
Theory and Practice of Software Architecture

José Fiadeiro

LabMOL/University of Lisbon and ATX Software
PORTUGAL

Summer School and Workshop on Generic Programming
St Anne's College, Oxford, UK

August 26-30 2002

Objectives

To provide mathematical foundations to the
Theory and Practice of Software Architectures

— abstracting a mathematical semantics from existing
languages and models

— using it to generalise these ideas to other contexts

— explore useful generalisations of existing concepts

capitalizing on research on SA, Reconfigurable Distributed
Systems and Coordination Languages and Models

Outline

Motivation and overview
CommUnity: Parallel program design and architectural
design using CT
Coordination in CommUnity, characterisation in CT and
examples
Software Architectures in Coordinated Categories
Software Evolution through Dynamic Reconfiguration

0

Motivation

Envisaged development process

Construction Evolution

“structural objects” “business rules”

Why Software Architectures ?

SA addresses the gross decomposition of systems in
terms of components and the connectors that define how
they interact.
An attempt (the best we know…) at tackling the
complexity of system development:
— Leads to “standard” ways of constructing systems – architectural

styles – reflecting the structure of the application/business
domain.

— Allows systems to evolve based on a black-box view of components
– non-intrusive, dynamic reconfiguration – reflecting directly
changes that take place in the domain.

Why Coordination ?

“Recent” languages like Linda, Gamma, Manifold, … have
promoted the separation between computation (what is
responsible for the functionality of services in basic
components) and coordination (the mechanisms that are
made available for components to interact);
“Programming by emergence”: local functionalities +
interactions
Black-box view of components: interactions can evolve
without changing the computations.

Why Category Theory ?

The mathematical tool, par excellence, for addressing
"structure" and "modularity”.
In Category Theory, entities are characterised in terms of
the relationships they have to other entities and not in
terms of their internal representation.
— The information one gets from the structure of an entity is

determined from the way that entity "interacts" with the other
entities.

— This is analogous, for instance, to the encapsulation mechanisms
made available by Abstract Data Types and Object-Oriented
Programming.

Category theory vs Set theory

→ ∈

Implicit

External

Black-box

“Social”

Explicit

Internal

White-box

“Physiological”

Category theory vs Set theory

Example
power amplifier in set theory

• •

•

•

SPEAKERS TUNER PHONO CD

power amplifier in category theory

Set theory in Category theory

The social life of sets;
Characterisation of the empty set;
Characterisation of singleton sets;
Characterisation of the (disjoint) union;
What makes a “social life” a category?

Uses of Category theory in Computing

The “arrows as computations” paradigm
The “arrows as interpretations” paradigm
— General Systems Theory;
— Abstract Data Types;
— Concurrency Theory

1

Introduction to Category Theory

Graphs

A graph is a tuple
(G0,G1,src,trg)

where:
— G0 is a collection (of nodes),
— G1 is a collection (arrows),
— src maps each arrow to a node (the source of the node)
— trg maps each arrow to a node (the target of the node)

We usually write f:x→y to indicate that src(f)=x and trg(f)=y.
Between two nodes there may exist no arrows, just one in either
direction, or several arrows, possibly in both directions.

Examples

Around sets:
— The most “popular” graph is the graph whose nodes are the sets

and whose arrows are the total functions.
— Another useful example is the graph that has exactly the same

nodes (sets) but whose arrows are partial functions.

There are many other examples in Computing:

Each enriched class inheritance diagram defines a subgraph of the
graph of sets and (total) functions – classes are represented through
sets of features and renamings through functions.

Class inheritance hierarchies

These are graphs whose nodes are object classes and for which the
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE

rename insured_value
as residence_value

rename insured_value
as business_value

address
insured_value

In class inheritance
hierarchies, there
exists at most one
arrow between two
nodes. However,
arrows can carry more
information.

Each enriched class inheritance diagram defines a subgraph of the
graph of sets and (total) functions – classes are represented through
sets of features and renamings through functions.

Class inheritance hierarchies

These are graphs whose nodes are object classes and for which the
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

rename insured_value
as residence_value

rename insured_value
as business_value

{address,insured_value,B}

{address,insured_value}

{address,insured_value,A}

{address,residence_value,business_value,A,B,C}

Transition systems

Every transition system constitutes a graph whose nodes
are the states and whose arrows are the transitions

hungry

eating

thinking

forks↑

forks↓

bc_hungry

Consequence systems

One of the possible views that one can have of a "logic" is through the
notion of a sentence being a consequence of, or derivable from,
another sentence. This notion of consequence can be represented by
a graph whose nodes are sentences and whose arrows correspond to
"logical implication".

A∨BA∧B C∧B
• • •

Proof systems

Every proof system constitutes a graph whose nodes are formulae and
whose arrows are proofs.

A∧B
B

A∨B

A∨B

A∧ B
•

•

A∧B
A

A∨B

Paths

Let G be a graph and x,y nodes of G.
A path from x to y of length k>0 is a sequence fk...f1 of
arrows of G (not necessarily distinct) such that

1. src(f1)=x
2. trg(fi)=src(fi+1) for 1≤i≤k-1
3. trg(fk)=y.

For every x, the path of length 0 at x (the empty path at x)
from x to x is by convention the empty sequence.

Paths

The collection of paths of G of length k is denoted by Gk.
Hence,

— G0 corresponds to the collection of nodes,
— G1 corresponds to the collection of arrows,
— G2 corresponds to the collection of pairs of

composable arrows.

Graph Homomorphism

A homomorphism of graphs
ϕ:G→H

is a pair of maps
ϕ0:G0→H0 and ϕ1:G1→H1

such that
for each arrow f:x→y of G ,
ϕ1(f):ϕ0(x)→ϕ0(y) in H.

That is, nodes are mapped to nodes and arrows to arrows but
preserving sources and targets.

a

b

c

d

e

f

g

Category

A category C is a triple (G,;,id) where:
— G is a graph,
— ; is a map from G2 into G1

— id is a map from G0 into G1

such that
— src(f;g)=src(f),
— trg(f;g)=trg(g)
— (f;g);h = f;(g;h)
— src(idx)=trg(idx)=x,
— for each f:x→y of G1, f;idy = idx;f = f.

Examples

SET –
objects: sets identities: identity functions
arrows: total functions composition: functional

GRAPH –
objects: graphs identities: identity functions
arrows: graph homorphisms composition:
functional

PROOF –
objects: sentences identities: empty
proofs
arrows: proofs composition: cut rule

Pre-orders

Every pre-order <S,≤> defins a category S≤ as follows:
objects: elements of S
arrows: there is morphism x→y iffx≤y;
identities: reflexivity law;
composition: transitive law.

LOGI –
objects: sentences
arrows: existence of a logical implication;

Ancestor

In Eiffel, given an inheritance graph G between classes, the category
ancestor(G) is generated by completing the graph with the arrows
that result from reflexivity (identities) and transitivity
(compositions).

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE

Category generated from a graph

Every graph G generates a category cat(G) as follows:
objects: nodes
arrows: paths
identities: empty paths;
composition: path concatenation.

Runs (T) – for every transition system T
objects: states
arrows: finite runs;

Adding structure

The most typical way of building a new category is,
perhaps, by adding "structure" to the objects of a given
category (or a subset thereof).
The expression "adding structure" has, of course, a broad
meaning...
The morphisms of the new category are then the
morphisms of the old category that "preserve" the
additional structure.

Pointed sets

SET⊥ –
objects: pairs <A,⊥A> where A is a set and ⊥A∈A
arrows: f:<A,⊥A> → <B,⊥B> is f:A → B s.t. f(⊥A)=⊥B

identities: those of SET
composition: that of SET

proof obligations:
well-formedness of identities;
closure of composition

Processes

Pointed sets can be interpreted as process alphabets:
— Elements denote events;
— The designated element denotes an environment event;
— Morphisms identify sub-components of processes.

We can associate trajectories (full behaviours) with
alphabets and their morphisms:

tra(A)={λ:ω→A}
tra(f:A→B)(λ)=λ;f:ω→B

Processes

PROC –
objects: pairs <A⊥,Λ> where A⊥: SET⊥ and Λ⊆tra(A)
arrows: f:<A⊥,Λ>→<B⊥,Μ> is f:A⊥→B⊥ s.t. tra(f)(Λ)⊆Μ
identities: those of SET⊥

composition: that of SET⊥

proof obligations:
well-formedness of identities;
closure of composition

Processes

process VM is
alphabet co, ca, ci
behaviour

Λ ::= ⊥ω | ⊥*co⊥ω | (⊥*co⊥*{ca,ci})Λ

process RVM is
alphabet co, ca, ci, to
behaviour

Λ ::= ⊥ω | ⊥*co⊥ω | (⊥*co⊥*ca)Λ | (⊥*co⊥*to⊥*ci)Λ

Temporal specifications

fSET –
objects: finite sets arrows: total functions

Linear temporal language PROP(Σ) over a finite set Σ:
φ ::= beg | a∈Σ | ¬φ | φ1 ⊃ φ2 | φ1 U φ2

translation defined by f:Σ→Σ’
f(φ) ::= beg | f(a)∈Σ | ¬f(φ) | f(φ1) ⊃ f(φ2) | f(φ1) U f(φ2)

Temporal specifications

Semantics of PROP(Σ) over (2Σ)ω

λ ‚i a iff a∈λ(i)
λ ‚ i beg iff i=0,
λ ‚ i ¬φ iff it is not the case that λ ‚ i φ
λ ‚ i φ1⊃φ2 iff λ ‚ i φ1 implies λ ‚ i φ2,
λ ‚ i φ1Uφ2 iff, for some j>i, λ ‚ i φ2 and, for every i<k<j, λ ‚ k φ1

λ ‚ φ iff λ ‚ i φ for every i
Φ ‚ φ iff, for every λ, λ ‚ Φ implies λ ‚ φ

Temporal specifications

THEO–
objects: theories <Σ,Φ> such that Φ is closed
arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. f(Φ)⊆Φ’

PRES–
objects: theory presentations <Σ,Φ>
arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. f(Φ)⊆c(Φ’)

where c(Φ)={φ: Φ ‚ φ}

Temporal specifications

Specification vending machine is
signature coin, cake, cigar
axioms

beg ⊃ ¬cake∧¬cigar ∧ (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar

Temporal specifications

Specification regulated vending machine is
signature coin, cake, cigar, token
axioms

beg ⊃ ¬cake ∧ ¬cigar ∧ ¬token ∧
(coin∨(¬cake∧¬cigar)Wcoin)

coin ⊃ (¬coin)W(cake∨cigar)
coin ⊃ (¬cigar)Wtoken
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar

Temporal specifications

Specification regulator is
signature tri, ted, tor
axioms

beg ⊃ ¬tor
tri ⊃ (¬ted)Wtor

What relationships can be established between vending
machine, regulated vending machine and regulator ?

Functors
– the social life of categories

Given a category C
— |C| denotes the collection of nodes of C
— HomC(x,y) denotes the collection of morphisms from x to y.

Let C and D be categories.
A functor Φ:C→D is a graph homomorphism from the graph
of C into the graph of D such that:

— Φ1(f;g) = Φ1(f);Φ1(g) for each path gf in C2

— Φ1(idx) = idΦ0(x) for each x in C0.

Functors

Examples

Sign:PRES→fSET s.t. Sign(<Σ,Φ>)=Σ
Alph:PROC→SET⊥ s.t. Alph(<Α⊥,Λ>)=Α⊥

These are examples of forgetful functors : they “forget”
part of the structure of the source category.

Sem: PRES→PROCop s.t.
— Sem(<Σ,Φ>)=<2Σ,{λ:ω→2Σ | λ╞ Φ}
— Sem(f:<Σ,Φ>→<Σ’,Φ’>)=f-1:2Σ’ →2Σ

Universal Constructions

Isomorphisms
Let C be a category and x,y objects of C.
A morphism f:x→y of C is said to be an isomorphism iff
there is a morphism g:y→x of C such that:

f;g = idx and g;f = idy.
In these conditions, x and y are said to be isomorphic.

Universal Constructions

Initial objects
An object x of a category C is said to be initial iff, for each
object y of C, there is a unique morph. from x to y.
Two initial objects are isomorphic. Hence, we usually refer to
the initial object of a category, if it exists.

Terminal objects
An object is terminal in a category C iff it is initial in Cop.
That is, x is terminal in C iff, for each object y of C, there is
a unique morphism from y to x.

Sums / Coproducts

Let C be a category and x,y objects of C.
The object z is said to be the sum (or coproduct) of x and y
with injections ix:x→z and iy:y→z iff for any object v and
pair fx:x→v, fy:y→v of C there is a unique k:z→v in C such
that ix;k = fx and iy;k = fy.

If the sum of x and y exists, it is
unique up to isomorphism (denoted x+y).

x y

x+y

v

k
f f

i ix y

x y

Universal Constructions

Amalgamated Sums / Pushouts
Let C be a category and f:x→y, g:x→z morphisms of C. The
amalgamated sum (or pushout) of f and g consists of two
morphisms f':y→w and g':z→w such that

— f;f' = g;g'
— for any other f":y→v and g":z→v

such that f;f" = g;g, there is a unique
morphism k:w→v in C such that
f’;k = f" and g’;k = g".

x

y

v
k

z

w
f

g
g'

f'

f"

g"

Specification vending
machine is

signature coin, cake, cigar
axioms

beg ⊃ ¬cake∧¬cigar ∧

(coin∨(¬cake∧¬cigar)Wcoi
n)
coin ⊃ (¬coin)W(cake∨cigar)
(cake∨cigar)
⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar

Specification regulator is
signature tri, ted, tor
axioms

beg ⊃ ¬tor
tri ⊃ (¬ted)Wtor

Specification channel is signature a, b

Specification regulated vending machine is
signature coin, cake, cigar, token
axioms

beg ⊃ ¬cake ∧ ¬cigar ∧ ¬token ∧ (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
coin ⊃ (¬cigar)Wtoken
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar

Diagrams

Let C be a category and I a graph. A diagram in C with shape
I is a graph homomorphism δ:I→G(C) where G(C) is the
underlying graph of C.

— The homomorphism corresponds to a labelling of the graph I.
— A diagram in a category can be seen as a graph whose nodes are

labelled with objects and the arrows are labelled with morphisms of
that category.

— The diagram δ is said to commute iff, for every pair x,y of nodes
and every pair of paths w=um...u1, w’=vn...v1 from x to y in graph I,
δum°...°δu1=δvn°...°δv1 holds in C.

Cocones

Let δ:I→C be a diagram in a category C. A cocone with base δ
is an object z of C together with a family {pa:δa→z}a∈I0 of
morphisms of C, usually denoted by p:δ→z.

• The object z is said to be the vertex of the cocone, and, for
each a∈I0, the morphism pa is said to be the edge of the cocone
at point a.

• A cocone p with base δ:I→C and vertex z
is said to be commutative iff for every
arrow s:a→b of graph I, pb°δs = pa.

z

δ

Colimits

Let δ:I→C be a diagram in a category C.
A colimit of δ is a commutative cocone p:δ→z such that, for
every other commutative cocone p':δ→z', there is a unique
morphism f:z→z' such that f°p = p', i.e. f°pa = p'a for every
edge.

z

δ

z'
f

Cocompleteness

A category is (finitely) cocomplete if all (finite) diagrams
have colimits.
There are several results on the (finite) co completeness
of categories. A commonly used one is:

A category C is finitely cocomplete
iff

it has initial object and pushouts of all pairs of morphisms
with common source.

2

Parallel Program Design using CT

CT can be used as a mathematical framework in which
designs, configurations and relationships between designs,
such as refinement, can be formally described

We shall illustrate this ability using a parallel program
design language – COMMUNITY

COMMUNITY: Designing the components

An example

A design that models a naive bank account

design n-account is
out num:nat, bal:int
in v: nat
do dep: true → bal:=v+bal
[] wit: bal≥v → bal:=bal–v

dep

bal
v

wit

num
n-account

Designing the components

Another example

The design of a VIP-account that may accept a withdrawal when the
balance together with a given credit amount is greater than the
requested amount.

design vip-account[CRE:nat] is
out num: nat, bal:int
in v: nat
do dep[bal]: true → bal’=v+bal
[] wit[bal]: bal+CRE≥v, bal≥v → bal’≤bal-v

Designing the components

Σ: an algebraic specification of the underlying data types
D(g)⊆out(V)∪prv(V): local vars that can be modified by g.
L(g), U(g): two conditions on V s.t. L(g)⊃U(g). They define
an interval in which the enabling condition of any guarded
command that implements g must lie.
R(g): a condition on V, D(g) and D(g)’ . It defines
requirements over the values of variables in D(g), after
the execution of g.

design P[Σ] is
out out(V)
in in(V)
prv prv(V)
do [prv] g[D(g)] : L(g), U(g) → R(g)

Operational Semantics

When, for every action g,
— L(g) and U(g) coincide
— R(g) defines a conditional multiple assignment

the design is a program.
Execution of a closed program (no input vars):

— at each step, one of the actions whose enabling condition holds is
selected and its assignments are executed atomically

— shared actions can be selected by the environment
— private actions are internally selected in a fair way: every private

action that is infinitely often enabled is selected an infinite
number of times

Superposition

A structuring mechanism for the design of systems that
allows to build on already designed components by
“augmenting” them while “preserving” their properties.

Typically, the additional behaviour results from the
introduction of new variables and corresponding
assignments (that may use the values of the variables of
the base design).

Applying Superposition

An example

Extending the design of n-account to control how many days the balance
has exceed a given amount since the last reset.

design e-account[MAX:int] is
out num: nat, bal:int
in v,day:nat
out count:int
prv d:int
do dep[bal,d,count]: true → bal’=v+bal ∧ d’=day ∧

(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[] wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧
(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[] reset: true, false → count:=0||d’:=day

Characterising Superposition

The relationship between a design P1 and a design P2 obtained
from P1 through the superposition of additional behaviour,
can be modelled as a morphism

σ:P1→P2

in a suitable category of designs.

Superposition Morphisms

lA superposition morphism σ:P1→P2 consists of
• a total function σvar:V1→V2 s.t.

• a partial mapping σac:Γ2→Γ1 s.t.

•sort2(σvar(v))= sort1(v)
•σvar(out(V1)) ⊆ out(V2)
•σvar(in(V1)) ⊆ out(V2) ∪in(P2)
•σvar(prv(V1)) ⊆ prv(V2)

•σac(sh(Γ2)) ⊆sh(Γ1)
•σac(prv(Γ2)) ⊆prv(Γ1)
•σvar(D1(σac(g))) ⊆D2(g)
•σac(D2(σvar(v))) ⊆D1(v)

Sorts, privacy and availability
of vars are preserved
In vars may become out vars

Privacy/availability
of actions is preserved
Domains of vars are preserved

Superposition Morphisms

and, moreover, for every g in Γ2 s.t. σac(g) is defined

Effects of actions must be preserved or
made more deterministic

The bounds for enabling conditions of
actions can be strengthened but not
weakened

• R2(g) ⊃ σ(R1(σac(g)))

• L2(g) ⊃ σ(L1(σac(g)))

• U2(g) ⊃ σ(U1(σac(g)))

Superposition Morphisms: Examples

design n-account is
out num:nat, bal:int
in v:nat
do dep[bal]: true → bal’=v+bal
[] wit[bal]: bal≥v → bal’=bal–v

design e-account[MAX:int] is
out num:nat, bal:int
in v,day:nat
out count:int
prv d:int
do dep[bal,d,count]: true → bal’=v+bal ∧ d’=day ∧

(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[] wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧
(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[] reset: true, false → count:=0||d:=day

inclusion

Superposition Morphisms: Examples

Another example

design account is
out num:nat, bal:int
in v: nat
do dep: true → bal:=v+bal
[] wit: true → bal:=bal–v

inclusion

design n-account is
out num:nat, bal:int
in v: nat
do dep: true → bal:=v+bal
[] wit: bal≥v → bal:=bal–v

Externalising the superposed behaviour

These examples represent two typical kinds of superposition
— monitoring
— regulation

The superposed behaviour can be captured by a component
— monitor Support reuse
— regulator

and the new design is obtained by interconnecting the
underlying design with this component.

e-account: Externalising the counter

A design of a counter that counts how many days a value has exceed a
given value, since the last time it was reset

design counter[LIM:int] is
in val,day:nat
out count:int
prv d:int
do chg[d,count]: true → d’=day ∧

(val≥LIM ⊃ count’=count+(day-d)) ∧
(val<LIM ⊃ count’=count)

[] reset: true, false → count:=0||d’:=day

chg

d

val

reset

count

counter[LIM]
day

e-account: Externalising the counter

To identify which variables and actions of the account are
the subject of the monitoring expressed by the counter, we
use the categorical diagram

This diagram captures the configuration of a system with
two components — n-account and counter — that are
interconnected through a third design (a communication
channel)

design channel is
in x: int
do a: true→skip a ←

chg

bal ← x
a ← chgdep → a

wit → a
x → val

n-account counter

Configurations

• Using diagrams whose nodes are labelled by designs and
whose arcs are labelled by superposition morphisms, it is
possible to design large systems from simpler
components.

• Interactions between components are required to be
made explicit by providing the corresponding name
bindings.

• Name bindings are represented as additional nodes
labelled with designs and edges labelled by morphisms.

Semantics of Configurations: e-account

What’s the relationship between e-account and the configuration?

?

P

design channel is
in x: int
do a: true→skip a ← chg

bal ← x
a ← chgdep → a

wit → a
x → val

n-account counter

e-account
bal←val

dep→chg

wit→chg

inclusion

Colimit
construction

Semantics of Configurations: e-account

design counter[LIM:int] is
in val,day: nat
out count:int
prv d:int
do chg[d,count]: true → d’=day ∧

(val≥LIM ⊃ count’=count+(day-d))∧
(val<LIM ⊃ count’=count)

[] reset: true,false →count:=0||d:=day

design channel is
in x: int
do a: true →

design n-account is
out num:nat, bal:int
in v: nat
do dep: true → bal:=v+bal
[] wit: bal≥v → bal:=bal–v

bal
 ← x x → vala ← chgdep → a

wit → a

design e-account[LIM:int] isin day:nat; v: intout num:nat, bal,count:intprv d:intdo dep[bal,d,count]: true → bal’=bal+v ∧ d’=day ∧(bal≥LIM ⊃ count’=count+(day-d))∧(bal<LIM ⊃ count’=count)[] wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧(bal≥LIM ⊃ count’=count+(day-d))∧(bal<LIM ⊃ count’=count) [] reset: true,false → count:=0||d:=day

bal←val

dep→chg

wit→chg

inclusion

Semantics of Configurations

The semantics of configurations is given by a categorical
construction: the colimit of the underlying diagram.

channel

P1 P2

P1||P2

i1←x→o2

defines an I/O connection

g11 → g ← g21
g12 g22

...

defines synchronisation sets
{g11, g21}, {g12, g21},...

Semantics of Configurations

The colimit of such design diagrams
Amalgamates vars involved in each i/o interconnection and the result
is an output var of the system design
Represents every synchronisation set {g1,g2} by a single action g1|g2
with
— safety bound: conjunction of the safety bounds of g1 and g2

— progress bound: conjuction of the progress bounds of g1 and g2

— conditions on next state: conjunction of conditions of g1 and g2

Configurations

Not every diagram represents a meaningful configuration.
Restrictions on diagrams that make them well-formed
configurations:
— An output variable of a component cannot be connected (directly

or indirectly through input variables) with output variables of the
same or other components.

— Private variables and private actions cannot be involved in the
connections.

These restrictions cannot be captured by the notion of
morphism because they involve the whole diagram.

n-account: Externalising the regulator

design reg is
in x:int, y: nat
do a: x≥y →

id

wit → abal
 ← x

v ← y
design channel’ is
in x: int, y:nat

do a: true→

design account is
in v:nat
out bal,num:int
do dep: true → bal:=bal+v
[] wit: true → bal:=bal-v

design n-account is
in v:nat
out bal,num:int
do dep: true → bal:=bal+v
[] wit: bal≥v → bal:=bal-v

vip-account: an account with a different
regulator

design vip-reg[C:nat] is
in x:int,y:nat
do a: x+C≥y, x≥y →

id

wit → abal
←

x

v ←
y

design channel’ is
in x:int, y:nat
do a:true →

design account is
in v:nat
out bal,num:int
do dep: true → bal:=bal+v
[] wit: true → bal:=bal-v

design vip-account[C:nat] is
in v:nat
out bal,num:int
do dep: true → bal:=bal+v
[] wit: bal+C≥v, bal≥v → bal:=bal-v

Separation of Coordination and Computation

The computational aspects do not play any role in the
interconnection of systems components.

Separation of Coordination and Computation

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]
[] reset[count,d]

sign n-account is
in v:nat
out bal,num:int
do dep[bal]
[] wit[bal]

sign e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]
[] wit[bal,count,d]
[] reset[count,d]

design account is
in v: nat
out bal,num:int
do dep[bal]: ...
[] wit[bal]: ...

design counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]: ...
[] reset[count,d]: ...

design channel is
in x:int
do a[]: true →

design e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]: ...
[] wit[bal,count,d]: ...
[] reset[count,d]: ...

sign channel is
in x:…
do a

Separation of Coordination and Computation

design D1 is
in …
out …
do ...
[] ...

design D2 is
in …
out …
do ...
[] ...

design channel is
in x:…
do a: L(a),U(a) → R(a)

design channel is
in x:…
do a: true → skip

Separation of Coordination and Computation

Rather than using signatures and signature morphisms, a
more user-friendly notation may be adopted

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]
[] reset[count,d]

sign n-account is
in v:nat
out bal,num:int
do dep[bal]
[] wit[bal]

chg

d
val

reset

count

counter[LIM]
day

dep

bal
v

wit

num

account

Separation of Coordination and Computation

What is the mathematics of this?

•Externalise signatures/interfaces from designs through a
functor sig:DES→SIG in a way that

• sig is faithful;
• sig lifts colimits of well-formed configurations;
• sig has discrete structures;
• given any pair of configuration diagrams dia1, dia2 s.t.

dia1;sig=dia2;sig, either both are well-formed or both
are ill-formed.

•What does it mean?

Separation of Coordination and Computation

•sig is faithful:
sig is injective on morphisms;
This means that morphisms of designs cannot induce
more relationships than those that can be established
between their underlying signatures

Separation of Coordination and Computation

•sig lifts colimits of well-formed configurations;
Given any well-formed configuration expressed as a diagram
dia:I→DES of designs and colimit (sig(Si)→θ)i:I of the underlying
diagram of signatures, i.e. of (dia;sig), there exists a colimit (Si→S)i:I
of the diagram dia of designs whose signature part is the given colimit
of signatures, i.e. sig(Si→S)=(sig(Si)→θ)

This means that if we interconnect system components through a
well-formed configuration, then any colimit of the underlying diagram
of signatures establishes a signature for which a computational part
exists that captures the joint behaviour of the interconnected
components.

Separation of Coordination and Computation

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]
[] reset[count,d]

sign n-account is
in v:nat
out bal,num:int
do dep[bal]
[] wit[bal]

sign e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]
[] wit[bal,count,d]
[] reset[count,d]

design account is
in v: nat
out bal,num:int
do dep[bal]: ...
[] wit[bal]: ...

design counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]: ...
[] reset[count,d]: ...

design channel is
in x:int
do a[]: true →

design e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]: ...
[] wit[bal,count,d]: ...
[] reset[count,d]: ...

Separation of Coordination and Computation

•sig has discrete structures;
• For every signature θ:SIG, there exists a design d(θ):DES such

that, for every signature morphism f:θ→sig(S), there is a
morphism g:d(θ)→S in DES such that sig(g)=f.

• That is, every signature θ has a “realisation” (a discrete lift) as a
design d(θ) in the sense that, using θ to interconnect a
component S, which is achieved through a morphism f:θ→sig(S),
is tantamount to using d(θ) through any g:d(θ)→S s.t. sig(g)=f.

• Because sig is faithful, there is only one such g, which means that
f and g are, essentially, the same. That is, sources of morphisms
in diagrams of designs are, essentially, signatures.

sign channel is
in x:…
do a

Separation of Coordination and Computation

design D1 is
in …
out …
do ...
[] ...

design D2 is
in …
out …
do ...
[] ...

design channel is
in x:…
do a: L(a),U(a) → R(a)

design channel is
in x:…
do a: true → skip

Separation of Coordination and Computation

•given any pair of configuration diagrams dia1, dia2
s.t. dia1;sig=dia2;sig, either both are well-formed or
both are ill-formed.

• This ensures that the criteria for well-formed
configurations do not rely on the computational parts
of descriptions.

Separation of Coordination and Computation

Categories DES for which there is a functor sig:DES→SIG
satisfying the four given properties are said to be
coordinated over SIG.

Which categories are coordinated?
—Processes over their alphabets;
—Theories over their signatures;
—All topological categories;
—…

From simple to complex interaction protocols

The configuration diagrams presented so far express
simple and static interactions between component

—action synchronisation
—the interconnection of input variables of a component

with output variables of other components

More complex interaction protocols can also be described
by configurations...

Configurations: more examples

A generic sender and receiver of messages communicating
asynchronously, through a bounded channel

put

i

get

obuffer[t+K]

prod

val

send

sender[t]

rec

val receiver[t]

design sender[t] is
out val:t
prv rd:bool
do prod[val,rd]:¬rd,false→rd’
[] send[rd]:rd,false → ¬rd’

design receiver[t] is
in val:t
do rec:true,false→

Configurations: more examples

A generic sender and receiver of messages communicating
asynchronously, through a bounded channel

put

i

get

obuffer[t+K]

prod

val

send

sender[t]

rec

val receiver[t]

design buffer[t,K:nat] is
in i:t
out o:t
prv b:queue(K,t);rd:bool
do put:¬full(q)→q:=enqueue(i,q)
[]prv next:¬empty(q)∧¬rd →o:=head(q)||q:=tail(q)||rd:=true
[] get:rd → rd:=false

Configurations: more examples

A generic sender and receiver of messages communicating
through a pipe

put

i

get

o
pipe[t,K]

prod

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

design psender[t] is
out val:t, cl:bool
prv rd:bool
do prod[val,rd]:¬rd∧¬cl,

false→rd’
[] send[rd]:rd,false → ¬rd’
[]prv close[cl]:¬rd∧¬cl,false→cl’

design preceiver[t] is
in val:t, eof:bool
out cl:bool
do rec:¬eof∧¬cl,false→
[]prv close:¬cl,¬cl∧eof →cl’

Configurations: more examples

A generic sender and receiver of messages communicating
through a pipe

put

i

get

o
pipe[t,K]

prod

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

design pipe[t,K:nat] is
in i:t,scl:bool
out o:t,eof:bool
prv b:queue(K,t);rd:bool
do put:¬full(q)→q:=enqueue(i,q)
[]prv next:¬empty(q)∧¬rd →o:=head(q)||q:=tail(q)||rd:=true
[] get:rd → rd:=false
[]prv signal:scl∧empty(q)∧¬rd→eof:=true

Customers may be subject to the standard rules for
withdrawing money

Interaction protocols or Coordination Contracts

design standard is
in val: nat; bal: int
do dep: true →
[] wit: bal ≥ val →

dep

val

wit

balstandard

put

valcustomer

wit

bal

getprod dep

rd
account

Customers may subscribe VIP-contracts that allow them
to overdraw up to some limit as long as the average
balance is greater than 1000.

Interaction protocols or Coordination Contracts

design standard is
in val: nat; bal: int
do dep: true →
[] wit: bal ≥ val →

dep

val

wit

balVIP

put

valcustomer

wit

bal

getprod dep

rd
account

design VIP is
in val: nat; bal: int
prv credit:nat
do dep: true →
[] wit: bal+credit ≥ val →

credit

Refinement

The refinement relationship between two designs can also be
modelled as a morphism in a suitable category of designs.

A refinement morphism
σ:P1→P2

is intended to support the identification of a way in which a
design P1 is refined by P2.

Refinement morphisms

A refinement morphism σ:P1→P2 consists of
• a total function σvar:V1→Term(V2) s.t.

• a partial mapping σac:Γ2→Γ1 s.t.

•sort2(σvar(v))= sort1(v)
•σvar(out(V1)) ⊆ out(V2)
•σvar(in(V1)) ⊆ in(V2)
•σvar(prv(V1)) ⊆ Term(loc(V2))

•σac(sh(Γ2)) ⊆sh(Γ1)
•σac(prv(Γ2)) ⊆prv(Γ1)
•σac

-1(g)≠∅, g∈sh(Γ1)
•σvar(D1(σac(g))) ⊆D2(g)
•σac(D2(σvar(v))) ⊆D1(v), v∈loc(V1)

Sorts are preserved as well as
the border between the
component and its environment

Domains of vars are preserved
Every action that models
interaction has to be
implemented

Refinement morphisms

and, moreover, for every g in Γ2 s.t. σac(g) is defined

and for every g1 in Γ1

Effects of actions must be preserved or
made more deterministic.
The interval defined by the safety and
progress bounds of each action must be
preserved or reduced

• R2(g) ⊃ σ(R1(σac(g)))

• L2(g) ⊃ σ(L1(σac(g)))

• σ(U1(g1)) ⊃ ∨{g2:σ(g2)=g1} U2(g2)

Refinement of vip-account

design vip-account[CRE:nat] isout num:nat; bal:intin v: nat
do dep[bal]: true → bal’=v+bal[] wit[bal]: bal+CRE≥v, bal≥v → bal’=bal-v

design vip-account2[CRE:nat] isout num:nat; bal:intin v,day,vip:natprv d,sum,count:int
do dep[bal,d,count,sum]: true → bal’=v+bal ∧ d’=day ∧count’=count+(day-d) ∧sum’=sum+bal*(day-d)
[] wit[bal,d,count,sum]: bal≥v ∨ (bal+CRE≥v∧sum/count>vip)→bal’=bal-v ∧ d’=day ∧count’=count+(day-d) ∧sum’=sum+bal*(day-d)
[] reset: true, false → count:=0||sum:=0||d:=day

inclusion

worduser - a refinement of sender

design user is
out p:ps+pdf
prv free:bool, w:MSWord
do save[w]: true,false →
[] pr_ps: free → p:=ps(w)||free:=false
[] pr_pdf: free → p:=pdf(w)||free:=false
[] print: ¬free → free:=true

design sender(ps+pdf) is
out val:ps+pdf
prv rd:bool
do prod[val,rd]:¬rd,false→rd’
[] send[rd]:rd,false → ¬rd’

val→prd→¬freeprod←pr_ps
prod←pr_pdf
send←print

printer: a refinement of receiver

design printer is
out rdoc:ps+pdf
prv busy:bool, pdoc:ps+pdf
do rec:¬busy→pdoc:=rdoc||busy:=true
[] end_print:busy,false→busy:= false

design receiver(ps+pdf) is
in val:ps+pdf
do rec[]:true,false→

val→rdocrec←rec

Structuring systems vs Refinement

It is essential that
the gross modularisation of a system

in terms of
components and their interconnections

be “respected” when component designs are refined into
more concrete ones

Compositionality

Structuring systems vs Refinement

If the descriptions of the components of a system are
refined into more concrete ones

1. It is possible to propagate the interactions
defined previously

2. The resulting description of the system refines
the previous one

Structuring systems vs Refinement

Example

put

i

get

obuffer

prod

val

send

sender

rec

val receiver

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pr

Structuring systems vs Refinement

Example

put

i

get

obuffer

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pr

Structuring systems vs Refinement

Compositionality ensures that properties inferred from the more
abstract description hold also for the more concrete (refined) one
Eg: in order message delivery does not depend on the speed at which
messages are produced and consumed

put

i

get

obuffer

print

p

pr_ps

user

rec

rdoc printer

pr_pdfsave end_pr

Systematizing Configurations

We have seen that

Complex interaction protocols can be described by
configurations, independently of the concrete components
they will be applied to; they can be used in different
contexts
The use of such interaction protocols in a given
configuration corresponds to defining the way in which the
generic participating components are refined by the
concrete components

Connector Types

Instantiation of Connectors

Systematizing Configurations

We may elevate the abstractions used to describe systems
configurations...

put

i

get

obuffer

prod

val

send

sender

rec

val receiver

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pri
nt

κ η

Systematizing Configurations

... and define them in terms of computational components
and connectors

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pri
nt

κ(sender) η(receiver)
async

3

Software Architectures

Architectural Connectors

Interaction protocols can be described as Connectors

A connector consists of a configuration involving a Glue (design) and
one or more Roles (designs):

— The roles describe the behaviour required of the components so that they
can participate in the interaction (instantiate the roles);

— The glue describes how the activities of these components are
coordinated in the intended protocol.

The application of a connector to given components of a system is
defined by the instantiation of its roles. Role instantiation is
modelled through refinement morphisms.

Applying CT to Software Architecture

The notions we presented for CommUnity can be generalised to other
design formalisms provided that they be presented by

— a category c-DESC of component descriptions in which
configurations of systems of interconnected components are
modelled through diagrams;

— a set Conf(CD) for every set of component descriptions CD,
defining the well-formed configurations over CD;

— a category r-DESC with the same objects as c-DESC, but in
which morphisms model refinement

and

define an architectural school in the following sense:

Architectural Schools

Coordination
Separation between coordination and computation materialised through a
functor

sig: c-DESC→SIG

that

— is faithful;
— lifts colimits of well-formed configurations;
— has discrete structures;
— given any pair of config. diagrams dia1, dia2 s.t. dia1;sig=dia2;sig, either

both are well-formed or both are ill-formed.

Architectural Schools

Refinement and Compositionality
If the descriptions of the components of a system are refined into more
concrete ones

1. It is possible to propagate the interactions defined previously

S’i

dia
S1 Si Sk

S’1 S’k

η1 ηi ηk
+(ηi)dia

S1 Si Sk

S’1 S’kS’i

Architectural Schools

Refinement and Compositionality
If the descriptions of the components of a system are refined into more
concrete ones

1. It is possible to propagate the interactions defined previously
2. The resulting description of the system is a refinement of
the original one

dia S

dia+(ηi)
S'

S1 Si Sk

S’1 S’i S’k

Connectors

A connector is a well-formed configuration of the form

G is the glue and R’s are the roles
Its semantics is given by the colimit of this diagram

R1 Ri Rn

θ1 θi θn

G

Connectors - Instantiation

An instantiation of a connector consists of, for each of its roles R, a
design P together with a refinement morphism φ:R→P

The semantics of a connector instantiation is the colimit of the diagram

R1 Ri Rn

θ1 θi θn

G

R1
RnRi

P1 Pi Pn

Generalisations

This categorical framework provides
– an ADL-independent semantics for existing principles

and techniques of SA
– a basis for extending the capabilities of existing

ADLs.

Examples:
• Heterogeneous connectors
• Higher-order connectors

Heterogeneous Connectors

As defined previously, in connectors

— Roles are only used for defining which are the components
admissible as instances.

— Correct instantiation defined by refinement morphisms

This justifies the adoption of a more declarative formalism
for the specification of roles, giving rise to Heterogeneous
Connectors

Heterogeneous Connectors

lThe pipe connector again...

put

i

get

o
pipe[t,K]

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

spec psender[t] is
out val:t, cl:bool
actions send
axioms cl⊃GG(¬send∧cl)

Heterogeneous Connectors

lThe pipe connector again...

put

i

get

o
pipe[t,K]

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

spec preceiver[t] is
in val:t, eof:bool
out cl:bool
actions rec
axioms cl⊃GG(¬rec∧cl)

((eof⊃GGeof)∧(eof∧¬cl))⊃(¬recUUcl)

Specifications

Specification

• V: set of vars
• Γ: set of actions
• Φ: a set of propositions of linear temporal logic

A specification morphism σ:S1→S2 consists of
– a total function σvar:V1→V2

– a partial mapping σac:Γ2→Γ1 s.t.
1. σvar(out(V1))⊆out(V2)
2. Φ2 ‚ σ (Φ1)

Colimits in this category join the axioms of the component specs

spec S is
in in(V)
out out(V)
actions Γ
axioms Φ

Specifications

This category of specifications is also coordinated over a
category of signatures, i.e., these signatures provide the
means for interconnecting specifications.
Signatures of the form θ=<V,Γ> can be mapped into
specifications as well as into designs and, hence, the
interconnection of a role specification with a glue design is
given by a pair of morphisms of the form

G dsgn(θ) spec(θ) Rθ

Heterogeneous Connectors

For the instantiation of roles, we need a satisfaction
relation ‚ between design morphisms and specification
morphisms
An instantiation of a connector consists of, for each of its
roles, a design P together with a design morphism
φ:dsgn(θ)→P s.t.

G dsgn(θ) spec(θ) R

P

‚

Heterogeneous Connectors

For CommUnity designs and LTL specifications

the satisfaction relation ‚ between design morphisms and
specification morphisms is based on a notion refinement between
specifications and designs

– Part of the semantics of CommUnity designs can be encoded in LTL —
Properties(P)

– P refines S iff there exists a signature morphism η:θS→ θP s.t.
Properties(P)‚ η(Axioms(S))

π:P → P’ ‚ σ:S → S’ iff there exists refinements η:θS→ θP and
η’:θS’→ θP’ s.t. at the signature level, commutes.P P’

S S’

Heterogeneous Connectors

Properties(P)

—(g ⊃ L(g)) for every g∈Γ

— ∨g∈D(v)g ∨ (Xv=v)) for every v∈loc(V)
—(g ⊃ τ(R(g)) for every g∈Γ, where τ is a translation that

replaces every primed variable v' by the term (Xv)
—(GFGFU(g) ⊃ GFGFg) for every g∈prv(Γ)

Heterogeneous Connectors

The semantics of a heterogeneous connector

is given by the colimit of this specification diagram.

dsgn(θ1) dsgn(θi) dsgn(θn)

G

R1 Ri Rn

spec(θ1) spec(θi) spec(θn)

properties(G)

Higher-Order Connectors

Current level of support and understanding of connectors
is still insufficient, far from the one components have

Need further steps for a systematic construction of new
connectors from existing ones
—Promote reuse
—Promote incremental and compositional development
—Make it easier to address complex interactions

Higher-Order Connectors

A specification mechanism that allows
independent aspects of interaction protocols to be
specified separately

e.g., compression, fault-tolerance,
security, monitoring

composed and integrated in existing connectors

A connector that takes a connector as a parameter
describing the capabilities that must be superposed over
the instantiation of the parameter

Higher-Order Connectors

Higher-Order Connector =
connector (body) + connector (formal parameter)

— The body models the nature of the service that is superposed on
instantiation of the formal parameter

— The formal parameter describes the kind of connector to which
that service can be applied

Example: Monitoring of messages in a unidirectional communication

Using a Higher-Order Connector
— A hoc can be applied to any connector that instantiates its formal

parameter, giving rise to a connector with the new capabilities

Higher-Order Connectors: An example

Installing a compress/decompress service over a
unidirectional communication protocol:
—modify Uni-comm in a way that messages are

compressed for transmission without intruding over the
original connection

—the outgoing messages should be compressed before
they are put into the buffer and decompressed when
they are removed from the buffer, before being
delivered to the receiver

Higher-Order Connectors: Example

FT service that provides in-order message delivery in the presence of
message-loss and duplication faults:

• numbers the messages sent by the sender; sends each numbered message
until the corresponding ack is received; keeps pending messages in a queue

• sends acks for every received message; ignores the received (numbered)
messages out of order and transmits the others to the receiver (not
numbered anymore)

modelled by a HOC with two connector parameters:
• transmission of numbered messages
• transmission of acks (in the opposite direction)

Higher-Order Connectors

number: sends repeatedly a numbered message until the
corresponding ack is received and keeps pending messages
in a queue

denumber: sends acks for every received message, ignores
the messages out of order and transmits the other to the
receiver

gluesender receiver

Uni-comm[s*nat] Uni-comm[nat]

denumbernumber

gluesender receiver

sender receiver

An example

Asynchronous communication through a bounded channel can
be represented by a connector Async

with two roles —sender and receiver. The glue is a bounded
buffer with a FIFO discipline.
Components A and B connected through Async

buffersender receiver

A Bbuffersender receiver

An example

Suppose that the information transmitted from A to B must
be compressed.
Two alternatives:

—develop from scratch a new connector C-Async with
the same roles but a new glue

—obtain a new connector C-Async by installing a
compress/decompress service over Async

A Bc-asyncsender receiver

C-Async

An example

Installing a compress/decompress service over Async:
—modify Async in a way that messages are compressed

for transmission without intruding over the original
connection

—the outgoing messages should be compressed before
they are put into the buffer and decompressed when
they are removed from the buffer, before being
delivered to the receiver

An example

This form of coordination can be obtained by instantiating
Async with a component comp in the role of sender and
decomp in the role of receiver

C-Async:

comp decompbuffersender receiver

comp decompbuffersender receiversender receiver

An example

The procedure for installing the compress/ decompress
service can be applied to other connectors

The service itself can be modelled as a higher-order
connector Compression and the installation of the service
over a given connector can be obtained by a suitable
instantiation of its parameter

The Compression Hoc: formal parameter

1.The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

The Compression Hoc: formal parameter

1.The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design sender[t] is
out val:t
prv rd:bool
do prv prod:¬rd,false→rd:=true||val:∈t
[] send:rd,false → rd:=false

The Compression Hoc: formal parameter

1.The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design receiver[t] is
in val:t
do rec:true,false→skip

The Compression Hoc: formal parameter

1.The formal parameter is the connector Uni-comm[t]
modelling a generic unidirectional communication protocol

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design glue[t] is
in i:t
out o:t
do put:true,false→skip
[]prv prod: true,false→o:∈t
[] get: true,false→skip

The Compression Hoc: body connector

2.The body connector is Compression[Σ]

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

design comp[Σ] is
in di:t
out co:s
prv v:t; rd,msg:bool
do drec: ¬msg → v:=di||msg:=true
[] prv comp:¬rd∧msg → co:=comp(v)||rd:=true
[] csend:rd → rd:=false||msg:=false

The Compression Hoc: body connector

2.The body connector is Compression[Σ]

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

design decomp[Σ] is
in ci:s
out do:t
prv v:s; rd,msg:bool
do crec: ¬msg → v:=ci||msg:=true
[] prv dec:¬rd∧ msg → do:=decomp(v)||rd:=true
[] dsend: rd → rd:=false||msg:=false

The Compression Hoc: relating the parameter and
the body connector

3.The refinement relationships

establishing the instantiation of Uni-comm[s] with comp and
decomp

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]

The Compression hoc in Community

design comp[Σ] is
in di:t
out co:s
prv v:t; rd,msg:bool
do drec: ¬msg → v:=di||msg:=true
[] prv comp:¬rd∧ msg → co:=comp(v)||rd:=true
[] csend:rd → rd:=false||msg:=false

design sender[t] is
out val:t
prv rd:bool
do prv prod:¬rd,false→rd:=true||val:∈t
[] send:rd,false → rd:=false val→co rd→rd

prod←comp
send←csend

Categorical Semantics of HOCs

A hoc consists of

formal parameter: pθ1 pθi pθk

pG

pR1 pRi pRk

pC

Categorical Semantics of HOCs

A hoc consists of

body connector:

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

Categorical Semantics of HOCs

A hoc consists of

refinement morphisms:

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

The Compression hoc

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]

The Compression hoc: semantics

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec
ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]

Categorical Semantics of HOCs

pθ1 pθk

pG pC

θ1 θi θn

G

R1 Ri Rn

C

pR1 pRi pRk

pθi

newG

Its semantics is
given by the
connector with
glue newG

Instantiation of Compression with Async

drec

di

csend

ocomp[Σ]val

send

sender[t

rec

valreceiver[t]

crec

ci

dsen

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]

put

i

get

obuffer[t]val

send

sender[t]

rec

val receiver[t]

Instantiation of Compression with Async

The semantics of this instantiation is given by the connector

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

put
ci

get

do
decomp[Σ]

co

put

i

get

obuffer[s]

Categorical Semantics of HOCs: Instantiation

An instantiation of a hoc
consists of a fitting morphism

φ:pC→CA

from the formal parameter
to the actual parameter

(a connector CA) pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ

Categorical Semantics of HOCs: Instantiation

A fitting morphism
φ:pC→CA

consists of a pair of refinement
morphisms

for each connection s.t. ...

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ

pθi

pG

pRi θi
A

pGA

Ri
A

Categorical Semantics of HOCs: Instantiation

The semantics of a hoc instantiation
is the connector with same roles
as C and its glue is newG

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ

pR1 pRi pRk

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ1 φk

newG

Generalisations

Hocs can be combined giving rise also to a
hoc parametrised instantiation
We defined hocs with one parameter only but the
extension to several parameters is straightforward

– Hocs with 1 parameter always model transformation/adaptation of
a connector

– Hocs with several parameters allow us to describe more complex
operations s.a.

aggregation of connectors
a “pipe” of connectors
fault-tolerance service

Reconfiguration: Motivation

systems have to evolve due to changes in functional
requirements (business rules) or to respond to changes in
the environment (e.g., failures, transient interactions)
for safety or economical reasons, some systems cannot be
shut down to be changed
domain with some interest in SA community but little
formal work

Reconfiguration: Issues involved

Time: before or at run-time (dynamic reconfiguration)
Source: user (ad-hoc); topology/state (programmed)
Operations: add/delete components/connections; query
topology/state
Constraints: structural integrity; state consistency;
application invariants
Specification: architecture description, modification,
constraint languages
Management: explicit/centralised (configuration manager);
implicit/distributed (self-organisation)

Reconfiguration: Related Work

Work done in Distributed Systems, Mobile Computing,
Software Architecture has at least one of the following
drawbacks:

— not addressed at the architectural level
— arbitrary reconfigurations not supported
— only low-level behaviour specification (process calculi, term

rewriting, etc.)
— interaction between computation and reconfiguration is complex,

implicit, or blurred

On the other hand, they sometimes provide tool support, in
particular automated analysis.

Reconfiguration: Approach

Explore the categorical approach to software
architectures and parallel program design
— architecture = categorical diagram; system behaviour = colimit
— architecture = graph; reconfiguration = rewriting

Develop a reconfiguration language for easier specification
and analysis.

CommUnity with State

Typed logical variables LV to denote the current state of
components;
Nodes of configurations are designs with
valuations ε: loc(V) → Terms(LV)
— State only for variables controlled by the design
— Non-ground terms in the reconfiguration rules
— Ground terms in run-time configuration

Superposition morphisms must preserve state:
ε(l) = ε’(σ(l)) for any local variable l

Graph category
— Objects: directed graphs with labelled nodes and arcs
— Morphisms: total functions between nodes and arcs preserving

structure and labels

Production p: L ← K → R
— graph L transformed into R through common subgraph K
— l and r are injective morphisms
— can be applied to graph G if match m: L → G exists

Graph Transformation

l r

G H if 2 pushouts exist

D = G – (L – K) and H = D + (R – K)
Injection l guarantees D is unique
Injection r guarantees p is reversible

Graph Transformation: Derivation

p,m

G H

K R

D

L
m

l r

D does not exist if a node to be removed has arcs

D does not exist if a node is to be removed and kept

Application Conditions

R

RK

KL

L

G

G

Example

HDG

RKL

Dynamic Reconfiguration

Run-time configurations: well-formed configurations with
nodes labelled by designs with ground terms
Rules: L ← K → R if C

— parameterised by the algebraic specifications used in L,K,R
— C is condition over Vars(L), the logical variables ocurring in L
— Vars(R) ⊆ Vars(L) to determine state of new components

Step: G H with a substitution φ: Vars(L) → Terms(∅)
s.t. φ(C) is true and G H is a derivation with
φ(p) = φ(L) ← φ(K) → φ(R)
Reconfiguration: derivation sequence; does not change
state (i.e., labelling)

p,m,φ

φ (p),m

l r

l r

Example

Managing the way Customers interact with their bank
Accounts

design account is
out num:nat; bal, avgbal: int
in v: nat
do dep: true → bal’ = bal + v
[] wit: true → bal’ = bal - v
[] avg[avgbal]: true →

design customer is
out val:int
prv rd:bool
do prod[val,rd]:¬rd,false→rd’
[] put[rd]:rd,false → ¬rd’
[] get[rd]:rd,false → ¬rd’

Customers may be subject to the standard rules for
withdrawing money

Standard Connector

design standard is
in val: nat; bal: int
do dep: true →
[] wit: bal ≥ val →

dep

val

wit

balstandard

put

valcustomer

wit

bal

getprod dep

rd
account

avg

Customers may subscribe VIP-contracts that allow them
to overdraw up to some limit as long as the average
balance is greater than 1000.

VIP Connector

design standard is
in val: nat; bal: int
do dep: true →
[] wit: bal ≥ val →

dep

val

wit

balVIP

put

valcustomer

wit

bal

getprod dep

rd
account

avg

design VIP is
in val: nat; bal: int
prv credit:nat
do dep: true →
[] wit: bal+credit ≥ val →

credit

Creating a client/account pair

When a client/account pair is created, a decision has to be
taken on the kind of contract that binds them. A
production is defined for each kind:

K RL

falserd

vval

customer
nnum

0avgbal

0bal

account

standard
c-channel a-channel

This is a rule template, parameterised by the values to be
assigned to the account number and the value the
customer will deposit.

Creating a client/account pair

In the case of the VIP-contract, the credit limit has to be
negotiated with the bank.

Again, this is a rule template that now also includes a
parameter for the credit limit.

K RL

falserd

vval

customer nnum

0avgbal

0bal

account

ccredit

VIP
c-channel a-channel

Modifying the contract

The following rule restores a VIP contract to standard
when the average balance is below 1000.

if a < 1000 C

K RL

rrd

vval
customer nnum

aavgbal

bbal

account
ccredit

VIP

c-channel

a-channel

rrd

vval
customer nnum

aavgbal

bbal

account

standard

c-channel

a-channel

rrd

vval
customer

nnum

aavgbal

bbal

account

Reconfiguration Specification

rewrite rules are cumbersome to write: repetition of
nodes in graphs K and L; dummy nodes/arcs to control the
way rules are applied
ideal: reconfiguration language with high-level
programming constructs
but: ADLs only provide minimal reconfiguration support;
distributed systems have powerful languages but do not
have architectural abstractions
goal: compact, conceptually elegant language with formal
semantics for describing reconfiguration within
architectural description of a system

Reconfiguration Language Elements (1)

configuration variables:
— typed over data sorts
— typed over components and connectors (node references)
— maintain information about current configuration
— designs cannot access them: separation of computation from

reconfiguration

query: expression that returns list of tuples of nodes
matching the given criteria on topology and state

Reconfiguration Language Elements (2)

basic commands:
— create/remove components and connectors
— update configuration variables
— semantics given by reconfiguration rules

complex commands: sequence, choice, and iteration
scripts:
— group commands into a unit
— may be nested and recursive
— may have parameters and local configuration variables

Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end script

Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end script
local configuration variable

node reference

Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end scriptmatch {Decl | ...} returns list(record(Decl))

list iterator condition on state

Auxiliary Script

script RestoreStandard
in a: Account
prv i: record(c:Customer; co:VIP)
for i in match {c:Customer;co:VIP |co(c, a)}
loop

remove i.co;
create standard(i.c, a);

end loop
end script role instantiation

condition on topology
refers the glue

input parameter

Creating a VIP connector

script CreateVIP
in n, limit : nat
out c : Customer
prv a : Account
c := create Customer with

rd := false || val := 0;
a := create Account with

bal := 0 || avgbal := 0 || num := n;
create VIP(c, a) with credit := limit
end script

state initialisation

Interpretation Loop

1. Execute one computation step over the current
run-time configuration

2. Let the user call a top-level script if s/he wishes (ad-hoc
reconfiguration)

3. Call a parameterless script ‘Main’, if it exists
(programmed reconfiguration)

4. Go to step 1

The administrator may change the set of scripts at any time.

Semantics

one new private variable ‘node:nat’ for each component and
glue design
configuration designs with private variables only:
— one design for each lexical scope level (script)
— one private variable per configuration variable in that level
— node references translated to integer variables
— undefined node references translated to value 0
— one variable ‘nodes:nat’ to count how many nodes created

one or more rules for each basic command:
— L has designs for configuration and nodes referred in command
— R includes updated configuration design

Semantics of
create VIP(c, a) with credit := limit

K RL

cnnode

rrd

vval
customer

annode

nnum

aavgbal

bbal

account c-channel

lvcredit

nsnode

VIP

c-channel

a-channel

lvlimit
cnc
ana

nsnodes
nvn

CreateVIP

annode

nnum

aavgbal

bbal

account

cnnode

rrd

vval
customer

cnnode

rrd

vval
customer

annode

nnum

aavgbal

bbal

account

lvlimit
cnc
ana

ns+1nodes
nvn

CreateVIP

4

Coordination Contracts

Motivation

Coordination Technologies (ATX Software)
A semantic modelling primitive (coordination contracts)
with the expressive power of architectural connectors
An architecture-centred development methodology
(construction and evolution)
Design patterns that implement contracts
A contract development environment

Simple account

class Account
Operations
Deposit(in amount: Integer)

→ balance:=balance+amount

Withdraw(amount:Integer)
→ balance:=balance-amount;

attributes
number : Integer;
balance : Integer := 0;

end class

Notation for coordination contracts

coordination contract Traditional package

partners x : Account; y : Customer;

constraints ?owns(x,y)=TRUE;

coordination
tp: when y ->> x.withdrawal(z)

do call x.withdrawal(z)
with x.Balance() > z

end contract

VIPs

coordination contract VIP package
partners x : Account; y : Customer;
constants VIP_BALANCE: Integer;
attributes Credit : Integer;
constraints

?owns(x,y)=TRUE;
x.AverageBalance() >= VIP_BALANCE

coordination
tp: when y ->> x.withdrawal(z)

do x.withdrawal(z)
with x.Balance() + Credit() > z

end contract

Areas of Application

Defining business rules – Account Flexible Package
Dynamic Type reconfiguration – A.C. Controller
Specification of behaviour with state transitions –
Electronic devices
Use Cases – Automatic Teller Machine
Design Patterns – Model and Observer
Concurrency – Dining Philosophers
Connectors of architectural layers

The Flexible Package

coordination contract AccountPackage
partners c : Account; s : Account;
attributes mn,mx : Integer;
constraints c.owner=s.owner;
coordination
stoc: when (c.bal() < mn) do {

s.withdrawal(min(s.l(),mx-c.bal())),
c.deposit(min(s.bal(),mx-c.bal())}

ctos: when (c.bal() > mx)
do { c.withdrawal(c.bal()-mx),

s.deposit(c.bal()-mx)}
end contract

A Coordination Rule has the form

<name> : when <trigger>
with <guardCondition>
do <set of actions>

Coordination Rules

The trigger defines when a rule
must be considered active.
It may be a condition, or a request to
a participant operation

The guard condition imposes
additional constraints on the
reaction to the trigger, when
regulated by this rule

The actions describe the behavior defined by the rule:
• extra behaviour to be executed before or after the
trigger operation,
• or replacement behavior for the trigger operation

Coordination Semantics

X

before before

replace

after after

*->> Obj.x()

C1::rule1 C2::rule2

The trigger

The Rules of the several contacts involving object Obj that satisfy the
trigger and additional conditions

The Actions defined by
the rules

The transactional behavior
for the operation X under
coordination

A design pattern for coordinations

None of the standards for component-based software
development – CORBA, JavaBeans, COM – can support
superposition as a first-class mechanism.
Because of this, we propose our solution as a design
pattern that exploits polymorphism and subtyping, and is
based on other well known design patterns, such as the
Chain of Responsibility, and the Proxy or Surrogate.

A coordination design pattern

Component

ISubjectProxy

<<abstract>>

SubjectToProxyAdapter

SubjectInterface

<<abstract>>

Client
Component Request

Component Pattern

Request
operation()

ISubjectrPartner

Contract-nContract-1

Coordination Pattern

chain of
responsibility

0..*

<<abstract>>

operation()
_operation()

Subject

_operation()

Ct_1_Subject
Connector

Ct_n_Subject
Connector

A coordination design pattern

operation()

ISubjectProxy

<<abstract>>

SubjectToProxyAdapter

SubjectInterface

<<abstract>>

 Subject

Component

Client
Component

Request

Component Pattern

Request

operation()
_operation()

_operation()

Account coordination

AccountClient
Component Request

Account Pattern

Coordination Pattern

Account

IAccountProxy

<<abstract>>

AccountInterface

<<abstract>>

AccountToProxyAdapter

Flexible
Package

VIP

chain of
delegation

0..*
IAccountPartner

<<abstract>>

Flexible Package
Contract

AccountConnector

VIP Contract
AccountConnector

Request

withdrawal()
_withdrawal()

_withdrawal()
Request for
withdrawal()

Account coordination

If there are no contracts coordinating a real
subject, the contract pattern can be simplified.
In this scenario, the only overhead imposed by
the pattern is an extra call from
SubjectToProxyAdapter to Subject.

Account coordination

Client
Component

withdrawal

Account Pattern

∂

Coordination Pattern

proxy

AccountToProxyAdapter

Account

Flexible
Package

VIP

chain of
delegation Flexible Package

Contract
AccountConnector

VIP Contract
AccountConnector

_withdrawal()

withdrawal()
_withdrawal()

Operational view

Before the subject gives rights to the real object to
execute the request, it intercepts the request and gives
right to the contract to decide if the request is valid and
perform other actions.
This allows us to impose other contractual obligations on
the interaction between the caller and the callee.
This is the situation of the first model discussed in
section 2 where new pre-conditions were established
between Account Withdrawals and their Customers.

Operational view

On the other hand, it allows the contract to perform other
actions before or after the real object executes the
request.
Only if the contract authorises can the connector ask the
involved objects to execute and commit, or undo execution
because of violation of post-conditions established by the
contract.

The development process

OBJECTS CONTRACTS

Construction Evolution

A three-dimensional space with the following dimensions is
proposed for producing code, for any specific
implementation plataform, from high level specifications:
− Domain Specification: an ideal model of the business problem

without any details concerning implementation;
− Architecture: a model that represents architectural designs;
— Target Environment: the technology used to implemente the

business problem according with the choosen architecture.

The implementation space

The implementation space

Domain
Specification

Architecture

Target
Environment

S

S’M

A

T

∆

System design

The architecture of the system is defined by the way
modules are interconnected and objects are coordinated.
Hence, modules are vital for decomposing large
specifications and specifying parts with sufficient
precision that one can construct each part knowing only
the specification of the other parts.
The nature of the components and their relationships is
influenced by infrastructural constraints like the
distribution strategy, type of interaction with the system
environment, etc.

The implementation space

CDE - Coordination Development Environment

Context Setup Contract
Development

Deployment

Component
Development

Testing

Run-Time
Configuration

Software System

Component Layer

Coordination Layer

A development and run-time environment for layered coordination
systems :
The coordination layer, defining the more volatile part of a system, is
built over the component layer, the stable parts of the business

CDE: Development Activities

Registration: components are registered as candidates for
coordination.
Edition: Contract types are defined connecting registered
components. Coordination rules are defined on those
contracts.
Deployment: the code necessary to implement the
coordinated components and the contract semantics in the
final system is produced according to the contract design
pattern.

CDE: Run time Activities

Animation: facilities are provided allowing
testing/prototyping of contract semantics
Registration: contract types are registered in the system.
Configuration: contracts are configured in the system
(enabling/disabling rules, priorities, etc)
Evolution: concrete contracts are created between
specific system elements, regulating its behaviour.

CDE - User interaction

Regist Components
Contract Type Creation / Edition
…

Deploy System

CDE
Testing

Developer

System
Assembler

Tester

Contract Type Registration
Contract Creation
Run-time Configuration Definition

Animation
Interface

User
Application

Interface

Trigger Operation
Observe Object
…

CDE-Rt

Deployed
System

Development Run time

Increased separation of the domain concepts (objects)
from the business rules that regulate their behaviour;
Coordination features available as first-class citizens
through a specific semantic primitive;
Support for different levels of change, reflecting the
evolution of the domain:
— Flexible mechanisms for inheritance of behaviour;
— Separation of coordination from computation.

Concluding remarks

Increased separation of the domain concepts from the
business rules that regulate their behaviour;
— Recognising two different dynamics in system evolution:

changes to the way components operate and changes to the way
components are integrated (white vs black box);

— More flexibility in the software development process (plug and
play);

— Better integration/coordination of third-party, closed components
(e.g. legacy systems)

One step closer to a real industry of components.

Claimed contributions

URLs

Papers:
— www.atxsoftware.com/publications.html (also includes papers on

CommUnity and the categorical approach to software architecture)

Coordination Development Environment:
— www.atxsoftware.com/CDE

CommUnity Workbench:
— http://ctp.di.fct.unl.pt/~mw/sw/cw

About to appear…

Software Design in Java 2
K.Lano, J.Fiadeiro and L.Andrade

Palgrave Macmillan

due Fall 2002

