

do crec: —msg — v:=ci| |msg:=true
[] prv dec:—rdA msg —> do:=decomp (v) | | rd:=true
[1] dsend: rd — rd:=false| |msg:=false

The Compression Hoc: relating the parameter and

the body connector

3.The refinement rela’rionships

send

val receiver[t]
rec
| - o

establishing the instantiation of Uni-comm([s] with comp and
decomp

sender[t] val

send

sender[s] vql

The Compression hoc in Community

design sender([t] is

out val:t

prv rd:bool

do prv prod:—rd,false—>rd:=true||val:et val—>co rd—rd

[] send:rd,false — rd:=false prod<« comp
send<-csend

design comp[X] is

in di:t

out co:s

prv v:t; rd,msg:bool

do drec: —msg — v:=di| |msg:=true
[] prv comp:—rdA msg — co:=comp (V) | | rd:=true
[] csend:rd — rd:=false| |msg:=false

‘ategorical Semantics of HOCs

\ hoc consists of bG oC
P

formal parameter:

PO, PO

! | |

PR, PR PR,

‘ategorical Semantics of HOCs

L
\ hoc consists of

PG pC
P9, PY; POy
b, Wk
body connector: G C

‘ategorical Semantics of HOCs

\ hoc consists of bG oC
P

PO, PO

PR, PR PR,

efinement morphisms:

"he Compression hoc

send MEEH rec

N \ N\

serd

sender[s] val

rec

he Compression hoc: semantics

send

sender[t] val

I di comp[z]

E'.Eﬂ rec
I co cl I
put get

‘ategorical Semantics of HOCs

[ts semantics is
jiven by the
onnector with
)lue newG

hewG

nstantiation of Compression with Async

Ci

e
send

ut et rec

send rec
sender[t] vql val receiver[t]

i buffer[t]

Instantiation of Compression with Async

The semantics of this instantiation is given by the connector

send

sender[t] val

|F Hi rec
l decomp[Z] do I

buffer'[s] o

Categorical Semantics of HOCs: Instantiation

L
An instantiation of a hoc

GA CA
consists of a fitting morphism AT~
$:pC—CA e % L
from the formal parameter
to the actual parameter o6 oC
‘a connector CA) il

Categorical Semantics of HOCs: Instantiation

-
A fitting morphism

6 c
. A \
¢:pC—CA GIA/' o o,
consists of a pair of refinement %1 .4 X
morphisms
PG 6 c
6/' pe/ FF:AO‘\PO P
PY; A 1 i k
[PG
¢ / Ptl P*R Ptk
PR; 64

for each connection s.t. ...
T

Categorical Semantics of HOCs: Instantiation

The semantics of a hoc instantiation 6* ¢t
s the connector with same roles OIA/' QA\ekA
1s C and its glue is new6 \ ¥ ¥ Y.
GA CA
0,4 0.4 0,4 / RG\ pC
L -
pR, oR oR, PR, PR, PR,

yeneralisations

e
Hocs can be combined giving rise also to a
hoc parametrised instantiation

We defined hocs with one parameter only but the
extension to several parameters is straightforward

- Hocs with 1 parameter always model transformation/adaptation of
a connector

- Hocs with several parameters allow us to describe more complex
operations s.a.

Maggregation of connectors
Ma "pipe" of connectors
Mfault-tolerance service

econfiguration: Motivation

-
systems have to evolve due to changes in functional

requirements (business rules) or to respond to changes in
the environment (e.g., failures, transient interactions)

for safety or economical reasons, some systems cannot be
shut down to be changed

domain with some interest in SA community but little
formal work

econfiguration: Issues involved

-
Time: before or at run-time (dynamic reconfiguration)

Source: user (ad-hoc); topology/state (programmed)

Operations: add/delete components/connections; query
topology/state

Constraints: structural integrity; state consistency;
application invariants

Specification: architecture description, modification,
constraint languages

Management: explicit/centralised (configuration manager);
implicit/distributed (self-organisation)

econfiguration: Related Work

-
Vork done in Distributed Systems, Mobile Computing,
>oftware Architecture has at least one of the following
Irawbacks:

— not addressed at the architectural level

— arbitrary reconfigurations not supported

— only low-level behaviour specification (process calculi, tferm
rewriting, etfc.)

— interaction between computation and reconfiguration is complex,
implicit, or blurred

)n the other hand, they sometimes provide tool support, in
articular automated analysis.

econfiguration: Approach

e
Explore the categorical approach to software
architectures and parallel program design

— architecture = categorical diagram; system behaviour = colimit

— architecture = graph; reconfiguration = rewriting

Develop a reconfiguration language for easier specification
and analysis.

ommUnity with State

e
Typed logical variables LV to denote the current state of

components;

Nodes of configurations are designs with
valuations ¢: loc(V) — Terms(LV)

— State only for variables controlled by the design
— Non-ground terms in the reconfiguration rules
— Ground terms in run-time configuration

Superposition morphisms must preserve state:
e(l) = €'(o(l)) for any local variable |

sraph Transformation

Graph category

— Objects: directed graphs with labelled nodes and arcs
— Morphisms: total functions between nodes and arcs preserving
structure and labels
Production p: L <X K5 R
— graph L transformed into R through common subgraph K
— | and r are injective morphisms
— can be applied to graph G if match m: L — G exists

sraph Transformation: Derivation

-
G 25 H if 2 pushouts exist

L
G
D=G-(L-K)and H=D + (R - K)

Injection | guarantees D is unique
Injection r guarantees p is reversible

I
<

T O

.
_
_

Ue— AN

4+—

Application Conditions

L
D does not exist if a node to be removed has arcs

d)ynamic Reconfiguration

-
Run-time configurations: well-formed configurations with
nodes labelled by designs with ground terms

Rules: L « K5 Rif C
— parameterised by the algebraic specifications used in L,K,R
— C is condition over Vars(L), the logical variables ocurring in L
— Vars(R) < Vars(L) to determine state of new components

Step: 6 2% 3 H with a substitution ¢: Vars(L) - Terms(<)
s.t. $(C) is true and & L&y H is a derivation with

d(p) = ¢(L) « ¢(K) — o(R)

Reconfiguration: derivation sequence; does not change

state (i.e., labelling)
T

-xample

e —
Managing the way Customers interact with their bank
Accounts

design customer is

out val:int

prv rd:bool

do prod[val,rd] :—rd, false—>rd’
[] put[rd] :rd, false —»> —rd’

[] get[rd] :rd,false —» —rd’

design account is

out num:nat; bal, avgbal: int
in wv: nat

do dep: true — bal’ bal + v
[] wit: true — bal’ bal - v
[] avg[avgbal]: true —>

>tandard Connector

Customers may be subject to the standard rules for
withdrawing money

prod put

customer q|

dep wit dep wit
avg
design standard is

in wval: nat; bal: int
do dep: true —>

[] wit: bal =2 val —

/IP Connector

Customers may subscribe VIP-contracts that allow them
to overdraw up to some limit as long as the average
balance is greater than 1000.

dep wit dep wit
val VIP ba bal account
credite
avg
design VIP is

in wval: nat; bal: int
prv credit:nat

prod put

customer q|

do dep: true —
[] wit: bal+credit > val —

‘reating a client/account pair

S
When a client/account pair is created, a decision has to be

taken on the kind of contract that binds them. A
production is defined for each kind:

L K R

c-channel a-channel
] standard _n
Bl

This is a rule template, parameterised by the values to be
assigned to the account number and the value the
customer will deposit.

ovgeal 0

‘reating a client/account pair

e
In the case of the VIP-contract, the credit limit has to be

negotiated with the bank.

L

c-channel a-channel
custoner JESEATRE el
. o o
credit |c
avgbal 0

Again, this is a rule template that now also includes a
parameter for the credit limit.

Aodifying the contract

=
The following rule restores a VIP contract to standard

when the average balance is below 1000.

L K

a-channel customer

a-channel

if a< 1000

econfiguration Specification

rewrite rules are cumbersome to write: repetition of
nodes in graphs K and L; dummy nodes/arcs to control the
way rules are applied

ideal: reconfiguration language with high-level
programming constructs

but: ADLs only provide minimal reconfiguration support;
distributed systems have powerful languages but do not
have architectural abstractions

goal: compact, conceptually elegant language with formal
semantics for describing reconfiguration within
architectural description of a system

econfiguration Language Elements (1)

=
configuration variables:

— typed over data sorts

— typed over components and connectors (node references)

— maintain information about current configuration

— designs cannot access them: separation of computation from
reconfiguration

query: expression that returns list of tuples of nodes
matching the given criteria on topology and state

econfiguration Language Elements (2)

e
basic commands:

— create/remove components and connectors
— update configuration variables
— semantics given by reconfiguration rules

complex commands: sequence, choice, and iteration
scripts:
— group commands into a unit

— may be nested and recursive
— may have parameters and local configuration variables

Aain script

cript Main
rv 1 : record(a : Account)
cript RestoreStandard ... end script

'or 1 1n match {a:Account | with
a.avgbal<l1000}

loop
RestoreStandard(1i.a)
end loop

nd script

Aain script

cript Main
rv 1 : record(a : Account)
cript RestoreSfandard ... end script

or in match {a:Account | with
a.avgbal<l1000}

lodp node reference

local conflgum’rlon vamable

nd script

Aain script

cript Main
rv 1 : record(a : Account)
cript RestoreStandard ... end script

'or 1 1n match {a:Account | with
A\ a.avgbal<l000}

list iterator |fecislelztactEm:y condition on state

end loop

nd scr

match {Decl | ...} returns list(record(Decl))

Auxiliary Script

input parameter
n a: Account €& put p

)rv 1: record(c:Customer; co:VIP)

or 1 1in match {c:Customer;co:VIP |co(c, a)}
loop refers the glue

remove 1i.cCo; condition on topology
create standard(i.c, a);

end loop
nd Script r'0le inSTanTiaTion

‘reating a VIP connector

-
cript CreateVIP

n n, limit : nat
ut ¢ : Customer
)Yv a : Account

:= create Customer with

rd := false || val € OF state initialisation
. := create Account with

bal := 0 || avgbal := 0 || num := n;
reate VIP(c, a) with credit := limit

iﬂiIiiiiEiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

nterpretation Loop

-
Execute one computation step over the current

run-time configuration

. Let the user call a top-level script if s/he wishes (ad-hoc
reconfiguration)

. Call a parameterless script ‘Main', if it exists
(programmed reconfiguration)

. Go tostep 1

"he administrator may change the set of scripts at any time.

>emantics

one new private variable 'node:nat’ for each component and
glue design

configuration designs with private variables only:
— one design for each lexical scope level (script)
— one private variable per configuration variable in that level
— node references translated to integer variables
— undefined node references translated to value O
— one variable ‘nodes:nat’ o count how many nodes created

one or more rules for each basic command:
— L has designs for configuration and nodes referred in command
— R includes updated configuration design

>emantics of

'reate VIP(c, a) with credit := limit

CreateVIP L K CreateVIP R

nodes | ns+/

node customer

0n

VIP

I a-channel

account

nv

imit

chn

<
=

= (S |

imit

NS

-
Ii

node

account account

c-channel

num num

customer

e

r avgbal

avgbal

Q
S

node

3 <

Q

node_

cn node

Coordination Contracts

Aotivation

e
oordination Technologies (ATX Software)

A semantic modelling primitive (coordination contracts)
with the expressive power of architectural connectors

An architecture-centred development methodology
(construction and evolution)

Design patterns that implement contracts
A contract development environment

>imple account

e
>l ass Account

Jper ati ons
Jeposit(in anount: | nteger)
— bal ance: =bal ance+anount

Nt hdrawm(anount : | nt eger)
— bal ance: =bal ance- anount :

attri butes

nunber : | nteger;
bal ance : Integer := 0O;
2nd cl ass

Notation for coordination contracts

oordi nation contract Traditional package
partners x : Account; y : Custoner;
constrai nts ?owns(x,Yy)=TRUE;

coordi nati on
t p: y X. W t hdrawal (z)
call x.w thdrawal (z)
X. Bal ance() > z

'nd contract

/IPs

>oor di nati on contract package
partners x : Account; y : Custoner;
const ant s ;

attri but es :
constrail nts
?owns(X, y) =TRUE;

coordi nati on
t p: y X. W t hdrawal (z)
X. W t hdrawal (z)
X. Bal ance() > 7

nd contr act

Areas of Application

. Defining business rules -
- Dynamic Type reconfiguration -
. Specification of behaviour with state transitions -

. Use Cases -

. Design Patterns -

.~ Concurrency -

. Connectors of architectural layers

"he Flexible Package

>oordi nati on contract Account Package
partners c Account s Account
attri butes m, nx | nt eger
constraints ¢ owner s owner
coordi nati on
stoc when c bal m do
s wthdrawal mn(s.| (), nx-c. bal ()
c.deposit mn(s.bal (), nx-c. bal ()
ctos when c bal nK)
do c.w thdrawal c.bal ()-nx
S.deposit c.bal ()-nx

and contr act

oordination Rules

L
A Coordination Rule has the form

The trigger defines when a rule
must be considered active.
It may be a condition, or a request to
name> when <fr{qger> a participant operation
with <guar: dCondition> The guard condition imposes

do <set of actions> additional constraints on the
reaction to the trigger, when

regulated by this rule

The actions describe the behavior defined by the rule:
* extra behaviour to be executed before or after the
trigger operation,

* or replacement behavior for the trigger operation

oordination Semantics

The transactional behavior
for the operation X under

V' coordination

[}
[}
[}
before 4*—1: before
[}
[}
[}

*=>> Obj.x()

—> replace i The Actions defined by
f —‘ i 1 the rules
after : after /
The trigger i
Cl::rulel C2::rule2

o\ M

The Rules of the several contacts involving object Obj that satisfy the
trigger and additional conditions

A\ design pattern for coordinations

-
None of the standards for component-based software

development - CORBA, JavaBeans, COM - can support
superposition as a first-class mechanism.

Because of this, we propose our solution as a design
pattern that exploits polymorphism and subtyping, and is
based on other well known design patterns, such as the
Chain of Responsibility, and the Proxy or Surrogate.

coordination design pattern

y 4 y 4 Component Pattern

Client =) Component
Semenenty..

SubjectInterface
<<abstract>>
Coordination Pattern
ISubjectProxy SubjectToProxyAdapter
chain of
responsibility
<<abstract>> operatlon ()
A _operation()
0..%
ISubjectrPartner
<<abstract>> Subject
JAN
| _operation()
I | ‘

Ct_1 Subject Ct_n_Subject Request
Connector Connector operation ()

[|

JE Contract-1 ‘ JE Contract-n

-]

coordination design pattern

Component Pattern

SubjectInterface
<<abstract>>
Component A
|
SubjectToProxyAdapter
ISubjectProxy
Request operation ()
El <<abstract>> ‘— _opera tion ()
Client Subject %
o cperation() |
- Request

operation ()

ccount coordination

Coordination Pattern
IAccountProxy
chain of AccountToProxyAdapter
delegation
0 <<abstract>> withdrawal ()
- _withdrawal ()
IAccountPartner A
<<abstract>> +
Account
JAY <
l _ Request for
_Wlthdrawal () withdrawal ()
VIP Contract Flexible Package
AccountConnector Contract Account Pattern
AccountConnector
D) (a _)
VIP Flexible

Package

Account coordination

.
If there are no contracts coordinating a real
subject, the contract pattern can be simplified.

In this scenario, the only overhead imposed by
the pattern is an extra call from
SubjectToProxyAdapter to Subject.

ccount coordination

AR ;i thirawal

Coordination Pattern

chain of

S Enis e Flexible Package

Contract

Account

_withdrawal ()

v

AccountToProxyAdapter

AccountConnector

VIP Contract
AccountConnector

Flexible
Package

VIP

y g
4‘________
K

proxy

withdrawal ()
_withdrawal ()

Account Pattern

Jperational view

e
Before the subject gives rights to the real object to

execute the request, it intercepts the request and gives
right to the contract to decide if the request is valid and
perform other actions.

This allows us to impose other contractual obligations on
the interaction between the caller and the callee.

This is the situation of the first model discussed in
section 2 where new pre-conditions were established
between Account Withdrawals and their Customers.

Jperational view

On the other hand, it allows the contract to perform other
actions before or after the real object executes the
request.

Only if the contract authorises can the connector ask the
/nvolved objects to execute and commit, or undo execution
because of violation of post-conditions established by the
contfract.

he development process

M e F N b o

OBJECTS CONTRACTS

» l
Construction h Evolution h

>

"he implementation space

-
A three-dimensional space with the following dimensions is
proposed for producing code, for any specific
implementation plataform, from high level specifications:

— Domain Specification: an ideal model of the business problem
without any details concerning implementation;

— Architecture: a model that represents architectural designs;

— Target Environment: the technology used to implemente the
business problem according with the choosen architecture.

he implementation space

Domain
Specification

A

Nt) . / S’
| K
System design \/ *
O >

—
I A Architecture
T g
Target /

Environment

"he implementation space

-
The architecture of the system is defined by the way

modules are interconnected and objects are coordinated.

Hence, modules are vital for decomposing large
specifications and specifying parts with sufficient
precision that one can construct each part knowing only
the specification of the other parts.

The nature of the components and their relationships is
influenced by infrastructural constraints like the
distribution strategy, type of interaction with the system

environment, etc.

DE - Coordination Development Environment

A development and run-time environment for layered coordination
systems :

The coordination layer, defining the more volatile part of a system, is
built over the component layer, the stable parts of the business

oftware System

a
> Context Setup Contract Deployment
i Development
.

Run-Time
Configuratio
HHHHH HHEEEEEEEEEEEEEEEEEEEEE Testing
~—

“omponent Layer [Component }
<

Development

-DE: Development Activities

e —
Registration: components are registered as candidates for
coordination.

Edition: Contract types are defined connecting registered
components. Coordination rules are defined on those
contracts.

Deployment: the code necessary to implement the
coordinated components and the contract semantics in the
final system is produced according to the contract design
pattern.

DE: Run time Activities

-
Animation: facilities are provided allowing
testing/prototyping of contract semantics

Registration: contract types are registered in the system.

Configuration: contracts are configured in the system
(enabling/disabling rules, priorities, etc)

Evolution: concrete contracts are created between
specific system elements, regulating its behaviour.

DE - User interaction

Development Run time

Developer
Contract Type Registration
Contract Creation
Run-time Configuration Definition
Regist Components
Contract Type Creation / Edition CDE-Rt
-~ A 4
ler
Deployed
Deploy System System ‘ .
Trigger Operati
CDE Observe Object
—
Testin User —
s Application Animation

T Interface Interface

‘oncluding remarks

-
Increased separation of the domain concepts (objects)
from the business rules that regulate their behaviour;

Coordination features available as first-class citizens
through a specific semantic primitive;

Support for different levels of change, reflecting the
evolution of the domain:

— Flexible mechanisms for inheritance of behaviour;
— Separation of coordination from computation.

“laimed contributions

-
- Increased separation of the domain concepts from the
business rules that regulate their behaviour;

— Recognising two different dynamics in system evolution:
changes to the way components operate and changes to the way
components are integrated (white vs black box);

— More flexibility in the software development process (plug and

play).
— Better integration/coordination of third-party, closed components
(e.g. legacy systems)

- One step closer to a real industry of components.

JRLs

=
Papers:
— (also includes papers on
CommUnity and the categorical approach to software architecture)

Coordination Development Environment:

CommUnity Workbench:

About to appear...

K.Lano, J.Fiadeiro and L.Andrade

