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Objectives

To provide mathematical foundations to the 
Theory and Practice of Software Architectures

— abstracting a mathematical semantics from existing 
languages and models

— using it to generalise these ideas to other contexts

— explore useful generalisations of existing concepts

capitalizing on research on SA, Reconfigurable Distributed 
Systems and Coordination Languages and Models



Outline 

Motivation and overview
CommUnity: Parallel program design and architectural 
design using CT
Coordination in CommUnity, characterisation in CT and 
examples
Software Architectures in Coordinated Categories
Software Evolution through Dynamic Reconfiguration
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Motivation



Envisaged development process

Construction Evolution

“structural objects” “business rules”



Why Software Architectures ?

SA addresses the gross decomposition of systems in 
terms of components and the connectors that define how 
they interact.
An attempt (the best we know…) at tackling the 
complexity of system development:
— Leads to “standard” ways of constructing systems – architectural 

styles – reflecting the structure of the application/business 
domain.

— Allows systems to evolve based on a black-box view of components 
– non-intrusive, dynamic reconfiguration – reflecting directly 
changes that take place in the domain.



Why Coordination ?

“Recent” languages like Linda, Gamma, Manifold, … have 
promoted the separation between computation (what is 
responsible for the functionality of services in basic 
components) and coordination (the mechanisms that are 
made available for components to interact);
“Programming by emergence”: local functionalities + 
interactions
Black-box view of components: interactions can evolve 
without changing the computations.



Why Category Theory ?

The mathematical tool, par excellence, for addressing 
"structure" and "modularity”.
In Category Theory, entities are characterised in terms of 
the relationships they have to other entities and not in 
terms of their internal representation.
— The information one gets from the structure of an entity is 

determined from the way that entity "interacts" with the other 
entities.

— This is analogous, for instance, to the encapsulation mechanisms
made available by Abstract Data Types and Object-Oriented 
Programming.



Category theory  vs Set theory

→ ∈

Implicit

External

Black-box

“Social”

Explicit

Internal

White-box

“Physiological”



Category theory  vs Set theory

Example
power amplifier in set theory

• •

•

•

SPEAKERS TUNER PHONO CD

power amplifier in category theory



Set theory in Category theory

The social life of sets;
Characterisation of the empty set;
Characterisation of singleton sets;
Characterisation of the (disjoint) union;
What makes a “social life” a category?



Uses of Category theory in Computing

The “arrows as computations” paradigm
The “arrows as interpretations” paradigm
— General Systems Theory;
— Abstract Data Types;
— Concurrency Theory
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Introduction to Category Theory



Graphs

A graph is a tuple
(G0,G1,src,trg) 

where: 
— G0 is a collection (of nodes), 
— G1 is a collection (arrows), 
— src maps each arrow to a node (the source of the node)
— trg maps each arrow to a node (the target of the node)

We usually write f:x→y to indicate that src(f)=x and trg(f)=y. 
Between two nodes there may exist no arrows, just one in either 
direction, or several arrows, possibly in both directions.



Examples

Around sets:
— The most “popular” graph is the graph whose nodes are the sets 

and whose arrows are the total functions.
— Another useful example is the graph that has exactly the same 

nodes (sets) but whose arrows are partial functions.

There are many other examples in Computing:



Each enriched class inheritance diagram defines a subgraph of the 
graph of sets and (total) functions – classes are represented through 
sets of features and renamings through functions.

Class inheritance hierarchies

These are graphs whose nodes are object classes and for which the 
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE

rename insured_value
as residence_value

rename insured_value
as business_value

address
insured_value

In class inheritance 
hierarchies, there 
exists at most one 
arrow between two 
nodes.  However, 
arrows can carry more 
information.



Each enriched class inheritance diagram defines a subgraph of the 
graph of sets and (total) functions – classes are represented through 
sets of features and renamings through functions.

Class inheritance hierarchies

These are graphs whose nodes are object classes and for which the 
existence of an arrow between two nodes (classes) means that the
source class inherits from the target class.

rename insured_value
as residence_value

rename insured_value
as business_value

{address,insured_value,B}

{address,insured_value}

{address,insured_value,A}

{address,residence_value,business_value,A,B,C}



Transition systems

Every transition system constitutes a graph whose nodes 
are the states and whose arrows are the transitions

hungry

eating

thinking

forks↑

forks↓

bc_hungry



Consequence systems

One of the possible views that one can have of a "logic" is through the 
notion of a sentence being a consequence of, or derivable from, 
another sentence.  This notion of consequence can be represented by 
a graph whose nodes are sentences and whose arrows correspond to
"logical implication".

A∨BA∧B C∧B
• • •



Proof systems

Every proof system constitutes a graph whose nodes are formulae and 
whose arrows are proofs.

A∧B
B

A∨B

A∨B

A∧ B
•

•

A∧B
A

A∨B



Paths

Let G be a graph and x,y nodes of G.
A path from x to y of length k>0 is a sequence fk...f1 of 
arrows of G (not necessarily distinct) such that 

1. src(f1)=x
2. trg(fi)=src(fi+1) for 1≤i≤k-1
3. trg(fk)=y. 

For every x, the path of length 0 at x (the empty path at x) 
from x to x is by convention the empty sequence.



Paths

The collection of paths of G of length k is denoted by Gk. 
Hence, 

— G0 corresponds to the collection of nodes,
— G1 corresponds to the collection of arrows,
— G2 corresponds to the collection of pairs of 

composable arrows.



Graph Homomorphism

A homomorphism of graphs
ϕ:G→H 

is a pair of maps 
ϕ0:G0→H0 and ϕ1:G1→H1

such that 
for each arrow f:x→y of G ,
ϕ1(f):ϕ0(x)→ϕ0(y) in H. 

That is, nodes are mapped to nodes and arrows to arrows but 
preserving sources and targets.

a

b

c

d

e

f

g



Category

A category C is a triple (G,;,id) where: 
— G is a graph, 
— ; is a map from G2 into G1

— id is a map from G0 into G1

such that
— src(f;g)=src(f),
— trg(f;g)=trg(g)
— (f;g);h = f;(g;h)
— src(idx)=trg(idx)=x,
— for each f:x→y of G1,  f;idy = idx;f = f.



Examples

SET –
objects: sets identities: identity functions
arrows: total functions composition: functional

GRAPH –
objects: graphs identities: identity functions
arrows: graph homorphisms composition: 
functional

PROOF –
objects: sentences identities: empty 
proofs
arrows: proofs composition: cut rule



Pre-orders

Every pre-order <S,≤> defins a category S≤ as follows:
objects: elements of S
arrows: there is  morphism x→y iffx≤y;
identities: reflexivity law;
composition: transitive law.

LOGI –
objects: sentences
arrows: existence of a logical implication;



Ancestor

In Eiffel, given an inheritance graph G between classes, the category 
ancestor(G) is generated by completing the graph with the arrows 
that result from reflexivity (identities) and transitivity
(compositions).

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE



Category generated from a graph

Every graph G generates a category cat(G) as follows:
objects: nodes
arrows: paths
identities: empty paths;
composition: path concatenation.

Runs (T) – for every transition system T
objects: states
arrows: finite runs;



Adding structure

The most typical way of building a new category is, 
perhaps, by adding "structure" to the objects of a given 
category (or a subset thereof).  
The expression "adding structure" has, of course, a broad 
meaning...  
The morphisms of the new category are then the 
morphisms of the old category that "preserve" the 
additional structure.



Pointed sets

SET⊥ –
objects: pairs <A,⊥A> where A is a set and ⊥A∈A
arrows: f:<A,⊥A> → <B,⊥B> is f:A → B s.t. f(⊥A)=⊥B

identities: those of SET
composition: that of SET

proof obligations:
well-formedness of identities;
closure of composition



Processes

Pointed sets can be interpreted as process alphabets:
— Elements denote events;
— The designated element denotes an environment event;
— Morphisms identify sub-components of processes.

We can associate trajectories (full behaviours) with 
alphabets and their morphisms:

tra(A)={λ:ω→A}
tra(f:A→B)(λ)=λ;f:ω→B



Processes

PROC –
objects: pairs <A⊥,Λ> where A⊥: SET⊥ and Λ⊆tra(A)
arrows: f:<A⊥,Λ>→<B⊥,Μ> is f:A⊥→B⊥ s.t. tra(f)(Λ)⊆Μ
identities: those of SET⊥

composition: that of SET⊥

proof obligations:
well-formedness of identities;
closure of composition



Processes

process VM is
alphabet co, ca, ci
behaviour

Λ ::= ⊥ω  | ⊥*co⊥ω   | (⊥*co⊥*{ca,ci})Λ

process RVM is
alphabet co, ca, ci, to
behaviour

Λ ::= ⊥ω  | ⊥*co⊥ω   | (⊥*co⊥*ca)Λ | (⊥*co⊥*to⊥*ci)Λ



Temporal specifications

fSET –
objects: finite sets arrows: total functions

Linear temporal language PROP(Σ) over a finite set Σ:
φ ::= beg | a∈Σ | ¬φ | φ1 ⊃ φ2 | φ1 U φ2

translation defined by f:Σ→Σ’
f(φ) ::= beg | f(a)∈Σ | ¬f(φ) | f(φ1) ⊃ f(φ2) | f(φ1) U f(φ2)



Temporal specifications

Semantics of PROP(Σ) over (2Σ)ω

λ ‚i a iff a∈λ(i)
λ ‚ i beg iff i=0,
λ ‚ i ¬φ iff it is not the case that λ ‚ i φ
λ ‚ i φ1⊃φ2 iff λ ‚ i φ1 implies λ ‚ i φ2,
λ ‚ i φ1Uφ2 iff, for some j>i, λ ‚ i φ2 and, for every i<k<j, λ ‚ k φ1

λ ‚ φ iff λ ‚ i φ for every i
Φ ‚ φ iff, for every λ, λ ‚ Φ implies λ ‚ φ



Temporal specifications

THEO–
objects: theories <Σ,Φ> such that Φ is closed
arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. f(Φ)⊆Φ’

PRES–
objects: theory presentations <Σ,Φ>
arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. f(Φ)⊆c(Φ’)

where c(Φ)={φ: Φ ‚ φ}



Temporal specifications

Specification vending machine is
signature coin, cake, cigar
axioms

beg ⊃ ¬cake∧¬cigar ∧ (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar



Temporal specifications

Specification regulated vending machine is
signature coin, cake, cigar, token
axioms

beg ⊃ ¬cake ∧ ¬cigar ∧ ¬token ∧
(coin∨(¬cake∧¬cigar)Wcoin)

coin ⊃ (¬coin)W(cake∨cigar)
coin ⊃ (¬cigar)Wtoken
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar



Temporal specifications

Specification regulator is
signature tri, ted, tor
axioms

beg ⊃ ¬tor
tri ⊃ (¬ted)Wtor

What relationships can be established between vending 
machine, regulated vending machine and regulator ?



Functors
– the social life of categories

Given a category C
— |C| denotes the collection of nodes of C
— HomC(x,y) denotes the collection of morphisms from x to y.

Let C and D be categories.
A functor Φ:C→D is a graph homomorphism from the graph 
of C into the graph of D such that: 

— Φ1(f;g) = Φ1(f);Φ1(g) for each path gf in C2

— Φ1(idx) = idΦ0(x) for each x in C0.



Functors

Examples

Sign:PRES→fSET s.t. Sign(<Σ,Φ>)=Σ
Alph:PROC→SET⊥ s.t. Alph(<Α⊥,Λ>)=Α⊥

These are examples of forgetful functors : they “forget” 
part of the structure of the source category.

Sem: PRES→PROCop s.t. 
— Sem(<Σ,Φ>)=<2Σ,{λ:ω→2Σ | λ╞ Φ}
— Sem(f:<Σ,Φ>→<Σ’,Φ’>)=f-1:2Σ’ →2Σ



Universal Constructions

Isomorphisms
Let C be a category and x,y objects of C. 
A morphism f:x→y of C is said to be an isomorphism iff 
there is a morphism g:y→x of C such that: 

f;g = idx and g;f = idy. 
In these conditions, x and y are said to be isomorphic.



Universal Constructions

Initial objects
An object x of a category C is said to be initial iff, for each 
object y of C, there is a unique morph. from x to y.
Two initial objects are isomorphic. Hence, we usually refer to 
the initial object of a category, if it exists.

Terminal objects
An object is terminal in a category C iff it is initial in Cop. 
That is, x is terminal in C iff, for each object y of C, there is 
a unique morphism from y to x. 



Sums / Coproducts

Let C be a category and x,y objects of C.
The object z is said to be the sum (or coproduct) of x and y 
with injections ix:x→z and iy:y→z iff for any object v and 
pair fx:x→v, fy:y→v of C there is a unique k:z→v in C such 
that ix;k = fx and iy;k = fy.

If the sum of x and y exists, it is 
unique up to isomorphism (denoted x+y).

x y

x+y

v

k
f f

i ix y

x y



Universal Constructions

Amalgamated Sums / Pushouts
Let C be a category and f:x→y, g:x→z morphisms of C. The 
amalgamated sum (or pushout) of f and g consists of two 
morphisms f':y→w and g':z→w such that

— f;f' = g;g'
— for any other f":y→v and g":z→v 

such that f;f" = g;g, there is a unique
morphism k:w→v in C such that
f’;k = f" and g’;k = g".

x

y

v
k

z

w
f

g
g'

f'

f"

g"



Specification vending 
machine is

signature coin, cake, cigar
axioms

beg ⊃ ¬cake∧¬cigar ∧

(coin∨(¬cake∧¬cigar)Wcoi
n)
coin ⊃ (¬coin)W(cake∨cigar)
(cake∨cigar) 
⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar

Specification regulator is
signature tri, ted, tor
axioms

beg ⊃ ¬tor
tri ⊃ (¬ted)Wtor

Specification channel is signature a, b

Specification regulated vending machine is
signature coin, cake, cigar, token
axioms

beg ⊃ ¬cake ∧ ¬cigar ∧ ¬token ∧ (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
coin ⊃ (¬cigar)Wtoken
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar



Diagrams

Let C be a category and I a graph. A diagram in C with shape 
I is a graph homomorphism δ:I→G(C) where G(C) is the 
underlying graph of C. 

— The homomorphism corresponds to a labelling of the graph I. 
— A diagram in a category can be seen as a graph whose nodes are 

labelled with objects and the arrows are labelled with morphisms of 
that category.

— The diagram δ is said to commute iff, for every pair x,y of nodes 
and every pair of paths w=um...u1, w’=vn...v1 from x to y in graph I, 
δum°...°δu1=δvn°...°δv1 holds in C.



Cocones

Let δ:I→C be a diagram in a category C. A cocone with base δ
is an object z of C together with a family {pa:δa→z}a∈I0 of 
morphisms of C, usually denoted by p:δ→z.

• The object z is said to be the vertex of the cocone, and, for 
each a∈I0, the morphism pa is said to be the edge of the cocone 
at point a.

• A cocone p with base δ:I→C and vertex z
is said to be commutative iff for every
arrow s:a→b of graph I, pb°δs = pa.

z

δ



Colimits

Let δ:I→C be a diagram in a category C. 
A colimit of δ is a commutative cocone p:δ→z such that, for 
every other commutative cocone p':δ→z', there is a unique 
morphism f:z→z' such that  f°p = p', i.e.  f°pa = p'a for every 
edge.

z

δ

z'
f



Cocompleteness

A category is (finitely) cocomplete if all (finite) diagrams 
have colimits.
There are several results on the (finite) co completeness 
of categories. A commonly used one is:

A category C is finitely cocomplete 
iff 

it has initial object and pushouts of all pairs of morphisms 
with common source.
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Parallel Program Design using CT 

CT can be used as a mathematical framework in which 
designs, configurations and relationships between designs, 
such as refinement, can be formally described

We shall illustrate this ability using a parallel program 
design language – COMMUNITY 



COMMUNITY: Designing the components

An example

A design that models a naive bank account

design n-account is
out  num:nat, bal:int
in   v: nat
do dep: true → bal:=v+bal
[]   wit: bal≥v → bal:=bal–v

dep

bal
v

wit

num
n-account



Designing the components

Another example 

The design of a VIP-account that may accept a withdrawal when the 
balance together with a given credit amount is greater than the 
requested amount.

design vip-account[CRE:nat] is
out  num: nat, bal:int
in   v: nat
do dep[bal]: true → bal’=v+bal
[]   wit[bal]: bal+CRE≥v, bal≥v → bal’≤bal-v



Designing the components

Σ: an algebraic specification of the underlying data types
D(g)⊆out(V)∪prv(V): local vars that can be modified by g.
L(g), U(g): two conditions on V s.t. L(g)⊃U(g). They define 
an interval in which the enabling condition of any guarded 
command that implements g must lie.
R(g):  a condition on V, D(g) and D(g)’ . It  defines 
requirements over the values of variables in D(g),  after 
the execution of g.

design P[Σ] is
out   out(V)
in    in(V)
prv    prv(V)
do [prv] g[D(g)] : L(g), U(g) → R(g)



Operational Semantics

When, for every action g,
— L(g) and U(g) coincide
— R(g) defines a conditional multiple assignment

the design is a program.
Execution of a closed  program (no input vars):

— at each step, one of the actions whose enabling condition holds is 
selected and its assignments are executed atomically

— shared actions can be selected by the environment  
— private actions are internally selected  in a fair way: every private 

action that is infinitely often enabled is selected an infinite 
number of times



Superposition

A structuring mechanism for the design of systems that 
allows to build on already designed components by 
“augmenting” them while “preserving” their properties.

Typically, the additional behaviour  results from the 
introduction of new variables and corresponding 
assignments (that may use the values of the variables of 
the base design).



Applying Superposition

An example

Extending the design of n-account to control how many days the balance 
has exceed a given amount since the last reset.

design e-account[MAX:int] is
out    num: nat, bal:int
in     v,day:nat
out    count:int
prv d:int
do dep[bal,d,count]: true → bal’=v+bal ∧ d’=day ∧

(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[]     wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧
(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[]     reset: true, false → count:=0||d’:=day



Characterising Superposition

The relationship between a design P1 and a design P2 obtained 
from P1 through the superposition of additional behaviour, 
can be modelled as a morphism 

σ:P1→P2

in a suitable category of designs.



Superposition Morphisms

lA superposition morphism     σ:P1→P2 consists of
• a total function σvar:V1→V2 s.t.

• a partial mapping σac:Γ2→Γ1 s.t.

•sort2(σvar(v))= sort1(v)
•σvar(out(V1)) ⊆ out(V2)
•σvar(in(V1)) ⊆ out(V2) ∪in(P2)
•σvar(prv(V1)) ⊆ prv(V2)

•σac( sh(Γ2)) ⊆sh(Γ1)
•σac( prv(Γ2)) ⊆prv(Γ1)
•σvar(D1(σac( g))) ⊆D2(g)
•σac(D2(σvar( v))) ⊆D1(v)

Sorts, privacy and availability 
of vars are preserved
In vars may become out vars

Privacy/availability 
of actions is preserved
Domains of vars are preserved



Superposition Morphisms

and, moreover, for every g in Γ2 s.t. σac( g) is defined

Effects of actions must be preserved or 
made more deterministic 

The bounds for enabling conditions of 
actions can be strengthened but not 
weakened

• R2(g) ⊃ σ(R1(σac( g))) 

• L2(g) ⊃ σ(L1(σac( g))) 

• U2(g) ⊃ σ(U1(σac( g))) 



Superposition Morphisms: Examples

design n-account is
out    num:nat, bal:int
in     v:nat
do dep[bal]: true → bal’=v+bal 
[]     wit[bal]: bal≥v → bal’=bal–v

design e-account[MAX:int] is
out    num:nat, bal:int
in     v,day:nat
out    count:int
prv d:int
do dep[bal,d,count]: true → bal’=v+bal ∧ d’=day ∧

(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[]     wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧
(bal≥MAX ⊃ count’=count+(day-d)) ∧
(bal<MAX ⊃ count’=count)

[]     reset: true, false → count:=0||d:=day

inclusion



Superposition Morphisms: Examples

Another example

design account is
out  num:nat, bal:int
in   v: nat
do dep: true → bal:=v+bal
[]   wit: true → bal:=bal–v

inclusion

design n-account is
out  num:nat, bal:int
in   v: nat
do dep: true → bal:=v+bal
[]   wit: bal≥v → bal:=bal–v



Externalising the superposed behaviour

These examples represent two typical kinds of superposition
— monitoring 
— regulation

The superposed behaviour can be captured by a component  
— monitor Support reuse
— regulator

and the new design is obtained by interconnecting the 
underlying design with this component.



e-account: Externalising the counter

A design of a counter that counts how many days a value has exceed a 
given value, since the last time it was reset

design counter[LIM:int] is
in val,day:nat
out   count:int
prv d:int
do    chg[d,count]: true → d’=day ∧

(val≥LIM ⊃ count’=count+(day-d)) ∧
(val<LIM ⊃ count’=count) 

[]    reset: true, false → count:=0||d’:=day

chg

d

val

reset

count

counter[LIM]
day



e-account: Externalising the counter

To identify which variables and actions of the account are 
the subject of the monitoring expressed by the counter, we 
use the categorical diagram 

This diagram captures the configuration of a system with 
two components — n-account and counter — that are 
interconnected through a third design (a communication 
channel)

design channel is
in  x: int
do  a: true→skip a ←

chg

bal ← x
a ← chgdep → a

wit → a
x → val

n-account counter 



Configurations

• Using diagrams  whose nodes are labelled by designs and 
whose arcs are labelled by superposition morphisms, it is 
possible to design large systems from simpler 
components.

• Interactions between components are required to be 
made explicit by providing the corresponding name 
bindings. 

• Name bindings are represented as additional nodes 
labelled with designs and edges labelled by morphisms. 



Semantics of Configurations: e-account

What’s the relationship between e-account and the configuration?

?

P    

design channel is
in  x: int
do  a: true→skip a ← chg

bal ← x
a ← chgdep → a

wit → a
x → val

n-account counter 

e-account 
bal←val

dep→chg

wit→chg

inclusion

Colimit 
construction



Semantics of Configurations: e-account

design counter[LIM:int] is
in val,day: nat
out  count:int
prv d:int
do   chg[d,count]: true → d’=day ∧

(val≥LIM ⊃ count’=count+(day-d))∧
(val<LIM ⊃ count’=count) 

[]   reset: true,false →count:=0||d:=day

design channel is
in  x: int
do  a: true →

design n-account is
out    num:nat, bal:int
in     v: nat
do dep: true → bal:=v+bal
[]     wit: bal≥v → bal:=bal–v

bal
 ← x x → vala ← chgdep → a

wit → a

design e-account[LIM:int] isin   day:nat; v: intout  num:nat, bal,count:intprv d:intdo dep[bal,d,count]: true → bal’=bal+v ∧ d’=day ∧(bal≥LIM ⊃ count’=count+(day-d))∧(bal<LIM ⊃ count’=count)[]   wit[bal,d,count]: bal≥v → bal’=bal-v ∧ d’=day ∧(bal≥LIM ⊃ count’=count+(day-d))∧(bal<LIM ⊃ count’=count) []   reset: true,false → count:=0||d:=day

bal←val

dep→chg

wit→chg

inclusion



Semantics of Configurations

The semantics of configurations is given by a categorical 
construction: the colimit of the underlying diagram.

channel

P1 P2 

P1||P2 

i1←x→o2

defines an I/O connection

g11 → g ← g21
g12 g22

...

defines synchronisation sets
{g11, g21}, {g12, g21},...



Semantics of Configurations

The colimit of such design diagrams
Amalgamates vars involved in each i/o interconnection and the result 
is an output var of the system design
Represents every synchronisation set {g1,g2} by a single action g1|g2 
with
— safety bound: conjunction of the safety bounds of g1 and g2 

— progress bound: conjuction of the progress bounds of g1 and g2 

— conditions on next state: conjunction of conditions of g1 and g2



Configurations

Not every diagram represents a meaningful configuration.
Restrictions on diagrams that make them well-formed 
configurations:
— An output variable of a component cannot be connected (directly 

or indirectly through input variables) with output variables of the 
same or other components.

— Private variables and private actions cannot be involved in the 
connections.

These restrictions cannot be captured by the notion of
morphism because they involve the whole diagram.



n-account: Externalising the regulator

design reg is
in  x:int, y: nat
do  a: x≥y →

id

wit → abal
 ← x

v ← y
design channel’ is
in  x: int, y:nat

do  a: true→

design account is 
in  v:nat
out bal,num:int
do dep: true → bal:=bal+v 
[]  wit: true → bal:=bal-v 

design n-account is 
in  v:nat
out bal,num:int
do dep: true → bal:=bal+v 
[]  wit: bal≥v → bal:=bal-v 



vip-account: an account with a different 
regulator

design vip-reg[C:nat] is
in  x:int,y:nat
do  a: x+C≥y, x≥y →

id

wit → abal 
←

x

v ←
y

design channel’ is
in  x:int, y:nat
do  a:true →

design account is 
in  v:nat
out bal,num:int
do dep: true → bal:=bal+v 
[]  wit: true → bal:=bal-v

design vip-account[C:nat] is 
in  v:nat
out bal,num:int
do dep: true → bal:=bal+v 
[]  wit: bal+C≥v, bal≥v → bal:=bal-v 



Separation of Coordination and Computation

The computational aspects do not play any role in the 
interconnection of systems components.



Separation of Coordination and Computation

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out  count:int
prv d:int
do   chg[count,d]
[]   reset[count,d]

sign n-account is
in   v:nat
out  bal,num:int
do dep[bal]
[]   wit[bal]

sign e-account is
in   day:nat
out  bal,num:int
prv count,d:int
do dep[bal,count,d]
[]   wit[bal,count,d]
[]   reset[count,d]

design account is 
in   v: nat
out  bal,num:int
do dep[bal]: ...
[]   wit[bal]: ...

design counter is
in val,day:nat
out  count:int
prv d:int
do   chg[count,d]: ...
[]   reset[count,d]: ...

design channel is
in   x:int
do   a[]: true →

design e-account is
in   day:nat
out  bal,num:int
prv count,d:int
do dep[bal,count,d]: ...
[]   wit[bal,count,d]: ...
[]   reset[count,d]: ...



sign channel is
in x:…
do a

Separation of Coordination and Computation

design D1 is 
in   …
out  …
do ...
[] ...

design D2 is
in   …
out  …
do ...
[] ...

design channel is
in   x:… 
do   a: L(a),U(a) → R(a)    

design channel is
in   x:… 
do   a: true → skip    



Separation of Coordination and Computation

Rather than using signatures and signature morphisms, a 
more user-friendly notation may be adopted

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out  count:int
prv d:int
do   chg[count,d]
[]   reset[count,d]

sign n-account is
in   v:nat
out  bal,num:int
do dep[bal]
[]   wit[bal]

chg

d
val

reset

count

counter[LIM]
day

dep

bal
v

wit

num

account



Separation of Coordination and Computation

What is the mathematics of this?

•Externalise signatures/interfaces from designs through a 
functor sig:DES→SIG in a way that

• sig is faithful;
• sig lifts colimits of well-formed configurations;
• sig has discrete structures;
• given any pair of configuration diagrams dia1, dia2 s.t. 

dia1;sig=dia2;sig, either both are well-formed or both 
are ill-formed.

•What does it mean?



Separation of Coordination and Computation

•sig is faithful:
sig is injective on morphisms;
This means that morphisms of designs cannot induce 
more relationships than those that can be established 
between their underlying signatures



Separation of Coordination and Computation

•sig lifts colimits of well-formed configurations;
Given any well-formed configuration expressed as a diagram
dia:I→DES of designs and colimit (sig(Si)→θ)i:I of the underlying 
diagram of signatures, i.e. of (dia;sig), there exists a colimit (Si→S)i:I
of the diagram dia of designs whose signature part is the given colimit
of signatures, i.e. sig(Si→S)=(sig(Si)→θ)

This means that if we interconnect system components through a 
well-formed configuration, then any colimit of the underlying diagram 
of signatures establishes a signature for which a computational part 
exists that captures the joint behaviour of the interconnected 
components.



Separation of Coordination and Computation

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out  count:int
prv d:int
do   chg[count,d]
[]   reset[count,d]

sign n-account is
in   v:nat
out  bal,num:int
do dep[bal]
[]   wit[bal]

sign e-account is
in   day:nat
out  bal,num:int
prv count,d:int
do dep[bal,count,d]
[]   wit[bal,count,d]
[]   reset[count,d]

design account is 
in   v: nat
out  bal,num:int
do dep[bal]: ...
[]   wit[bal]: ...

design counter is
in val,day:nat
out  count:int
prv d:int
do   chg[count,d]: ...
[]   reset[count,d]: ...

design channel is
in   x:int
do   a[]: true →

design e-account is
in   day:nat
out  bal,num:int
prv count,d:int
do dep[bal,count,d]: ...
[]   wit[bal,count,d]: ...
[]   reset[count,d]: ...



Separation of Coordination and Computation

•sig has discrete structures;
• For every signature θ:SIG, there exists a design d(θ):DES such 

that, for every signature morphism f:θ→sig(S), there is a
morphism g:d(θ)→S in DES such that sig(g)=f. 

• That is, every signature θ has a “realisation” (a discrete lift) as a 
design d(θ) in the sense that, using θ to interconnect a 
component S, which is achieved through a morphism f:θ→sig(S), 
is tantamount to using d(θ) through any g:d(θ)→S s.t. sig(g)=f.  

• Because sig is faithful, there is only one such g, which means that 
f and g are, essentially, the same.  That is, sources of morphisms
in diagrams of designs are, essentially, signatures.



sign channel is
in x:…
do a

Separation of Coordination and Computation

design D1 is 
in   …
out  …
do ...
[] ...

design D2 is
in   …
out  …
do ...
[] ...

design channel is
in   x:… 
do   a: L(a),U(a) → R(a)    

design channel is
in   x:… 
do   a: true → skip    



Separation of Coordination and Computation

•given any pair of configuration diagrams dia1, dia2
s.t. dia1;sig=dia2;sig, either both are well-formed or 
both are ill-formed.

• This ensures that the criteria for well-formed 
configurations do not rely on the computational parts 
of descriptions.



Separation of Coordination and Computation

Categories DES for which there is a functor sig:DES→SIG
satisfying the four given properties are said to be 
coordinated over SIG.

Which categories are coordinated?
—Processes over their alphabets;
—Theories over their signatures;
—All topological categories;
—…



From simple to complex interaction protocols  

The configuration diagrams presented so far express 
simple and static interactions between component 

—action synchronisation 
—the interconnection of input variables of a component 

with output variables of other components

More complex interaction protocols  can also be described 
by configurations...



Configurations: more examples

A generic sender and receiver of messages communicating 
asynchronously, through a bounded channel 

put

i

get

obuffer[t+K]

prod

val

send

sender[t]

rec

val receiver[t]

design sender[t] is 
out val:t
prv rd:bool
do    prod[val,rd]:¬rd,false→rd’
[]    send[rd]:rd,false → ¬rd’

design receiver[t] is 
in val:t
do rec:true,false→



Configurations: more examples

A generic sender and receiver of messages communicating 
asynchronously, through a bounded channel 

put

i

get

obuffer[t+K]

prod

val

send

sender[t]

rec

val receiver[t]

design buffer[t,K:nat] is 
in    i:t
out   o:t
prv b:queue(K,t);rd:bool
do    put:¬full(q)→q:=enqueue(i,q)
[]prv next:¬empty(q)∧¬rd →o:=head(q)||q:=tail(q)||rd:=true
[]    get:rd → rd:=false 



Configurations: more examples

A generic sender and receiver of messages communicating 
through a pipe

put

i

get

o
pipe[t,K]

prod

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

design psender[t] is 
out val:t, cl:bool
prv rd:bool
do    prod[val,rd]:¬rd∧¬cl,

false→rd’
[]    send[rd]:rd,false → ¬rd’
[]prv close[cl]:¬rd∧¬cl,false→cl’

design preceiver[t] is 
in val:t, eof:bool
out cl:bool
do rec:¬eof∧¬cl,false→
[]prv close:¬cl,¬cl∧eof →cl’



Configurations: more examples

A generic sender and receiver of messages communicating 
through a pipe

put

i

get

o
pipe[t,K]

prod

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

design pipe[t,K:nat] is 
in    i:t,scl:bool
out   o:t,eof:bool
prv b:queue(K,t);rd:bool
do    put:¬full(q)→q:=enqueue(i,q)
[]prv next:¬empty(q)∧¬rd →o:=head(q)||q:=tail(q)||rd:=true
[]    get:rd → rd:=false
[]prv signal:scl∧empty(q)∧¬rd→eof:=true



Customers may be subject to the standard rules for 
withdrawing money

Interaction protocols or Coordination Contracts

design standard is
in val: nat; bal: int
do dep: true →
[]  wit: bal ≥ val →

dep

val

wit

balstandard

put

valcustomer

wit

bal

getprod dep

rd
account



Customers may subscribe VIP-contracts that allow them 
to overdraw up to some limit as long as the average 
balance is greater than 1000.

Interaction protocols or Coordination Contracts

design standard is
in val: nat; bal: int
do dep: true →
[]  wit: bal ≥ val →

dep

val

wit

balVIP

put

valcustomer

wit

bal

getprod dep

rd
account

design VIP is
in val: nat; bal: int
prv credit:nat
do dep: true →
[]  wit: bal+credit ≥ val →

credit



Refinement

The refinement relationship between two designs can also be 
modelled as a morphism in a suitable category of designs. 

A refinement morphism
σ:P1→P2

is intended to support the identification of a way in which a 
design P1 is refined by  P2.



Refinement morphisms 

A refinement morphism     σ:P1→P2 consists of
• a total function σvar:V1→Term(V2) s.t.

• a partial mapping σac:Γ2→Γ1 s.t.

•sort2(σvar(v))= sort1(v)
•σvar(out(V1)) ⊆ out(V2)
•σvar(in(V1)) ⊆ in(V2)
•σvar(prv(V1)) ⊆ Term(loc(V2))

•σac(sh(Γ2)) ⊆sh(Γ1)
•σac(prv(Γ2)) ⊆prv(Γ1)
•σac

-1(g)≠∅, g∈sh(Γ1)
•σvar(D1(σac( g))) ⊆D2(g)
•σac(D2(σvar(v))) ⊆D1(v), v∈loc(V1)

Sorts are preserved as well as 
the border between the 
component and its environment

Domains of vars are preserved
Every action that models 
interaction has to be 
implemented



Refinement morphisms

and, moreover, for every g in Γ2 s.t. σac( g) is defined

and for every g1 in Γ1

Effects of actions must be preserved or 
made more deterministic.
The interval defined by the safety and 
progress bounds of each action must be 
preserved or reduced

• R2(g) ⊃ σ(R1(σac( g))) 

• L2(g) ⊃ σ(L1(σac( g))) 

• σ(U1(g1)) ⊃ ∨{g2:σ(g2)=g1} U2(g2) 



Refinement of vip-account

design vip-account[CRE:nat] isout  num:nat; bal:intin   v: nat
do dep[bal]: true → bal’=v+bal[]   wit[bal]: bal+CRE≥v, bal≥v → bal’=bal-v

design vip-account2[CRE:nat] isout  num:nat; bal:intin   v,day,vip:natprv d,sum,count:int
do dep[bal,d,count,sum]: true → bal’=v+bal ∧ d’=day ∧count’=count+(day-d) ∧sum’=sum+bal*(day-d)
[]   wit[bal,d,count,sum]: bal≥v ∨ (bal+CRE≥v∧sum/count>vip)→bal’=bal-v ∧ d’=day ∧count’=count+(day-d) ∧sum’=sum+bal*(day-d)
[]   reset: true, false → count:=0||sum:=0||d:=day

inclusion



worduser - a refinement of sender

design user is
out p:ps+pdf
prv free:bool, w:MSWord
do  save[w]: true,false →
[]  pr_ps: free → p:=ps(w)||free:=false 
[]  pr_pdf: free → p:=pdf(w)||free:=false
[]  print: ¬free → free:=true

design sender(ps+pdf) is 
out val:ps+pdf
prv rd:bool
do  prod[val,rd]:¬rd,false→rd’
[]  send[rd]:rd,false → ¬rd’

val→prd→¬freeprod←pr_ps
prod←pr_pdf
send←print



printer: a refinement of receiver

design printer is
out rdoc:ps+pdf
prv busy:bool, pdoc:ps+pdf
do rec:¬busy→pdoc:=rdoc||busy:=true 
[]  end_print:busy,false→busy:= false

design receiver(ps+pdf) is 
in val:ps+pdf
do rec[]:true,false→

val→rdocrec←rec



Structuring systems vs Refinement

It is essential that 
the gross modularisation of a system 

in terms of 
components and their interconnections

be “respected” when  component designs are refined into 
more concrete ones

Compositionality



Structuring systems vs Refinement

If the descriptions of the components of a system are 
refined into more concrete ones 

1. It is possible to propagate the interactions 
defined previously

2. The resulting description of the system refines 
the previous one



Structuring systems vs Refinement

Example

put

i

get

obuffer

prod

val

send

sender

rec

val receiver

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pr



Structuring systems vs Refinement

Example

put

i

get

obuffer

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pr



Structuring systems vs Refinement

Compositionality ensures that properties inferred from the more 
abstract description hold also for the more concrete  (refined) one
Eg: in order message delivery does not depend on the speed at which 
messages are produced and consumed

put

i

get

obuffer

print

p

pr_ps

user

rec

rdoc printer

pr_pdfsave end_pr



Systematizing Configurations

We have seen that 

Complex interaction protocols  can  be described by 
configurations, independently of  the concrete components 
they will be applied to; they can be used in different 
contexts
The use of  such interaction protocols in a given 
configuration corresponds to defining the way in which the 
generic participating components are refined by the 
concrete components

Connector Types

Instantiation of Connectors



Systematizing Configurations

We may elevate the abstractions used to describe systems 
configurations...

put

i

get

obuffer

prod

val

send

sender

rec

val receiver

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pri
nt

κ η



Systematizing Configurations

... and  define them in terms of computational components 
and connectors

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pri
nt

κ(sender) η(receiver)
async



3

Software Architectures



Architectural Connectors

Interaction protocols can be described as Connectors

A connector consists of a configuration involving a Glue (design) and 
one or more Roles (designs):

— The roles describe the behaviour required of the components so that they 
can participate in the interaction (instantiate the roles); 

— The glue describes how the activities of these components are 
coordinated  in the intended protocol. 

The application of a connector to given components of a system is 
defined by the instantiation of its roles.  Role instantiation is 
modelled through refinement morphisms.



Applying CT to Software Architecture

The notions we presented for CommUnity can be generalised to other 
design formalisms provided that they be presented by

— a category c-DESC of component descriptions in which 
configurations of systems of interconnected components are 
modelled through diagrams;

— a set Conf(CD) for every set of component descriptions CD, 
defining the well-formed configurations over CD;

— a category r-DESC with the same objects as c-DESC, but in 
which morphisms model refinement

and 

define an architectural school in the following sense:



Architectural Schools

Coordination
Separation between coordination and computation materialised through a 
functor

sig: c-DESC→SIG

that

— is faithful;
— lifts colimits of well-formed configurations;
— has discrete structures;
— given any pair of config. diagrams dia1, dia2 s.t. dia1;sig=dia2;sig, either 

both are well-formed or both are ill-formed.



Architectural Schools

Refinement and Compositionality
If the descriptions of the components of a system are refined into more 
concrete ones 

1. It is possible to propagate the interactions defined previously

S’i

dia
S1 Si Sk

S’1 S’k

η1 ηi ηk
+(ηi)dia

S1 Si Sk

S’1 S’kS’i



Architectural Schools

Refinement and Compositionality
If the descriptions of the components of a system are refined into more 
concrete ones 

1. It is possible to propagate the interactions defined previously
2. The resulting description of the system is a refinement of
the original one

dia S

dia+(ηi)
S'

S1 Si Sk

S’1 S’i S’k



Connectors

A connector is a well-formed configuration of the form

G is the glue and R’s are the roles
Its semantics is given by the colimit of this diagram 

R1 Ri Rn

θ1 θi θn

G



Connectors - Instantiation

An instantiation of a connector consists of, for each of its roles R, a 
design P together with a refinement morphism φ:R→P

The semantics of a connector instantiation is the colimit of the diagram

R1 Ri Rn

θ1 θi θn

G

R1
RnRi

P1 Pi Pn



Generalisations 

This categorical framework provides 
– an ADL-independent semantics for existing  principles 

and techniques of SA 
– a basis for extending the capabilities of existing 

ADLs.

Examples:
• Heterogeneous connectors
• Higher-order connectors



Heterogeneous Connectors

As defined previously, in connectors

— Roles are only used for defining which are the components 
admissible as instances.

— Correct instantiation defined by refinement morphisms

This justifies the adoption of a more declarative formalism 
for the specification of roles, giving rise to Heterogeneous 
Connectors



Heterogeneous Connectors

lThe pipe connector again...

put

i

get

o
pipe[t,K]

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

spec psender[t] is 
out       val:t, cl:bool
actions   send
axioms cl⊃GG(¬send∧cl)



Heterogeneous Connectors

lThe pipe connector again...

put

i

get

o
pipe[t,K]

val

send

psender[t]

rec

val
preceiver[t]sclcl

cl
eof eof

spec preceiver[t] is 
in      val:t, eof:bool
out     cl:bool
actions rec
axioms cl⊃GG(¬rec∧cl)

((eof⊃GGeof)∧(eof∧¬cl))⊃(¬recUUcl)



Specifications

Specification

• V: set of vars
• Γ: set of actions
• Φ: a set of propositions of linear temporal logic

A specification morphism σ:S1→S2 consists of
– a total function σvar:V1→V2

– a partial mapping σac:Γ2→Γ1 s.t. 
1. σvar(out(V1))⊆out(V2)
2. Φ2 ‚ σ (Φ1)

Colimits in this category join the axioms of the component specs

spec S is 
in      in(V)
out     out(V)
actions Γ
axioms Φ



Specifications

This category of specifications is also coordinated over a 
category of signatures, i.e., these signatures provide the 
means for interconnecting specifications.
Signatures of the form θ=<V,Γ> can be mapped into 
specifications as well as into designs and, hence, the 
interconnection of a role specification with a glue design is 
given by a pair of morphisms of the form

G     dsgn(θ )  spec(θ ) Rθ



Heterogeneous Connectors

For the instantiation of roles, we need a satisfaction 
relation ‚ between design morphisms and specification 
morphisms
An instantiation of a connector consists of, for each of its 
roles, a design P together with a design morphism 
φ:dsgn(θ)→P s.t.

G     dsgn(θ )  spec(θ ) R

P

‚



Heterogeneous Connectors

For CommUnity designs and LTL specifications

the satisfaction relation ‚ between design morphisms and 
specification morphisms is based on a notion refinement between 
specifications and designs

– Part of the semantics of CommUnity designs can be encoded in LTL —
Properties(P)

– P refines S iff there exists a signature morphism η:θS→ θP s.t. 
Properties(P)‚ η(Axioms(S))                       

π:P → P’ ‚ σ:S → S’ iff there exists refinements η:θS→ θP and 
η’:θS’→ θP’ s.t.                        at the signature level, commutes.P P’

S S’



Heterogeneous Connectors

Properties(P)

—(g ⊃ L(g)) for every g∈Γ

— ∨g∈D(v)g ∨ (Xv=v)) for every v∈loc(V)
—(g ⊃ τ(R(g)) for every g∈Γ, where τ is a translation that 

replaces every primed variable v' by the term (Xv)
—(GFGFU(g) ⊃ GFGFg) for every g∈prv(Γ)



Heterogeneous Connectors

The semantics of a heterogeneous connector

is given by the colimit of this specification diagram.

dsgn(θ1 ) dsgn(θi ) dsgn(θn )

G

R1 Ri Rn

spec(θ1 ) spec(θi ) spec(θn )

properties(G)



Higher-Order Connectors

Current level of support and understanding of connectors 
is still insufficient, far from the one components have

Need further steps for a systematic construction of new 
connectors from existing ones
—Promote reuse
—Promote incremental and compositional development
—Make it easier to address complex interactions



Higher-Order Connectors 

A specification mechanism that allows 
independent aspects of interaction protocols to be 
specified separately

e.g., compression, fault-tolerance, 
security, monitoring

composed and integrated in existing connectors

A connector that takes a connector as a parameter  
describing the capabilities that must be superposed over 
the instantiation of the  parameter



Higher-Order Connectors

Higher-Order Connector =
connector (body) + connector (formal parameter)

— The body models the nature of the service that is superposed on 
instantiation of the formal parameter

— The formal parameter describes the kind of connector to which 
that service can be applied

Example: Monitoring of messages in a unidirectional communication

Using a Higher-Order Connector
— A hoc can be applied to any connector that instantiates its formal 

parameter, giving rise to a connector with the new capabilities



Higher-Order Connectors: An example

Installing a compress/decompress service over a 
unidirectional communication protocol:
—modify Uni-comm in a way that messages are 

compressed for transmission without intruding over the 
original connection

—the outgoing messages should be compressed before 
they are put into the buffer and decompressed when 
they are removed from the buffer, before being 
delivered to the receiver



Higher-Order Connectors: Example 

FT service that provides in-order message delivery in the presence of 
message-loss and duplication faults: 

• numbers the messages sent by the sender; sends each numbered message 
until the corresponding ack is received; keeps pending messages in a queue

• sends acks for every received message; ignores the received (numbered) 
messages out of order and transmits the others to the receiver (not 
numbered anymore)

modelled by a HOC with two connector parameters:
• transmission of numbered messages
• transmission of acks (in the opposite direction)



Higher-Order Connectors

number: sends repeatedly a numbered message until the 
corresponding ack is received and keeps pending messages 
in a queue

denumber: sends acks for every received message, ignores 
the messages out of order and transmits the other to the 
receiver

gluesender receiver

Uni-comm[s*nat] Uni-comm[nat]

denumbernumber

gluesender receiver

sender receiver



An example

Asynchronous communication through a bounded channel can 
be represented by a connector Async

with two roles —sender and receiver. The glue is a bounded 
buffer with a FIFO discipline.
Components A and B connected through Async

buffersender receiver

A Bbuffersender receiver



An example

Suppose that the information transmitted from A to B must 
be compressed. 
Two alternatives:

—develop from scratch a new connector C-Async with 
the same roles but a new glue

—obtain a new connector C-Async by installing a 
compress/decompress service over Async

A Bc-asyncsender receiver

C-Async



An example

Installing a compress/decompress service over Async:
—modify Async in a way that messages are compressed 

for  transmission without intruding over the original 
connection

—the outgoing messages should be compressed before 
they are put into the buffer and decompressed when 
they are removed from the buffer, before being 
delivered to the receiver



An example

This form of coordination can be obtained by instantiating 
Async with a component comp in the role of sender and 
decomp in the role of receiver 

C-Async:

comp decompbuffersender receiver

comp decompbuffersender receiversender receiver



An example

The procedure for installing the compress/ decompress 
service can be applied to other connectors

The service itself can be modelled as a higher-order 
connector Compression and the installation of the service 
over a given connector can be obtained by a suitable 
instantiation of its parameter 



The Compression Hoc: formal parameter

1.The formal parameter is  the connector Uni-comm[t] 
modelling a generic unidirectional communication protocol 

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]



The Compression Hoc: formal parameter

1.The formal parameter is  the connector Uni-comm[t] 
modelling a generic unidirectional communication protocol 

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design sender[t] is 
out    val:t
prv    rd:bool
do prv prod:¬rd,false→rd:=true||val:∈t
[]     send:rd,false → rd:=false



The Compression Hoc: formal parameter

1.The formal parameter is  the connector Uni-comm[t] 
modelling a generic unidirectional communication protocol 

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design receiver[t] is 
in  val:t
do  rec:true,false→skip



The Compression Hoc: formal parameter

1.The formal parameter is  the connector Uni-comm[t] 
modelling a generic unidirectional communication protocol 

put

i

get

oglue[t]val

send

sender[t]

rec

val receiver[t]

design glue[t] is 
in    i:t
out   o:t
do    put:true,false→skip
[]prv prod: true,false→o:∈t
[]    get: true,false→skip



The Compression Hoc: body connector

2.The body connector is  Compression[Σ]

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

design comp[Σ] is
in     di:t
out    co:s
prv    v:t; rd,msg:bool
do     drec: ¬msg → v:=di||msg:=true
[] prv comp:¬rd∧msg → co:=comp(v)||rd:=true
[]     csend:rd → rd:=false||msg:=false



The Compression Hoc: body connector

2.The body connector is  Compression[Σ]

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

design decomp[Σ] is
in ci:s
out do:t
prv v:s; rd,msg:bool
do crec: ¬msg → v:=ci||msg:=true
[] prv dec:¬rd∧ msg → do:=decomp(v)||rd:=true
[] dsend: rd → rd:=false||msg:=false



The Compression Hoc: relating the parameter and 
the body connector

3.The refinement relationships

establishing the instantiation of Uni-comm[s] with comp and 
decomp

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]



The Compression hoc in Community

design comp[Σ] is
in     di:t
out    co:s
prv    v:t; rd,msg:bool
do     drec: ¬msg → v:=di||msg:=true
[] prv comp:¬rd∧ msg → co:=comp(v)||rd:=true
[]     csend:rd → rd:=false||msg:=false

design sender[t] is 
out    val:t
prv    rd:bool
do prv prod:¬rd,false→rd:=true||val:∈t
[]     send:rd,false → rd:=false val→co rd→rd

prod←comp
send←csend



Categorical Semantics of HOCs

A hoc consists of

formal parameter: pθ1 pθi pθk

pG

pR1 pRi pRk

pC



Categorical Semantics of HOCs

A hoc consists of 

body connector:

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C



Categorical Semantics of HOCs

A hoc consists of 

refinement morphisms:

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C



The Compression hoc

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec

ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]



The Compression hoc: semantics

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

crec
ci

dsend

do
decomp[Σ]

co

put

i

get

oglue[s]



Categorical Semantics of HOCs

pθ1 pθk

pG pC

θ1 θi θn

G

R1 Ri Rn

C

pR1 pRi pRk

pθi

newG

Its semantics is
given by the
connector with 
glue newG



Instantiation of Compression with Async

drec

di

csend

ocomp[Σ]val

send

sender[t

rec

valreceiver[t]

crec

ci

dsen

do
decomp[Σ]

co

put

i

get

oglue[s]val

send

sender[s]

rec

val receiver[s]

put

i

get

obuffer[t]val

send

sender[t]

rec

val receiver[t]



Instantiation of Compression with Async

The semantics of this instantiation is given by the connector

drec

di

csend

ocomp[Σ]val

send

sender[t]

rec

val receiver[t]

put
ci

get

do
decomp[Σ]

co

put

i

get

obuffer[s]



Categorical Semantics of HOCs: Instantiation

An instantiation of a hoc
consists of a fitting morphism

φ:pC→CA

from the formal parameter
to the actual parameter

(a connector CA) pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ



Categorical Semantics of HOCs: Instantiation

A fitting morphism
φ:pC→CA

consists of a pair of refinement                       
morphisms 

for each connection s.t. ... 

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ

pθi

pG

pRi θi
A

pGA

Ri
A



Categorical Semantics of HOCs: Instantiation

The semantics of a hoc instantiation                                      
is the connector with same roles                                                
as C and its glue is newG

pθ1 pθi pθk

pG

pR1 pRi pRk

pC

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ

pR1 pRi pRk

θ1 θi θn

G

R1 Ri Rn

C

θ1
A θi

A θk
A

GA

R1
A Ri

A Rk
A

CA

φ1 φk

newG



Generalisations

Hocs can be combined giving rise also to a 
hoc  parametrised instantiation
We defined hocs with one parameter only but the 
extension to several parameters is straightforward

– Hocs with 1 parameter always model transformation/adaptation of 
a connector

– Hocs with several parameters allow us to describe more complex 
operations s.a.

aggregation of connectors
a “pipe” of connectors
fault-tolerance service



Reconfiguration: Motivation

systems have to evolve due to changes in functional 
requirements (business rules) or to respond to changes in 
the environment (e.g., failures, transient interactions) 
for safety or economical reasons, some systems cannot be 
shut down to be changed
domain with some interest in SA community but little 
formal work



Reconfiguration: Issues involved

Time: before or at run-time (dynamic reconfiguration)
Source: user (ad-hoc); topology/state (programmed)
Operations: add/delete components/connections; query 
topology/state
Constraints: structural integrity; state consistency; 
application invariants  
Specification: architecture description, modification, 
constraint languages 
Management: explicit/centralised (configuration manager); 
implicit/distributed (self-organisation)



Reconfiguration: Related Work

Work done in Distributed Systems, Mobile Computing,
Software Architecture has at least one of the following 
drawbacks:

— not addressed at the architectural level
— arbitrary reconfigurations not supported
— only low-level behaviour specification (process calculi, term 

rewriting, etc.)
— interaction between computation and reconfiguration is complex, 

implicit, or blurred

On the other hand, they sometimes provide tool support, in 
particular automated analysis.



Reconfiguration: Approach

Explore the categorical approach to software 
architectures and parallel program design
— architecture = categorical diagram; system behaviour = colimit
— architecture = graph; reconfiguration = rewriting

Develop a reconfiguration language for easier specification 
and analysis.



CommUnity with State

Typed logical variables LV to denote the current state of 
components;
Nodes of configurations are designs with
valuations ε: loc(V) → Terms(LV)
— State only for variables controlled by the design
— Non-ground terms in the reconfiguration rules
— Ground terms in run-time configuration

Superposition morphisms must preserve state: 
ε(l) = ε’(σ(l)) for any local variable l



Graph category
— Objects: directed graphs with labelled nodes  and arcs
— Morphisms: total functions between nodes and arcs preserving 

structure and labels

Production p: L ← K → R
— graph L transformed into R through common subgraph K
— l and r are injective morphisms
— can be applied to graph G if match m: L → G exists

Graph Transformation

l r



G           H if 2 pushouts exist

D = G – (L – K) and H = D + (R – K)
Injection l guarantees D is unique
Injection r guarantees p is reversible

Graph Transformation: Derivation

p,m

G H

K R

D

L
m

l r



D does not exist if a node to be removed has arcs

D does not exist if a node is to be removed and kept

Application Conditions

R

RK

KL

L

G

G



Example

HDG

RKL



Dynamic Reconfiguration

Run-time configurations: well-formed configurations with 
nodes labelled by designs with ground terms
Rules: L ← K → R if C

— parameterised by the algebraic specifications used in L,K,R
— C is condition over Vars(L), the logical variables ocurring in L
— Vars(R) ⊆ Vars(L) to determine state of new components

Step: G          H with a substitution φ: Vars(L) → Terms(∅) 
s.t. φ(C) is true and G             H is a derivation  with 
φ(p) = φ(L) ← φ(K) → φ(R)
Reconfiguration: derivation sequence; does not change 
state (i.e., labelling)

p,m,φ

φ (p),m

l r

l r



Example

Managing the way Customers interact with their bank  
Accounts

design account is
out num:nat; bal, avgbal: int
in  v: nat
do  dep: true → bal’ = bal + v
[]  wit: true → bal’ = bal - v
[]  avg[avgbal]: true →

design customer is 
out   val:int
prv   rd:bool
do    prod[val,rd]:¬rd,false→rd’
[]    put[rd]:rd,false → ¬rd’
[]    get[rd]:rd,false → ¬rd’



Customers may be subject to the standard rules for 
withdrawing money

Standard Connector

design standard is
in  val: nat; bal: int
do  dep: true →
[]  wit: bal ≥ val →

dep

val

wit

balstandard

put

valcustomer

wit

bal

getprod dep

rd
account

avg



Customers may subscribe VIP-contracts that allow them 
to overdraw up to some limit as long as the average 
balance is greater than 1000.

VIP Connector

design standard is
in  val: nat; bal: int
do  dep: true →
[]  wit: bal ≥ val →

dep

val

wit

balVIP

put

valcustomer

wit

bal

getprod dep

rd
account

avg

design VIP is
in  val: nat; bal: int
prv credit:nat
do  dep: true →
[]  wit: bal+credit ≥ val →

credit



Creating a client/account pair

When a client/account pair is created, a decision has to be 
taken on the kind of contract that binds them.  A 
production is defined for each kind:

K RL

falserd

vval

customer
nnum

0avgbal

0bal

account

standard
c-channel a-channel

This is a rule template, parameterised by the values to be 
assigned to the account number and the value the 
customer will deposit.



Creating a client/account pair

In the case of the VIP-contract, the credit limit has to be 
negotiated with the bank.  

Again, this is a rule template that now also includes a 
parameter for the credit limit. 

K RL

falserd

vval

customer nnum

0avgbal

0bal

account

ccredit

VIP
c-channel a-channel



Modifying the contract

The following rule restores a VIP contract to standard 
when the average balance is below 1000.

if a < 1000 C

K RL

rrd

vval
customer nnum

aavgbal

bbal

account
ccredit

VIP

c-channel

a-channel

rrd

vval
customer nnum

aavgbal

bbal

account

standard

c-channel

a-channel

rrd

vval
customer

nnum

aavgbal

bbal

account



Reconfiguration Specification

rewrite rules are cumbersome to write: repetition of 
nodes in graphs K and L; dummy nodes/arcs to control the 
way rules are applied
ideal: reconfiguration language with high-level 
programming constructs
but: ADLs only provide minimal reconfiguration support; 
distributed systems have powerful languages but do not 
have architectural abstractions
goal: compact, conceptually elegant language with formal 
semantics for describing reconfiguration within 
architectural description of a system



Reconfiguration Language Elements (1)

configuration variables: 
— typed over data sorts
— typed over components and connectors (node references) 
— maintain information about current configuration
— designs cannot access them: separation of computation from 

reconfiguration

query: expression that returns list of tuples of nodes 
matching the given criteria on topology and state



Reconfiguration Language Elements (2)

basic commands: 
— create/remove components and connectors
— update configuration variables
— semantics given by reconfiguration rules

complex commands: sequence, choice, and iteration 
scripts: 
— group commands into a unit
— may be nested and recursive
— may have parameters and local configuration variables



Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end script



Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end script
local configuration variable

node reference



Main script

script Main
prv i : record(a : Account)
script RestoreStandard ... end script
for i in match {a:Account | with

a.avgbal<1000}
loop

RestoreStandard(i.a)
end loop

end scriptmatch {Decl | ...} returns list(record(Decl))

list iterator condition on state



Auxiliary Script

script RestoreStandard
in a: Account
prv i: record(c:Customer; co:VIP)
for i in match {c:Customer;co:VIP |co(c, a)} 
loop

remove i.co; 
create standard(i.c, a);

end loop
end script role instantiation

condition on topology
refers the glue

input parameter



Creating a VIP connector

script CreateVIP
in n, limit : nat
out c : Customer
prv a : Account
c := create Customer with

rd := false || val := 0;
a := create Account with

bal := 0 || avgbal := 0 || num := n;
create VIP(c, a) with credit := limit
end script

state initialisation



Interpretation Loop

1. Execute one computation step over the current 
run-time configuration

2. Let the user call a top-level script if s/he wishes (ad-hoc 
reconfiguration)

3. Call a parameterless script ‘Main’, if it exists 
(programmed reconfiguration)

4. Go to step 1

The administrator may change the set of scripts at any time.



Semantics

one new private variable ‘node:nat’ for each component and 
glue design 
configuration designs with private variables only:
— one design for each lexical scope level (script)
— one private variable per configuration variable in that level
— node references translated to integer variables
— undefined node references translated to value 0
— one variable ‘nodes:nat’ to count how many nodes created 

one or more rules for each basic command:
— L has designs for configuration and nodes referred in command
— R includes updated configuration design



Semantics of 
create VIP(c, a) with credit := limit

K RL

cnnode

rrd

vval
customer

annode

nnum

aavgbal

bbal

account c-channel

lvcredit

nsnode

VIP

c-channel

a-channel

lvlimit
cnc
ana

nsnodes
nvn

CreateVIP

annode

nnum

aavgbal

bbal

account

cnnode

rrd

vval
customer

cnnode

rrd

vval
customer

annode

nnum

aavgbal

bbal

account

lvlimit
cnc
ana

ns+1nodes
nvn

CreateVIP



4

Coordination Contracts



Motivation

Coordination Technologies (ATX Software)
A semantic modelling primitive (coordination contracts) 
with the expressive power of architectural connectors
An architecture-centred development methodology 
(construction and evolution)
Design patterns that implement contracts
A contract development environment



Simple account

class Account
Operations
Deposit(in amount: Integer)

→ balance:=balance+amount

Withdraw(amount:Integer)
→ balance:=balance-amount;

attributes
number : Integer;
balance : Integer := 0;

end class



Notation for coordination contracts

coordination contract Traditional package

partners x : Account; y : Customer;

constraints ?owns(x,y)=TRUE;

coordination
tp: when y ->> x.withdrawal(z) 

do call x.withdrawal(z)
with x.Balance() > z

end contract



VIPs

coordination contract VIP package
partners x : Account; y : Customer;
constants VIP_BALANCE: Integer;
attributes Credit : Integer;
constraints

?owns(x,y)=TRUE;
x.AverageBalance() >= VIP_BALANCE

coordination
tp: when y ->> x.withdrawal(z) 

do x.withdrawal(z)
with x.Balance() + Credit() > z

end contract



Areas of Application

Defining business rules – Account Flexible Package
Dynamic Type reconfiguration – A.C. Controller
Specification of behaviour with state transitions –
Electronic devices
Use Cases – Automatic Teller Machine
Design Patterns – Model and Observer
Concurrency – Dining Philosophers
Connectors of architectural layers 



The Flexible Package

coordination contract AccountPackage
partners c : Account; s : Account;
attributes mn,mx : Integer;
constraints c.owner=s.owner;
coordination
stoc: when (c.bal() < mn) do {

s.withdrawal(min(s.l(),mx-c.bal())),
c.deposit(min(s.bal(),mx-c.bal())}

ctos: when (c.bal() > mx) 
do { c.withdrawal(c.bal()-mx),

s.deposit(c.bal()-mx)}
end contract



A Coordination Rule has the form

<name> :  when <trigger>
with <guardCondition>
do <set of actions>

Coordination Rules

The trigger defines when a rule 
must be considered active.
It may be a condition, or a request to
a participant operation

The guard condition imposes 
additional constraints on the 
reaction to the trigger, when 
regulated by this rule

The actions describe the behavior defined by the rule:
• extra behaviour to be executed before or after the 
trigger operation, 
• or replacement behavior for the trigger operation



Coordination Semantics

X

before before

replace

after after

*->> Obj.x()

C1::rule1 C2::rule2

The trigger

The Rules of the several contacts involving object Obj that satisfy the 
trigger and additional conditions

The Actions defined by 
the rules 

The transactional behavior
for the operation X under 
coordination



A design pattern for coordinations

None of the standards for component-based software 
development – CORBA, JavaBeans, COM – can support 
superposition as a first-class mechanism.
Because of this, we propose our solution as a design 
pattern that exploits polymorphism and subtyping, and is 
based on other well known design patterns, such as the 
Chain of Responsibility, and the Proxy or Surrogate.



A coordination design pattern

 
Component

ISubjectProxy 

<<abstract>> 

SubjectToProxyAdapter

SubjectInterface

<<abstract>>

Client 
Component Request

Component Pattern

Request 
operation() 

ISubjectrPartner

Contract-nContract-1

Coordination Pattern

chain of 
responsibility

0..*

<<abstract>>

operation() 
_operation() 

Subject 

_operation()

Ct_1_Subject
Connector 

Ct_n_Subject
Connector 



A coordination design pattern

 
 

operation()

ISubjectProxy

<<abstract>>

SubjectToProxyAdapter

SubjectInterface

<<abstract>>

 Subject

Component 

Client 
Component 

Request 

Component Pattern

Request

operation() 
_operation() 

_operation() 



Account coordination

 

AccountClient 
Component Request

Account Pattern

Coordination Pattern

Account 

IAccountProxy 

<<abstract>> 

AccountInterface

<<abstract>>

AccountToProxyAdapter 

Flexible 
Package 

VIP 

chain of 
delegation 

0..* 
IAccountPartner 

 
<<abstract>>

Flexible Package
Contract 

AccountConnector 

VIP Contract 
AccountConnector 

Request

withdrawal() 
_withdrawal()  

_withdrawal() 
Request for  
withdrawal()  



Account coordination

If there are no contracts coordinating a real 
subject, the contract pattern can be simplified.
In this scenario, the only overhead imposed by 
the pattern is an extra call from 
SubjectToProxyAdapter to Subject.



Account coordination

 

Client
Component

withdrawal

Account Pattern

∂  

Coordination Pattern

proxy

AccountToProxyAdapter 

Account 

Flexible 
Package 

VIP 

chain of 
delegation Flexible Package

Contract 
AccountConnector 

VIP Contract 
AccountConnector 

_withdrawal()

withdrawal() 
_withdrawal() 



Operational view

Before the subject gives rights to the real object to 
execute the request, it intercepts the request and gives 
right to the contract to decide if the request is valid and 
perform other actions. 
This allows us to impose other contractual obligations on 
the interaction between the caller and the callee.  
This is the situation of the first model discussed in 
section 2 where new pre-conditions were established 
between Account Withdrawals and their Customers.



Operational view

On the other hand, it allows the contract to perform other 
actions before or after the real object executes the 
request. 
Only if the contract authorises can the connector ask the 
involved objects to execute and commit, or undo execution 
because of violation of post-conditions established by the 
contract.



The development process

OBJECTS CONTRACTS

Construction Evolution



A three-dimensional space with the following dimensions is 
proposed for producing code, for any specific 
implementation plataform, from high level specifications:
− Domain Specification: an ideal model of the business problem 

without any details concerning implementation;
− Architecture: a model that represents architectural designs;
— Target Environment: the technology used to implemente the 

business problem according with the choosen architecture.

The implementation space



The implementation space

Domain
Specification

Architecture

Target
Environment

S

S’M

A

T

∆

System design



The architecture of the system is defined by the way 
modules are interconnected and objects are coordinated. 
Hence, modules are vital for decomposing large 
specifications and specifying parts with sufficient 
precision that one can construct each part knowing only 
the specification of the other parts. 
The nature of the components and their relationships is 
influenced by infrastructural constraints like the 
distribution strategy, type of interaction with the system 
environment, etc.

The implementation space



CDE - Coordination Development Environment

Context Setup Contract
Development

Deployment

Component
Development

Testing

Run-Time
Configuration

Software System

Component Layer

Coordination Layer

A development and run-time environment for layered coordination 
systems :
The coordination layer, defining the more volatile part of a system, is 
built over the component layer, the stable parts of the business



CDE: Development Activities

Registration: components are registered as candidates for 
coordination.
Edition: Contract types are defined connecting registered 
components. Coordination rules are defined on those 
contracts.
Deployment: the code necessary to implement the 
coordinated components and the contract semantics in the 
final system is produced according to the contract design 
pattern.



CDE: Run time Activities

Animation: facilities are provided allowing 
testing/prototyping of contract semantics
Registration: contract types are registered in the system.
Configuration: contracts are configured in the system 
(enabling/disabling rules, priorities, etc) 
Evolution: concrete contracts are created between 
specific system elements, regulating its behaviour.



CDE - User interaction

Regist Components
Contract Type Creation / Edition
…

Deploy System

CDE
Testing

Developer

System 
Assembler

Tester

Contract Type Registration
Contract Creation
Run-time Configuration Definition

Animation
Interface

User
Application

Interface

Trigger Operation
Observe Object
…

CDE-Rt

Deployed 
System

Development Run time



Increased separation of the domain concepts (objects) 
from the business rules that regulate their behaviour;
Coordination features available as first-class citizens 
through a specific semantic primitive;
Support for different levels of change, reflecting the 
evolution of the domain:
— Flexible mechanisms for inheritance of behaviour;
— Separation of coordination from computation.

Concluding remarks



Increased separation of the domain concepts from the 
business rules that regulate their behaviour;
— Recognising two different dynamics in system evolution:

changes to the way components operate and changes to the way 
components are integrated (white vs black box);

— More flexibility in the software development process (plug and 
play);

— Better integration/coordination of third-party, closed components 
(e.g. legacy systems)

One step closer to a real industry of components.

Claimed contributions



URLs

Papers:
— www.atxsoftware.com/publications.html (also includes papers on 

CommUnity and the categorical approach to software architecture)

Coordination Development Environment:
— www.atxsoftware.com/CDE

CommUnity Workbench:
— http://ctp.di.fct.unl.pt/~mw/sw/cw
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