
Domain Specific Language Extensions

Kevin Backhouse

March 22, 2000

Acknowledgements

I would like to thank Microsoft Research for its generous financial support.
I would also like to thank Bernard Sufrin for his guidance. In particular, I
would like to thank him for suggesting the case study in this dissertation.
Although it took some time, it was a very worthwhile exercise! Finally, many
thanks to Eric Van Wyk who has spent a lot of time reading and correcting
drafts of this document.

2

Contents

1 Introduction 6
1.1 A Categorisation of Programming Languages 7
1.2 Pros and Cons of Domain Specific and Domain Adapted Lan-

guages . 8
1.3 Domain Specific Language Extensions 9
1.4 Intentional Programming . 9
1.5 Requirements of an Intentional Programming Environment . . 10

1.5.1 Ecology . 11
1.6 Previous Work . 12

1.6.1 Macros . 12
1.6.2 Extensible Compilers 13

2 GUI Language Extensions 15
2.1 The Microsoft Foundation Classes 15

2.1.1 The MFC Application Framework 16
2.1.2 The Document-View Architecture 17
2.1.3 The Message Mapping System 18
2.1.4 MFC’s Use of Inheritance 21
2.1.5 Wizards: Guiding the Programmer through the Frame-

work . 23
2.1.6 A Summary of MFC 24

2.2 Visual Basic — A Domain Adapted Language for Program-
ming GUIs . 24
2.2.1 An Example . 25
2.2.2 Delegating Work with VB 26
2.2.3 Pros and Cons of VB 26

2.3 MFC vs VB Conclusion . 28
2.4 An Experiment . 29

3

2.4.1 The Design . 30
2.4.2 Translation . 32
2.4.3 Future Improvements to the Widget Language 32

3 An Attribute Grammar Tool 34
3.1 Introduction to Attribute Grammars 34

3.1.1 An Example . 35
3.1.2 An Overview of the AG 36
3.1.3 The Attribute Definition Functions 39

3.2 Current Features of the AG Tool 41
3.2.1 Positive Features of the AG Tool 42
3.2.2 Negative Features of the AG Tool 42

3.3 Previous Work on Making AGs Modular 43
3.3.1 Pattern AGs . 44
3.3.2 Remote Attribute Access 45
3.3.3 Symbol Computations 46
3.3.4 Inheritance . 46

3.4 Modular AGs: A Case Study 47
3.4.1 The Base Language . 48
3.4.2 The Language Extension 49
3.4.3 Modularising the Translator 51
3.4.4 Modularisation Difficulties 52

3.5 Further Work: A Module System for Attribute Grammars . . 53
3.5.1 Module Interfaces . 54
3.5.2 Improved Abstraction Facilities 55

4 Conclusion 56
4.1 Research Goals . 56

4.1.1 Secondary Goals . 57

A Adding Exceptions to an Imperative Language 59
A.1 The Base Language . 60

A.1.1 The Grammar . 60
A.1.2 Imperativelib.mli 61
A.1.3 Imperativelib.ml . 61
A.1.4 Internalname.mli . 63
A.1.5 Internalname.ml . 63
A.1.6 compile.ml . 64

4

A.1.7 Attribution Rules . 64
A.2 The Extension . 69

A.2.1 The Grammar Extensions 69
A.2.2 Attribution Rules . 70

5

Chapter 1

Introduction

Since the invention of the computer, a surprisingly large number of pro-
gramming languages have been created. Unsatisfied with the mainstream
languages that represent the most popular programming paradigms, people
continue to create variations on a theme. The reason for this is that the
mainstream languages are often found to be clumsy when used in specialised
problem domains. Rather than struggle with an unsuitable mainstream lan-
guage, programmers often find that a better long term solution is to create
a specialised programming language. The principal example of this that will
be used in this dissertation is the Graphical User Interface (GUI) domain. As
we shall show in Chapter 2 (page 15), Graphical User Interface programming
can be a slow and difficult process. Hence a number of specialised languages
have appeared. Tcl/Tk [23], Visual Basic [31] and Delphi [1] are just a few
examples.

In this dissertation we wish to investigate whether language design reuse
could aid the construction of specialised languages. Therefore, we ask the
following question:

Can we create new programming languages by composing reusable
language components?

We hope to answer this question in the context of GUI programming. At
present, it seems that the best available method of reuse is “cut ’n paste”.
We intend to research whether a module system could be designed such that
language features could be described as reusable modules. These modules
could then be easily composed to add new features to a language.

6

In this chapter we discuss an area of language design that could benefit
greatly from language design reuse. This is the area of Domain Adapted Lan-
guages: a category which we shall explain in Section 1.1 below. We suggest
that such languages could be created by adding Domain Specific Language
Extensions to a reusable base-language. In this chapter, we also describe a
concept invented by Simonyi [26], called “Intentional Programming” (IP). If
languages can be described as compositions of reusable language components,
then it is conceivable that a programming environment could be created in
which the programming language could be reconfigured by the programmer.
This would enable the programmer to alter the language to suit the task at
hand. Such an environment would be called an Intentional Programming
Environment. In this chapter we describe the goals of Intentional Program-
ming. We also describe the subset of those goals that we intend to achieve
with our research.

In Chapter 2 (page 15), we discuss GUI programming. We show that it
is a good example of an area in which Domain Adapted Languages can be
beneficial. We describe a design and implementation for a Domain Specific
Language Extension for GUI programming.

In Chapter 3 (page 34) we discuss Attribute Grammars and show that
they form a good specification language for reusable language components.
An outstanding research issue which we hope to address is adding a module
system to Attribute Grammars. We illustrate the need for a module system
with an example, given in Appendix A (page 59).

Finally, in Chapter 4 (page 56) we present our research plan.

1.1 A Categorisation of Programming Lan-

guages

Domain-specific programming languages are languages that are intended to
be used in a particular problem domain. They contrast with general purpose
languages (GPL), such as C, Pascal and ML. In this dissertation, we distin-
guish between two kinds of specialised language: Domain Specific Languages
(DSL) and Domain Adapted Languages (DAL). A DSL is a language that is
of little or no use outside its chosen domain. A good example is the language
used by the Make utility [6]: it is very good at describing dependency rela-
tions, but it could not be used to write (say) a calculator application. On the

7

other hand, a DAL is a language that is intended for a particular domain,
but has the capabilities of a GPL. An example is the language LOGO [10].
Although LOGO is adapted to the domain of controlling “turtles”, it can
also be used as a GPL.

1.2 Pros and Cons of Domain Specific and

Domain Adapted Languages

When applied to their intended domain, DSLs and DALs can offer a number
of important advantages:

1. Clarity of notation. DSLs can offer appropriate notation for describing
problems in the problem domain.

2. Domain specific error-checking and error-messages.

3. Domain specific optimisations.

The YACC parser generator [12] is a good example. YACC is a DSL for
programming parsers. Its input is a grammar description in Backus-Naur
form. Its output is a program which is specifically designed for parsing that
grammar. YACC demonstrates each of the above advantages:

1. YACC provides good notation for describing grammars.

2. YACC checks grammars for ambiguity.

3. YACC compiles parser specifications to code that uses an efficient push-
down automaton.

DSLs and DALs can also have disadvantages:

1. The tool support for DSLs and DALs may be inadequate. This is
because such languages are often not very widely used.

2. The problem domain may shift. If the DSL/DAL that is being used
to solve the problem does not evolve too, then it may become unus-
able. Therefore a GPL may be more appropriate for a rapidly evolving
domain.

8

3. A DSL/DAL may cause compatibility problems, because it is a non-
standard programming language. This can be an issue if the program-
ming problem spans several domains. For example, consider the do-
main of compiler programming. A compiler consists of more than just
a parser. Therefore YACC implementations are always designed to
have a good interface to a GPL such as C or ML.

4. Learning to use a new language is a drain on programmer time. It may
not be worth introducing a new DAL/DSL unless it is likely to bring
significant productivity gains.

The disadvantages listed above are all of an economic nature. They will
not arise if enough programmer time is allocated to the maintenance of
the DSL/DAL. However, the cost of maintaining a DSL/DAL needs to be
weighed against the cost of simply using a GPL.

1.3 Domain Specific Language Extensions

Above, we discussed the fact that specialised languages can be costly to de-
velop and maintain. Particularly in the case of Domain Adapted Languages,
language design reuse could help to reduce this cost. DALs contain the full
functionality of a general purpose language. Therefore, every time a DAL is
implemented, redundant work is necessary to implement standard language
features like branches and loops. This work could be avoided if it were pos-
sible to define Domain Specific Language Extensions. Rather than being an
entire new language, a DAL would be created by adding domain specific fea-
tures to an existing general purpose language. A DAL created in this way
would inherit the languages features and tools of the base language, thereby
both saving work for the implementor and improving the quality of the result.
In addition, it would make the DAL easier to learn for programmers who are
already familiar with the base language. Moreover, there wouldn’t be a need
for a foreign function interface for interfacing between the two languages.

1.4 Intentional Programming

We suggested above that it might be possible to create DALs by adding do-
main specific language extensions to a GPL. Simonyi [26] has suggested the

9

idea of a programming environment in which this can be done. This envi-
ronment, known as an “Intentional Programming” (IP) environment, would
simultaneously support both ordinary programming and meta-programming.
In this model, ordinary programming is the use of the DALs and the meta-
programming is the creation of new language extensions. A meta-program
that implements a language extension is known as an “Intention”.

Simonyi is currently leading a project at Microsoft to create an imple-
mentation of IP. The project has successfully created an advanced develop-
ment environment in which the programming language is not strictly fixed
and can be extended. Unfortunately, meta-programming currently has to be
done in a language based largely on C. This often makes meta-programming
a slow and error-prone process. Most importantly though, due to the meta-
programming language being fixed, it is not possible to experiment with new
formalisms for describing and composing language extensions. Therefore, in
this dissertation we propose that a lightweight tool should be used for ex-
perimenting with language extensions. We describe this in more detail in
Chapter 3 (page 34).

1.5 Requirements of an Intentional Program-

ming Environment

Intentional Programming is still a developing concept. Therefore it needs to
be made clear what the goals of IP are. It also needs to be clear which of
these goals will be disregarded by the lightweight tool proposed in Chapter 3
(page 34). The requirements of an Intentional Programming Environment
are:

1. The environment provides a meta-programming language for describing
Intentions.

2. The environment can compose intentions to create new DALs. A trans-
lator for the new DAL should be automatically generated.

3. The environment should not allow Intentions to be composed unless
they are ‘consistent’. We define consistency as follows: A proposed
combination of Intentions is inconsistent if the environment cannot au-
tomatically generate a deterministic translator for the resulting lan-

10

guage. We might add to this definition the requirement that the trans-
lator should also be terminating.

4. The environment can be used for both meta-programming and ordinary
programming. The system should be bootstrapped in the sense that the
meta-programming language can also be extended with new intentions.

5. The environment is not restricted to any particular language. The base
language that is being extended can be any language.

The IP system under development at Microsoft satisfies some, but not all
of these requirements. Most importantly, a consistency check is not per-
formed. Incompatibilities between intentions are sometimes discovered at
compile time, but this is not guaranteed. The compilation process is not
guaranteed to terminate. In its current form, the system also doesn’t satisfy
the fourth point. This is because the meta-language is fixed. This situation
will change in future versions of the system.

The aim of the tool described in Chapter 3 (page 34) is to satisfy all the
points except the fourth. Unlike Microsoft IP, we are placing a very low em-
phasis on creating an integrated environment. Microsoft IP is a sophisticated
environment in which editing is done with a structure editor. This means
that there is no parsing phase, so grammar ambiguity is not an issue. This
can make it easier to compose intentions, but it is a heavyweight solution.
We intend to use conventional parsers.

1.5.1 Ecology

Simonyi [26] has a vision that in an IP environment as described above, an
“ecology” will emerge. This ecology will be an ecology of Intentions. In
an IP environment, programmers can decide which Intentions they want to
program with. In other words, Intentions will be competing for survival.
Simonyi hopes that this will lead to a gradual evolution of programming
languages.

We believe that the consistency check described above is crucial in an eco-
logical environment. Without it, a programmer could write a large program
before realising that two incompatible Intentions have been used.

The promise of an ecology sounds similar to the promise of reusability
in object oriented programming. The promise was that “reusable” objects

11

could be simply thrown together to create new applications. However, ex-
perience has shown that “reusable” objects do not always compose as easily
as one might hope. This is shown by Schneider and Nierstrasz [25]. They
explain that in practice, either “glue-code” needs to be written to enable
the composition or the objects all need to be members of a single carefully
designed toolkit. We predict that the same problem will arise in Intentional
Programming. When adding an Intention to a language, glue-meta-code will
need to be added to describe the interface between the Intention and the lan-
guage. Therefore we think an Intention will not be successful in the ecology
unless it satisfies the following criterion:

The Intention can be added to a number of different languages
with a minimum of glue code.

When we design Intentions, the above criterion will be one of our main design
goals.

1.6 Previous Work

Three areas of previous work are of particular relevance to Intentional Pro-
gramming. Firstly, work has been done to make programming languages
extensible by adding macros to the language. Secondly, work has been done
to make compilers extensible by adding hooks which allow the programmer
to customise the compilation process. Thirdly, work on attribute grammars
is of interest, because we intend to use attribute grammars as our implemen-
tation technique. Previous work on attribute grammars will be discussed in
Section 3.3 (page 43).

1.6.1 Macros

Kernighan and Ritchie describe how the C preprocessor [16, pages 89–91] can
be used to add language extensions to C. They use it to define forever, which
is an infinite loop. They also use it to create a polymorphic implementation
of max, despite the fact that C does not support polymorphism. The C
preprocessor is a purely text-based tool. It simply replaces every occurrence
of a macro with its expansion. This means that macros can be defined which
generate syntactically or semantically incorrect code. They can also lead
to subtle errors which are not spotted by the C compiler. Kernighan and

12

Ritchie give an example of this: max(i++, j++). If max were a conventional
function, i and j would be incremented once after max had been evaluated.
However, due to the implementation of the macro, the larger of i and j will
be incremented twice.

Some of the errors that occur with text-based macro processors can be
avoided by macro processors that interact with the compiler. Syntax macros
use this technique to prevent the programmer from defining a macro which
will generate syntactically incorrect code. Syntax macros were developed in-
dependently and concurrently by Leavenworth [20] and Cheatham [2]. They
preserve syntactic correctness by specifying their interaction with the gram-
mar of the language. This is done by specifying the non-terminal type of the
macro and its parameters. For example, we could define a “while” macro
with the following signature:

statement macro while(expression) do statement

This means that the macro expects two parameters. The first should be
an expression of the language and the second should be a statement. The
macro is only valid in a statement context. Depending on their design, syntax
macros can cause complicated parsing problems. If macros are allowed to be
embedded in the source text, then the parser must be able to dynamically
reconfigure when it encounters a new macro definition.

1.6.2 Extensible Compilers

Engler [4] describes a system called Magik, which allows programmers to
modify the compilation process. Magik is a customised version of the lcc
C compiler [7]. It allows the programmer to write routines that modify
the internal abstract syntax tree during the compilation process. There is
no way of adding new syntax to the language, but language extensions can
be created by treating certain function calls and data-structures as special
cases. For example, an extension could be written that partially evaluates
calls to printf. Magik applies the user extensions at every function call and
data structure definition that it encounters. The extensions have access to
any data flow information computed by the compiler. The extensions are
allowed to modify the internal abstract syntax tree. Magik loops through
the extensions until no more modifications occur. Engler does not make
any guarantees about termination of the compilation process. He also does

13

not discuss the issues involved in composing extensions. These issues are
important in Intentional Programming, because it is important that separate
Intentions do not interfere with each other.

Stichnoth and Gross [27] use a technique called “code composition” to
implement compilers. Compilers often translate each operation of the input
language into a fixed sequence of operations in the target language. Optimi-
sations are subsequently applied to generated code. When the input language
becomes more complicated, the sequence of target language operations cor-
responding to each operation of the input language can become much more
complicated. This can cause problems if the code sequences are hard-coded
in the compiler. Therefore compiler-writers often shift to the runtime library
approach. In this approach, the input language operations are translated to
calls to library functions. This allows the code sequences to be defined exter-
nally to the compiler. However, it makes it impossible to apply optimisations
to the generated code. Code composition allows the code sequences to be
defined externally to the compiler. During compilation the code sequences
are imported and composed to generate code. Using this technique, opti-
misations can still be applied to the generated code. The authors’ system,
Catacomb, provides a simple programming language for describing code tem-
plates. These templates generate the chunks of code that will be composed.
Catacomb also applies optimisations to the code. The authors note that
a two-phase approach, whereby first the templates are expanded and then
the optimisations are applied, is the most straightforward way of achieving
this. Catacomb uses a one-phase approach. This allows the templates to
benefit from the optimisations that can be applied before they are expanded.
Unfortunately the authors do not explain how their implementation works.

14

Chapter 2

GUI Language Extensions

In this chapter we describe the issues involved in programming Graphical
User Interfaces (GUIs). GUI programming is shown to be a domain that
is well suited to the use of domain adapted languages. The design of a
language extension for GUI programming is proposed as a case study in the
use of Domain Specific Language Extensions.

GUI programming has become an important field of modern industrial
programming. Many companies use GPLs to program GUIs, but DALs are
also widely used. This chapter gives a detailed comparison of two GUI de-
velopment tools. The first is the Microsoft Foundation Class (MFC) library.
MFC is an object-oriented toolkit that is implemented in C++. It serves as
an example of the GPL approach. The second tool is Visual Basic, which is
a domain adapted version of the language Basic. Visual Basic contains spe-
cialised language features for programming GUIs. Both tools are products of
Microsoft. They are designed to produce GUI applications that run on the
Microsoft Windows operating systems.

2.1 The Microsoft Foundation Classes

The Microsoft Foundation Classes (MFC) [19] are currently one of the most
widely used toolkits for GUI development on Microsoft Windows operating
systems. MFC is implemented as an object oriented framework in C++.
Therefore it serves as an example of the use of a GPL to program GUIs.

MFC’s popularity stems from the following advantages:

Look and Feel. Applications written in MFC have the Microsoft look and

15

feel. This means that the application will automatically have a familiar
layout and behave in a way that Windows users expect.

Large Toolkit. MFC is a large library, so the programmer has access to a
wide selection of components.

Uses C++. C++ is currently the industry standard programming lan-
guage. As such, it is very well supported with good development tools.
MFC ships with Microsoft’s C++ compiler: Visual C++.

However, MFC is hard to learn and difficult to use. This is because of
the complicated structure of MFC applications. This structure is discussed
below.

2.1.1 The MFC Application Framework

MFC is not a simple library of C++ classes. It is an application frame-
work. This means that the MFC classes will only work correctly when used
together in the intended way. When used correctly, the framework coordi-
nates the communication between the application and the operating system.
It provides a bridge between the lower-level callback-oriented Win32 API
and MFC’s higher-level object-oriented structure. For an explanation of the
Win32 API, see Petzold [24].

The key components of the MFC framework are the Document-View
structure and the Message Mapping system. We describe them below. We
also explain MFC’s use of inheritance, which is sometimes a little confusing.
Finally, we describe “Wizards”. These are tools that help the programmer
to use the framework.

Frameworks

Frameworks are an object-oriented technique that aid software reuse. As
described by Johnson [11], a framework is an abstract design for a par-
ticular kind of application. This design consists of a number of abstract
classes, which the application should implement. Frameworks are often used
in conjunction with Design Patterns. A Design Pattern is a purely abstract
description of an object-oriented design structure. It describes how a partic-
ular structure of classes can be used to achieve a design goal. An example
is the Model-View-Controller pattern [18] (described in Section 2.1.2 below).

16

Gamma et al [8] describe many more. The distinction between Frameworks
and Design Patterns is that Frameworks tend to be more concrete than De-
sign Patterns. Whereas a Framework specification often includes some code
and class interfaces, a Design Pattern specification tends to be given as an
informal prose description. By their nature, frameworks and design patterns
are not part of the programming language. They exist merely as a set of
guidelines that are not enforced by the type-checker. As such, they may
make good candidates for encoding as intentions.

2.1.2 The Document-View Architecture

The top-level structure for an MFC-application is based on the Model-View-
Controller (MVC) design pattern [18]. MVC is a technique for designing
user interfaces. It consists of three kinds of objects. The Model represents
the data. The View represents the screen presentation of the data. The
Controller defines the way that the View responds to user input. The idea
is that several Views of one Model can be simultaneously active. The design
pattern ensures that the Views are all kept up to date with the Model.
MFC’s “Document-View” architecture provides the functionality for keeping
the Views up to date with the Model. It also provides the user interface for
creating and destroying Views and Models. For example, it automatically
adds menu options for opening documents and viewing them in a window.
The architecture is known as the Document-View Architecture, because the
concept of a Controller is absent. The Controller functionality is contained
in the View.

To create the Document-View structure, the programmer has to create
the following classes:

CMyApp (inherits CWinApp) This class represents the main application. Ex-
actly one global instance should be created.

CMainFrame (inherits CFrameWnd) This is the main window of the applica-
tion. It contains the menu, toolbars and status bar. Views of docu-
ments appear as sub-windows inside it.

CMyDoc (inherits CDocument) This is the document component of the design
pattern. Therefore it should only contain information about the con-
tents of the document. It is not concerned with the layout on the screen.

17

The programmer can define different classes for every document-type
that the application supports.

CMyView (inherits CView) This is the sub-window that displays the docu-
ment. It provides the user interaction for editing the document. Mul-
tiple views of the document can appear on the screen. The Document-
View architecture keeps them consistent with the document (and there-
fore with each other). More than one view type can be defined for one
document type.

An MFC application does not have a main() function. Instead, the
entry point of the program is a single global instance of CMyApp. CMyApp

should have a method InitInstance() which does program initialisation.
InitInstance() also makes the connection between the four components
described above. This is done by the following segment of code, which must
appear in InitInstance():

CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,

RUNTIME_CLASS(CMyDoc),

RUNTIME_CLASS(CMainFrame),

RUNTIME_CLASS(CMyView));

AddDocTemplate(pDocTemplate);

The above code is the ‘magic’ step that ties together the four components.
MFC programmers need to know that this call should be made and they need
to know exactly where to make it. They also need to know what the side
effects of this call are. For example, it sets the value of m pMainWnd, which
is a data member of CMyApp. From now on, m pMainWnd should be used to
access CMainFrame.

2.1.3 The Message Mapping System

The Object-Oriented programming paradigm is well suited to programming
GUIs. This is because graphical widgets are very object-like in nature. Un-
fortunately there are a few technical issues involved in encapsulating the
Win32 API with C++ classes. In this Section, we explain the problem and
describe MFC’s solution: message maps.

18

Win32 Callback Functions

Petzold [24, page 62] explains that in the Win32 API, each widget has a
callback function, which determines its behaviour. The callback function is
called by the API whenever there is a message waiting for the widget. Typical
examples of those message are mouse-clicks, re-paint notifications and re-size
messages. The signature of the callback function is as follows:

LRESULT CALLBACK WndProc (HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)

The parameter hwnd identifies the widget. This parameter is used to distin-
guish widgets when many instances of one widget type have been created.
HWND is an abstract type, known as a handle. The parameter message con-
tains the message ID. Some messages need to be accompanied by additional
information. For example, the re-size message needs to specify the new size
of the widget. The parameters wParam and lParam are used for this purpose.

At the top level, the callback function usually consists of a switch state-
ment. This statement does a case analysis on the message parameter and
picks out the messages which are of interest to the widget. If the message is
not recognised by the widget then a Win32 function called DefWindowProc()

is called. DefWindowProc() provides the default behaviour for these mes-
sages.

This use of callback functions to communicate messages has the following
important benefits:

1. It is easy for widgets to ignore messages that are irrelevant to them.
This ensures that the code for uncomplicated widgets is simple and
lightweight.

2. The Windows OS can introduce new messages without old applications
needing to be recompiled. This is because the callback functions simply
ignore messages which they don’t recognise.

3. The Windows OS can change the default behaviour of widgets without
old applications needing to be re-compiled. It does this by changing
the implementation of DefWindowProc().

4. User-defined messages can be posted to widgets via the OS. A range of
message IDs is reserved for exactly this purpose.

19

Below, we explain why some of these advantages are lost if widgets are
modeled as C++ objects.

Modeling Widgets as Objects

The Object-Oriented style of describing widgets is as follows. Every widget
is an instance of a class. Suppose the object is called MyWidget. MyWidget

should inherit an object called (say) BaseWindow. The BaseWindow object
includes methods for every message that the OS could send to the widget.
These methods represent the default behaviour of a widget. MyWidget rede-
fines the methods corresponding to the messages that it is interested in. The
other methods inherit the default implementation from BaseWindow.

Inheritance in C++

Unfortunately, the inheritance mechanism in C++ is not well-suited to the
requirements of widget programming. In C++, inheritance is implemented
with v-tables. Therefore, both BaseWindow and MyWidget would need to
have v-tables that contain entries for every message supported by the Win-
dows OS. This implementation would negate the advantages that the Win32
callback mechanism offers, because it is not flexible when the list of messages
changes. In particular it is not clear how it would deal with user-defined mes-
sages. Kruglinski et al [19, pages 26,27] point out that the v-tables would
also be inefficient in terms of memory usage, because they would each con-
tain over 100 entries. It is debatable whether this consideration is of any
relevance on modern hardware.

Message Maps

MFC uses C++ classes to represent widgets, but does not use the inheritance
mechanism to implement messages. Instead a callback function is used to
receive messages from the OS and invoke the appropriate methods in the
Widget class. The code for the callback function is generated by macros.
Suppose for example that the class MyWidget needs a message handler for
mouse-clicks. Kruglinski et al [19, page 48] describe the code that is needed.
Firstly, MyWidget requires an appropriate member function. Its signature is:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point)

20

Secondly, a “message map” needs to be declared for MyWidget:

BEGIN_MESSAGE_MAP(MyWidget, CView)

ON_WM_LBUTTONDOWN()

// other message map entries

END_MESSAGE_MAP()

This message map should contain entries for every message that the widget
responds to. (Only the button-click message has been shown in the above
code.) Some entries (like ON WM LBUTTONDOWN above) have specialised macros.
Other entries need to use the more general ON MESSAGE macro.

The message map macros above expand to the code for the callback func-
tion. Another macro is needed to create the signature. It should appear in
the class header for MyWidget as follows:

DECLARE_MESSAGE_MAP()

2.1.4 MFC’s Use of Inheritance

MFC’s message maps are designed to bypass the C++ implementation of
inheritance. However, MFC also uses conventional C++ inheritance. This
means that two orthogonal forms of inheritance are being used simultane-
ously, which can lead to some confusion. In this Section, we describe the
most important ways in which MFC uses C++ inheritance.

The CWnd base-class

Any class that has a message map should inherit CWnd or one of its derivatives
(such as CView or CFrameWnd). This is because CWnd contains code and data
members that are reused by all widgets. Examples of this are the code
for registering the widget with the OS and the code for implementing the
message map.

Messages that do use C++ inheritance

Occasionally, there are exceptions to the rule that C++ inheritance is not
used for message maps. A prime example is found in the class CView. CView
is a class that is used in the Document-View architecture. CView inherits
CWnd and adds methods for interfacing with the architecture. Any view

21

window in the architecture should inherit CView. CView has a method called
OnDraw() which can be overridden. This method is called when the Widget
receives a paint message from the OS. Kruglinski et al [19, page 40] explain
why the paint message is treated differently to other messages: it allows the
framework to implement printing behaviour. To print the document, the
framework calls OnDraw() with the paint context set to the printer rather
than the screen.

Window Sub-classing

C++ inheritance is also used to achieve an effect known as Window sub-
classing. Window sub-classing is the reuse of another widget’s behaviour
with minor modifications. The modifications are made by intercepting some
of the messages that the widget receives. Petzold [24, page 393] explains
that this can be done in the Win32 API by writing a callback function which
handles one or two messages and forwards the rest to the callback function of
a different widget type. For example, this technique could be used to create
a numeric edit-box. That is, an edit-box that will not accept non-numeric
characters. Window sub-classing is used to intercept and delete messages
that correspond to non-numeric keystrokes.

Kruglinski et al [19, page 376] explain how window sub-classing is done
in MFC. Suppose a numeric edit-box is required. The class for the standard
edit-box is CEdit. Therefore a new class is created which inherits CEdit.
Suppose the new class is called CNumericEdit. CNumericEdit should be
given exactly one message map entry for the WM CHAR message (which is sent
when a key is pressed in the edit-box). All other messages are handled by
CEdit. The handler function in CNumericEdit filters the stream of charac-
ters, passing only the digits on to CEdit:

void CNumericEdit::OnChar(UINT nChar, UINT nRepCnt,

UINT nFlags)

{

if(isdigit(nChar))

CEdit::OnChar(nChar, nRepCnt, nFlags);

}

Window Subclassing can be a dangerous technique, because the interface
between the OS and system components such as the edit-box is not clearly

22

defined. It could change without notice in future releases of the OS. For
example, the above code for CNumericEdit is no longer complete since the
introduction of the clipboard. A user of the widget could still enter a non-
numeric character by cutting and pasting it.

2.1.5 Wizards: Guiding the Programmer through the
Framework

As described above, MFC has a number of conventions that are not enforced
by the C++ compiler. In particular, the programmer could easily make
a mistake when creating the Document-View structure. Microsoft’s Visual
C++ programming environment tries to keep the programmer on the rails
with facilities called Wizards. A Wizard is an editing tool. The most im-
portant Wizard is the Application Wizard. It creates an operational initial
application that has the Document-View structure already in place. The
second most important Wizard is called the Class Wizard. It is useful for
adding message handlers to classes. The problem with adding message han-
dlers is that it involves editing the code in three different places: the class
header, the method definition and the message map entry. The Class Wizard
automatically finds these three locations and updates them.

The Wizards have two important disadvantages:

• The Application Wizard is non-reversible. If a wrong option was chosen
during the execution of the Wizard, then this cannot be corrected in
hindsight. The only solution is to generate a new application and start
again. This can be very inconvenient, because the code generated by
the Wizard and the code written by the programmer is often not cleanly
separated into different files.

• The code needs to contain markers, so that the Class Wizard knows
where to edit the code. MFC code frequently contains comments like:

// {AFX_MSG_MAP(MyWidget)

These comments are necessary for the Class Wizard to edit the code.
Therefore the programmer must be careful not to edit these areas of
the code.

23

In summary, Wizards help the programmer to write MFC applications,
but they are really a symptom of the fact that MFC applications are unnec-
essarily complicated to write.

2.1.6 A Summary of MFC

As we said at the start of the chapter, MFC is an example of a GUI toolkit
which is implemented in a GPL. Although MFC is a large and versatile
toolkit, it can also be difficult to use. To use MFC, the programmer needs
to become familiar with its application framework. This framework is a set
of guidelines. These guidelines are not enforced by the C++ compiler, so
the programmer needs to take great care. The programmer also needs to be
familiar with some of the internal implementation details of MFC. Otherwise
the Document-View architecture and the Message Mapping system make very
little sense.

Facilities called Wizards are provided to make MFC programming easier.
They are editing tools which take some of the work out of entering MFC
programs. They help to enforce the application framework by generating
skeleton code, but they are no substitute for an automated checker.

2.2 Visual Basic — A Domain Adapted Lan-

guage for Programming GUIs

Visual Basic (VB), an adapted version of Basic, is rapidly gaining popularity
as a prototyping and scripting language. It is also being used to develop
production code.

VB is a customised language that has built-in support for GUI program-
ming. Programmers find it significantly easier to learn than MFC. Code
written in VB is concise and isn’t confusing like MFC. The most impor-
tant difference between VB and MFC is that in VB, widgets have a clear
and simple interface specification. It consists of the following three kinds of
elements:

events: An event is a message originating from the widget. The owner of
the widget can listen for events by providing a handler function.

Example: An edit-box widget has a “text-changed” event.

24

Figure 2.1: A Screen Shot of the Calculator

properties: A property is a variable associated with a widget. Properties
can be accessed by the widget’s owner. They can be read-only or read-
write.

Example: An edit-box has a “current-text” property.

methods: These are methods which can be called by the widget’s owner.

Example: An edit-box has a “set focus” method, which makes it the
active window for user input.

2.2.1 An Example

In this section, we illustrate VB’s model of GUI programming with an ex-
ample. The example is a simple calculator program. A screen shot of the
program is shown in Figure 2.1 (page 25). The user interface contains three
text-boxes which we shall refer to as T1, T2 and T3 (numbered from left to
right). When the user edits one of the text-boxes, the program alters another
such that the invariant T1 + T2 = T3 is maintained.

The code for the program is given in Figure 2.2 (page 27). Here we see
the handler functions for the widget events. For example, Form Load is called
when the main window (called “Form”) is created. The code also contains
a conventional datatype definition (Maybe) and a number of conventional
subroutines. Absent though, are the definitions that were made “visually”.
Part of the Visual Basic development process is to design the user interface
with a graphical tool. For the user interface of this program, we drew a Form
and added three text boxes and two labels (containing the symbols + and
=).

When the user edits one of the text-boxes, the corresponding Text Change

25

handler is called. The handler calls readnum to interpret the contents of
the box. The user may not have entered a valid number, so we use the
Maybe datatype to represent the contents of the box. We have written special
routines plus and minus for performing arithmetic on values of type Maybe.
These are used to reestablish the invariant and then writenum is called to
update one of the text-boxes.

It should be clear from this example that GUIs can be described very
concisely with VB. Widgets are easy to manipulate, because their proper-
ties, methods and events are easily accessible. Widgets can also be passed
as parameters, which is why we can define abstractions like readnum and
writenum.

2.2.2 Delegating Work with VB

Although VB is well-suited to programming GUIs, one may prefer to program
the core of a program in a different language. Visual Basic makes this possible
by offering a good foreign function interface. The foreign function interface
works with Microsoft’s Component Object Model (COM). COM is a protocol
for building applications from dynamically linked components. In fact it is
specifically designed for connecting components that were written in different
programming languages.

2.2.3 Pros and Cons of VB

Pros

VB provides built-in language support for GUI programming. As demon-
strated in Section 2.2.1 (page 25), this makes GUI programming easy and
concise.

VB provides a number of useful tools for GUI programming. The Object
Browser allows the programmer to search the events, properties and methods
of every available widgets. A visual editor is provided for building GUIs
graphically. Context sensitive help is provided to explain the use of the
libraries.

VB is based on Basic. As the name suggests, Basic is an uncomplicated
programming language. This helps to make Visual Basic easy to learn.

Visual Basic has a good foreign function interface. This means that the
core of the application can be written in a different programming language.

26

Private Type Maybe
value As Long

valid As Boolean

End Type

Dim t1 As Maybe
Dim t2 As Maybe
Dim t3 As Maybe

Private Sub Form Load()
t1.valid = False

t2.valid = False

t3.valid = False

Text1.Text = ""
Text2.Text = ""
Text3.Text = ""

End Sub

Private Sub Form Resize()
Dim w As Integer

Dim h As Integer

w = Form1.ScaleWidth / 10
h = Form1.ScaleHeight / 5
Text1.Move w, h, 2*w, 3*h
Label1.Move 3*w, h, w, 3*h
Text2.Move 4*w, h, 2*w, 3*h
Label2.Move 6*w, h, w, 3*h
Text3.Move 7*w, h, 2*w, 3*h

End Sub

Private Sub Text1 Change()
readnum Text1, t1
plus t1, t2, t3
writenum Text3, t3

End Sub

Private Sub Text2 Change()
readnum Text2, t2
plus t1, t2, t3
writenum Text3, t3

End Sub

Private Sub Text3 Change()
readnum Text3, t3
minus t3, t2, t1
writenum Text1, t1

End Sub

Private Sub readnum(T As textbox,
x As Maybe)

On Error GoTo Seterror
x.value = CLng (T.Text)
x.valid = True

Exit Sub

Seterror:
x.valid = False

End Sub

Private Sub writenum(T As textbox,
x As Maybe)

If x.valid Then

T.Text = CStr (x.value)
Else

T.Text = ""
End If

End Sub

Private Sub minus(a As Maybe,
b As Maybe,
result As Maybe)

result.value = a.value - b.value
result.valid = a.valid And b.valid

End Sub

Private Sub plus(a As Maybe,
b As Maybe,
result As Maybe)

result.value = a.value + b.value
result.valid = a.valid And b.valid

End Sub

Figure 2.2: The Visual Basic Code for the Calculator Application

27

Cons

Although VB’s visual editor is often very convenient, it can also be a hin-
drance. The problem is that the use of the visual editor is not optional.
This is because certain operations provided by the visual editor do not have
a textual counterpart. For example, the controls on a Form must be added
visually. There is no language construction for adding a control to a form.
An implication of this is that it is impossible to add a new control at run
time. In fact, as described in the Visual Basic 6.0 Programmers Guide [31,
page 155], the New keyword for dynamic object creation is not applicable to
controls. Visual editing also has the disadvantage that searching the source
code is harder. This is because some of the definitions are now recorded in a
visual format which cannot be mechanically searched.

Being a language which is easy to learn, VB is not necessarily as powerful
as some other programming languages. For example, faster programs can be
written in C, because C is a lower level language. ML has a more rigorous
type-system than VB, because it is static, rather than dynamic. So VB is
often used in conjunction with another programming language. The COM
interface makes this possible. However, this adds work to the programming
task, because COM programming can be complicated.

2.3 MFC vs VB Conclusion

We have described two GUI programming environments. MFC and VB are
both products of Microsoft, aimed at Windows GUI development. However,
MFC is implemented as an object-oriented framework in C++, whereas VB
is a DAL.

MFC is a powerful library which is based in the industry standard lan-
guage C++. To use it the programmer must be familiar with its applica-
tion framework though. In particular the programmer needs to know about
the Document-View architecture and Message Maps. The ‘rules’ of MFC’s
framework are actually only guidelines: they are not enforced by the C++
compiler. Therefore MFC programming must be done with care.

VB has much better facilities for GUI programming than MFC. This is
because the language has built in support for widgets. Most importantly,
widgets have interfaces which are type-checked by VB. Some programming
in VB is done “visually”. This can be useful for rapidly designing a user-

28

interface. Unfortunately, some operations which can be performed with the
visual editor do not have textual counterparts. This can make the language
inflexible, because those operations are not abstractable. VB uses COM to
provide a foreign function interface. This allows the core of the program to be
written in a different language. Programming a COM interface is non-trivial
though, so this adds complexity to the program.

2.4 An Experiment

To test whether Domain Specific Language Extensions are a feasible idea,
they need to be applied to a sizeable example. GUI programming lends itself
as a suitable area, because it has been shown to gain from domain specific
notation. It is also an important field in modern computing. The aim of
the experiment is not to improve upon current GUI programming systems.
Instead, the aim is to provide similar facilities via the mechanism of language
extensions. VB’s model of GUI programming seems successful, so we will use
a similar system in the language extension.

As described for VB, a widget has an interface consisting of events, prop-
erties and methods. Internally, a Widget can be constructed by composing
sub-widgets. The events, properties and methods of the widget can then be
defined in terms of the events, properties and methods of the sub-widgets.

Initially the widget language will be simplistic in a number of ways. A
number of possible improvements to the language are listed in Section 2.4.3
(page 32). In the initial design, the following simplifications will be made:

1. The sub-widgets of a widget must be statically and individually de-
clared. In other words, no dynamic creation of sub-widgets and no
arrays or lists of sub-widgets. This removes the need to interact with
type-constructors of the base language (such as array).

2. Window sub-classing is not possible. As described in Section 2.1.4
(page 22), window sub-classing can be a dangerous technique. It could
only be done properly if the widget interface also specified the interface
between the widget and the OS.

3. The language only describes widget construction. Other Intentional
forms such as the Document-View architecture are not yet covered.

Below, we describe the initial design for the language extension.

29

2.4.1 The Design

The language extension consists of three parts. Firstly, notation is needed for
describing new widgets. This includes notation for defining the behaviour of
a widget and notation for describing its interface. Secondly, new statements
and expressions need to be added for accessing the properties and methods
of widgets. Thirdly, a layout language is needed for describing the graphical
layout of the program. These elements are described below.

Widget Definitions

A Widget Definition introduces a new kind of widget. Instances of this widget
may then be used by the application. The definition consists of the following
elements:

name An identifier for the new widget type.

initialise This is a special method that is executed when the widget is cre-
ated. Its parameters contain information that must be supplied by the
owner when the widget is created.

events This section lists the events that the widget can fire. The conditions
that lead to the firing of an event are not listed here. Instead events
are triggered as side-effects of methods or when a property changes
value. Events can be parameterised. This allows the event to carry
extra information.

properties This section lists the properties of the widget. Properties are
publicly accessible data-members of the widget. An event can be as-
sociated with a property, so that the event will automatically fire if
the property changes. The value of the property is updated by side-
effects elsewhere in the widget’s code. If the property is specified to be
writable, then its value can also be updated by the widget’s owner.

methods Methods are defined by functions or procedures written in the
base language. They can have side-effects that update the values of
properties and trigger events.

subwidgets This is the list of subwidgets that the main widget contains.
Recall that they must be listed individually and statically. The main

30

widget and the subwidget can communicate via the events, properties
and methods of the subwidget.

handlers A handler is a procedure or function which is associated with an
event of one of the subwidgets. When that event fires, the handler is
called.

utilities Utilities are functions and variables written in the base language.
They are not accessible from outside the widget.

Widget Interfaces

The interface to a widget consists of the signatures for its events, properties
and methods. We shall refer to this as the implementation independent
interface to the widget. Internally the translator may need to record more
detailed information about the widget. For example, if we are translating to
MFC, the implementation needs to know which message number is used by
each method and event. So there need to be two versions of the interface: one
dependent on the implementation and one not. The implementation specific
interface is generated automatically during translation. The programmer
should not be concerned with implementation specific details.

Statement-Level Language Features

The code for the methods and handlers is written in the base language. This
code needs to be able to access the values of properties and call methods of
the sub-widget, so new statements need to be added to the base-language.
Property values are a new kind of expression. Method calls are a new kind
of statement. Triggering an event is also a new kind of statement.

The Layout Language

One of the restrictions that we have placed on the language design is that
widgets cannot be dynamically created: we need to provide a static means
by which the application can create its user interface. We shall do this by
replacing the entry point of the language. The entry point of an imperative
language is the position where program execution starts. For example, in a
C program it is the main() function. In our language, the program is entered
via a layout language which specifies the graphical layout of the program.

31

This structure is analogous to Visual Basic, where the top-level application
design is done with the visual editor. Our layout language will have similar
features to the visual editor in VB. However, it shall be text based, rather
than visual.

2.4.2 Translation

The widget language is defined as an extension of a base language. Therefore,
programs written in the widget language are translated by reducing them to
programs written in the base language. Widget definitions translate naturally
to either modules or classes in the base language. This is because they are
separable components that introduce a new datatype and some associated
code. The translator needs to apply the following steps to translate the
widget:

• Locate and read the implementation specific interfaces for all the sub-
widgets.

• Translate method calls, event handlers and property accesses that refer
to the subwidgets. This is done by replacing those occurrences with
implementation specific code written in the base language. This is
where the information from the widget interface files is used.

• Generate a module, written in the base language, that contains the
code for the widget. Depending on the rules of the base language, an
interface for this module may also need to be generated.

• Generate the implementation specific version of the widget interface.

• Translate the layout language to the top-level code for the application.
This is the code that creates the user-interface when the application is
started.

2.4.3 Future Improvements to the Widget Language

As described in the introduction of Section 2.4 (page 29), a number of re-
strictions have been made to the widget language. This is to simplify the
initial experiment. It is hoped that it will be possible to lift some of these
restrictions. Some of the improvements that could be made to the language
are the following. They are listed in order of importance:

32

1. Widgets should become typed objects in the language. They can be
created and destroyed in the same way that other variables are. This
will remove the need for the sub-widgets of a widget to be statically
defined.

2. The language should include support for certain design patterns. In
particular, the Document-View architecture should be added.

3. The type-system of the language could be extended, so that window
sub-classing can be done safely.

33

Chapter 3

An Attribute Grammar Tool

The Intentional Programming tool being developed at Microsoft uses a trans-
lation technique called reduction. O. de Moor, who leads the Oxford IP
project, has noticed the similarity between reduction and Attribute Gram-
mars. Attribute Grammars (AGs) were discovered by Knuth [17]. They are
a formalism for associating semantics with syntax trees. AGs are particularly
useful for describing compiler front-ends, which is why they are of interest in
IP.

In this chapter, we give a brief explanation of Attribute Grammars. An
AG tool that we have written is described. It is a lightweight tool that
translates AG specifications to OCaml [21] programs. The tool builds on
some of the research done by Van Wyk [30]. In this chapter we describe the
features of the tool, which are at present fairly basic. Later, we propose some
improvements that should make the tool usable as an IP prototype.

3.1 Introduction to Attribute Grammars

An Attribute Grammar is a tool that is used to add semantics to a syntax
tree. It does this by annotating the nodes of the tree with attribute values.
For example, each node of the tree that represents an expression might be
annotated with its type. Each node that represents a new scope might be
annotated with the list of new variables that it introduces. These annotations
are used in the next phases of the translation process. The attribute values
are calculated by applying semantic functions, which are specified by the AG.
In this Section, we give a short example to demonstrate how this works.

34

{

Use x

Use y

{

Dec y

Use y

Use x

}

Dec x

Use x

Dec y

}

Figure 3.1: An example input to the AG

3.1.1 An Example

The example given in this Section is taken from “Aspect Oriented Compil-
ers”, by de Moor et al [22]. It is an AG for a simple programming language.
The language is too simple for meaningful programs to be written in it, but
it demonstrates scoping and the use of environments. Figure 3.1 (page 35)
shows an example input to the AG. There are essentially three elements to
the language: scopes, variable declarations and variable uses. The scope
rules of the language are:

• Declared variables are visible anywhere within the scope that they are
declared in. (Including before the definition, so Use x followed by Dec

x is allowed.)

• A variable declaration can use the same name as a variable that appears
in an enclosing scope. The variable in the enclosing scope becomes
invisible within this scope, because the new variable declaration takes
priority.

• Uses of variables refer to the declaration that appears in the current
scope.

An AG for this language is given in Figure 3.2 (page 36) and Figure 3.3 (page
37). In fact, the AG specification given by those Figures is a valid input to

35

start program : code

token LPAREN, RPAREN, USE, DEC

token <string> STRING

inherit copyable <int> level

inherit copyable <Testtypes.envir> env

synthesise <string> code

synthesise <Testtypes.locstype> locs

program -> block { Main }

block -> LPAREN stmtlist RPAREN { Block }

stmtlist -> stmt stmtlist { Stmtlist2 }

| stmt { Stmtlist1 }

stmt -> USE STRING { Stmtuse }

| DEC STRING { Stmtdec }

| block { Stmtlocal }

Figure 3.2: The Grammar Specification for the AG

our AG tool. Below, we explain this particular AG, while at the same time
giving an overview of AGs in general and our tool in particular.

3.1.2 An Overview of the AG

Figure 3.2 (page 36) contains the grammar for the language. The AG tool
generates a parser for the language, so some parser specific details are also
listed here. In particular an entry point for the parser (program) and lexer
tokens are listed. The Figure also declares the attributes that are used by the
AG. The functions for computing the attribute values are given in Figure 3.3
(page 37). The next paragraph gives an overview of the four attributes that
are used.

The Four Attributes

The AG uses four attributes: level, locs, env and code. The level at-
tribute is an integer attribute that represents the depth of the current scope.

36

header <---

open Testtypes

open Testlib ;;

Stmtlocal block.level <--- $stmt_p.level + 1 ;;

Main block.level <--- 0 ;;

Main block.env <--- [] ;;

Block stmtlist.env <--- add $block_p.level $stmtlist.locs

$block_p.env ;;

Main program_p.code <---Text ~$block.code~ ;;

Block block_p.code <---Text

Enter(~string_of_int $block_p.level~,

~string_of_int (List.length $stmtlist.locs)~)

~$stmtlist.code~

Exit(~string_of_int $block_p.level~)

;;

Stmtlist2 stmtlist_p.code <---Text

~$stmt.code~

~$stmtlist.code~ ;;

Stmtlist1 stmtlist_p.code <---Text ~$stmt.code~ ;;

Stmtuse stmt_p.code <---Text

Ref ~showintpair (lokup $stmt_p.env $STRING.lex)~ ;;

Stmtdec stmt_p.code <---Text ;;

Stmtlocal stmt_p.code <---Text ~$block.code~ ;;

Stmtlist2 stmtlist_p.locs <--- $stmt.locs @ $stmtlist.locs ;;

Stmtlist1 stmtlist_p.locs <--- $stmt.locs ;;

Stmtuse stmt_p.locs <--- [] ;;

Stmtdec stmt_p.locs <--- [$STRING.lex] ;;

Stmtlocal stmt_p.locs <--- [] ;;

Figure 3.3: The Semantic Functions for the AG

37

Enter(0, 2)

Ref (0, 0)

Ref (0, 1)

Enter(1, 1)

Ref (1, 0)

Ref (0, 0)

Exit(1)

Ref (0, 0)

Exit(0)

Figure 3.4: The Translation of the program in Figure 3.1 (page 35)

The list of local variables declared in the current scope is given by locs. The
env attribute is defined recursively and also refers to level and locs. It
represents the current environment, which is a mapping from variable names
to the lexical level and offset at which they were declared. Note that the type
of env is declared in Figure 3.2 (page 36). It is Testtypes.envir, which is
equivalent to (string * (int * int)) list (an association list). When a
new scope is introduced, the environment in the new scope is defined by ex-
tending the association list. This is done by the OCaml function add, which
is defined in Figure 3.5 (page 39).

The code attribute gives the translation of the language. The translation
is to a simple stack-based language. It has the following three commands:

• Enter(d, l) Open a new stack frame at depth d. The frame should
be of size l.

• Exit(d) Exit the stack frame at depth d.

• ref(d, x) Access the variable at offset x in the stack frame at depth
d.

For every new scope that is introduced in the source code, a corresponding
stack frame is introduced in the translation. The translation of the input in
Figure 3.1 (page 35) is given in Figure 3.4 (page 38).

38

open Testtypes

let lokup env x = List.assoc x env ;;

let showintpair (x,y) = Printf.sprintf "(%d, %d)" x y

let add level locs env =

let rec newvars locs id =

match locs with

[] -> []

| x :: xs -> (x,(level,id)) :: newvars xs (id+1)

in newvars locs 0 @ env ;;

Figure 3.5: The Library Module testlib.ml

3.1.3 The Attribute Definition Functions

Figure 3.3 (page 37) gives the rules for computing the attribute values. Each
rule is associated with a particular production of the grammar and defines an
attribute value for one of the non-terminals that appears in that production.
These rules are applied recursively to the syntax tree.

Inherited and Synthesised Attributes

In Figure 3.2 (page 36), the four attributes used by the AG are declared.
The declarations specify not only the OCaml type of the attribute, but also
whether the attribute is “Inherited” or “Synthesised”. The distinction is
between attribute values that are passed up the tree (synthesised) and at-
tribute values that are passed down the tree (inherited). The level and env

attributes are inherited, because they are passed down the tree. For exam-
ple, when a new scope is introduced, an environment is computed for it and
passed down to it. The code and locs attributes are synthesised, because
they are of interest to nodes further up the tree.

Inherited attributes can optionally be defined to be copyable. Suppose
a node of the tree has a level attribute but there are no explicit rules to
define the level attributes of the node’s children. The level attribute is
copyable, so the children of the node are automatically given the same value
of level as the parent. This default behaviour can often save a lot of work by

39

removing the need to write out attribute rules that simply copy the attribute
value. Unfortunately there isn’t such an obvious default behaviour to give to
synthesised attributes. This is because a node of the tree may have several
children, which each have different values of the attribute. In this situation
it would be unclear which of the attribute values should be copied.

Syntax and Behaviour of the Attribute Rules

Figure 3.3 (page 37) gives the rules for computing the attributes. The com-
position of each rule is as follows:

Stmtlocal block.level <--- $stmt_p.level + 1 ;;

production attribute to attribute value
ID be computed

Each attribute rule is associated with a particular production. This is
done by the name at the beginning of the rule. These names (which are capi-
talised by convention) appear in braces after each production in the grammar
definition. This can be seen in Figure 3.2 (page 36).

Each rule computes an attribute value for one non-terminal in the produc-
tion. The value of the attribute is given by an OCaml expression. Attribute
values of non-terminals in the production can be accessed inside the OCaml
expression by using the notation $node.attribute.

Note that when an attribute rule refers to the non-terminal that appears
on the left hand side of the production, the name of the non-terminal is
extended with p. This is an example of the tool’s naming scheme, which
is intended to improve readability and avoid ambiguity. A good example of
the scheme is given by the production: stmt -> IF expr THEN stmt ELSE

stmt. Here, the three instances of stmt are referred to as stmt p, stmt 1

and stmt 2, respectively. On the other hand, there is only one instance of
expr, so it is simply referred to as expr.

Order of the Attribute Rules

The attribute rules can appear in any order in the specification file. In
Figure 3.3 (page 37) they have been grouped by the attribute that they
compute.

40

type envir = (string * (int * int)) list

type locstype = string list

Figure 3.6: The Library Module testlib.ml

Text Quoting Facilities

As described above, the value of attributes is usually given by OCaml expres-
sions. This can be inconvenient when the attribute consists predominantly
of ASCII text. A quoting facility is provided for this situation. This is
used to define the code attribute. The value of the attribute is delimited by
<---Text and ;; rather than <--- and ;;. The text that appears here is
copied verbatim. An anti-quote mechanism (delimited by the ~ symbol) is
provided for splicing in OCaml expressions.

Text quoting may seem a trivial and obvious facility, but it can be a
great productivity boost. Rather than viewing it as a mere accessory, Van
Wyk [30] considers it to be an example of a Domain Specific Meta Language.
He suggests that other such languages could be used for more advanced tasks
such as writing type-checkers.

Accessing Code from External Modules

Some of the attribute rules in Figure 3.3 (page 37) use OCaml functions that
are loaded from other modules. These modules are loaded by the header

statement at the top of the file. The code that appears in these modules is
shown in Figure 3.5 (page 39) and Figure 3.6 (page 41).

3.2 Current Features of the AG Tool

In this Section we describe the AG tool. The tool is programmed in OCaml.
The attribute evaluators generated by the tool are also written in OCaml.
The tool is quite lightweight, yet it provides most of the key features of an
AG system. As such it should be a good starting point from which to create
a prototype IP system.

41

3.2.1 Positive Features of the AG Tool

OCaml pre-processor

The tool is implemented as a pre-processor. It translates AG specifications
such as those given in Figure 3.2 (page 36) and Figure 3.3 (page 37) to
OCaml programs. The OCaml programs use Yacc to create the parser for the
language. This approach has the advantage that the functions for computing
the attribute values are written in OCaml. This is a cheap way of creating a
powerful system.

Johnsson [13] has shown that there is a natural way of evaluating AGs in
a lazy functional programming language. This method, which uses lazy eval-
uation to create a demand driven attribute evaluator, can be used to evaluate
the most general possible class of AGs. OCaml is not a lazy language, but
it allows the simulation of laziness by using a library module called “Lazy”.
Therefore the AG tool generates OCaml code which uses the Lazy module
to emulate the code suggested by Johnsson.

Error checking

In an AG, not all nodes will be annotated with every attribute. This means
that the programmer could make an error by trying to read an attribute
from a node that doesn’t have that attribute. These errors can be caught by
doing a closure check [17]. That is, checking that the set of attribute uses is
a subset of the set of attribute definitions.

The AG tool uses the information gained during the closure check to
improve the efficiency of the translator. Each node only allocates storage for
the attributes that it uses, rather than for every existing attribute.

3.2.2 Negative Features of the AG Tool

The AG tool is still in its infancy. As a result it has some shortcomings:

monolithic The AG tool currently offers very little support for breaking
AGs into components. This ability will be crucial in an IP system, so
a good module system is needed.

parser oriented The tool only allows one grammar to be defined. This
grammar is used for both parsing and for defining attribute values.

42

This means that in some cases the grammars will contain detail which
is necessary for parsing, but irrelevant when defining attribute values.
In these cases it would be helpful to distinguish between the parsing
grammar and the internal grammar. These are often referred to as the
concrete and abstract syntax.

no higher order features The tool does not yet support higher order or
attribute coupled AGs. These concepts are explained in Section 3.3
below.

no polymorphic type-constructors It is not currently possible to define
polymorphic constructions like lists and maybes. This facility would
be very helpful when defining grammars.

Three of these four problems have well-known solutions. Adding these
solutions to our system is merely an engineering issue. However the lack of
facilities for modularity is a more difficult issue. Below we describe some of
the previous work that has been done on making AGs modular. In Section 3.4
(page 47) we illustrate some of the potential difficulties with a detailed ex-
ample.

3.3 Previous Work on Making AGs Modular

The ability to modularise attribute grammars is a necessity if they are to be
used in intentional programming. Otherwise intentions could not be defined
as separate entities. The problem of modularising AGs has been tackled
before, but the traditional motivation has been slightly different to ours.

AG specifications written with only the primitive AG facilities are often
highly redundant. This is because many very similar computations need to
be painstakingly written out for every production in the grammar. Both
Dueck and Cormack [3] and Kastens and Waite [15] ascribe the problem to
a lack of appropriate abstraction facilities. Dueck and Cormack propose the
use of patterns as a solution. Kastens and Waite suggest three techniques:
remote attribute access, symbol computations and inheritance. We give a
brief description of these techniques below.

Compilation is traditionally divided into phases. Between each phase, the
internal representation of the program changes with the final representation
being the translation. In the framework of attribute grammars, this kind

43

of modularity can be supported by using attribute coupled grammars [9] or
higher order attribute grammars [28]. In an attribute coupled grammar, each
phase of the compiler is described by a new AG. The AGs that describe in-
termediate phases of the compiler return the syntax tree for the next phase
as a synthesised attribute on the root node. Higher order AGs are a gen-
eralisation of attribute coupled grammars in which attributed trees can be
passed around anywhere in the tree, rather than just on the root node.

3.3.1 Pattern AGs

The observation made by Dueck and Cormack [3] is that many attribution
rules depend on the structure of the production, but not on the content.
As an example, they discuss the process of passing environments around
the tree. Compilers often need to pass an environment down the tree while
passing new variable definitions up the tree. This operation, for which Jullig
and DeRemer [14] coined the phrase “Bucket Brigade”, is a left to right
traversal of the tree. Dueck and Cormack use pattern notation to describe
the operation as follows:

module env
(1) ’goal → A . . .

A.env = 0;
(2) A → B . . .

B.env = A.env;
(3) A → . . . B C . . .

C.env = B.def;
module def

(4) A → . . . B
A.def = B.def;

(5) A →
A.def = A.env;

This code assumes that the root node of the tree is called “goal”. Vari-
ables such as A and B are used to match terminals and non-terminals of the
grammar. The pattern “. . .” matches zero or more symbols. In the above
definition, env is an inherited attribute and def is a synthesised attribute.
The five rules describe how these attributes should be passed around the
tree in the absence of a specific rule. This is done by matching the above

44

patterns against every production of the grammar. If the pattern matches
a production, then the attribute computation is added to that production.
That is, unless a specific rule exists for that attribute on that production. To
create the environment behaviour for a specific AG, the above pattern rules
need to be augmented with specific rules that recognise defining occurrences
of identifiers and modify the environment accordingly.

Disadvantages of Pattern AGs

As a mechanism for reuse, the patterns of Dueck and Cormack can be a little
limited. For example, suppose that an AG needs a second bucket brigade,
involving the attributes x and y. Then the code given above needs to be writ-
ten out a second time with x and y substituted for env and def, respectively.
For proper reuse to be possible, patterns need to be parameterisable.

3.3.2 Remote Attribute Access

Kastens and Waite [15] note that AGs frequently need to transfer an attribute
value from one position in the tree to another. To do this, attribute rules
that copy the value need to be written out for every stage of the transfer
path. Kastens and Waite identify three common kinds of remote access and
introduce special notation for them:

1. In a traditional attribute grammar, inherited attributes can only be
read from the parent node of a production. Kastens and Waite note
that it would often be convenient to read inherited attributes of ances-
tors of the production. They introduce the notation: including N.a.
This expression evaluates to the value of the attribute a on the most
recent ancestor which is a non-terminal of type N.

2. A common idiom in attribute grammars is to gather a set of information
from all the descendents of a production. Kastens and Waite introduce
the notation: constituents N.a with (t, union, single, null).
This expression evaluates to a value of type t. It is computed by folding
over all occurrences of the attribute a on descendent nodes of type N.
The fold operation uses the functions union, single and null to build
a value of type t.

45

3. In Section 3.3.1 (page 44), we discussed a common idiom called the
“Bucket Brigade”. In this idiom, an attribute is passed around via a
left-to-right traversal of the tree. The idiom is often used to compute
environments. Kastens and Waite introduce the notation: chainstart
N.a = e. This initialises the attribute a on the node N in the current
production. It also adds default computations to the subtree below
N. Unless a specific rule is given, these default computations copy the
value of the attribute via a left-to-right traversal of the subtree.

The current implementation of our AG tool offers a simplified version of
“including”. As described in Section 3.1.3 (page 39), Inherited attributes can
be defined to be “copyable”.

3.3.3 Symbol Computations

In traditional attribute grammars, attribute computations are always asso-
ciated with productions. Kastens and Waite [15] note that attribute values
are sometimes independent of the production that they find themselves in.
Suppose for example that stmt non-terminals have an attribute xs, which is
a list. Suppose that we wish to add an attribute n to stmt which is equal
to the length of xs. In a conventional attribute grammar, this would involve
associating a computation for n with every production for stmt. A symbol
computation would allow us to associate the computation with stmt, so it
would no longer need to be duplicated.

3.3.4 Inheritance

In ALGOL 68 [29], new scopes can be introduced with three different lan-
guage constructions: programs, serial clauses and procedures. To simplify the
description of the semantics, the designers introduced an imaginary language
construction called a “range”. The behaviour of a range is ‘inherited’ by the
three scope-introducing language constructions. Kastens and Waite [15] sug-
gest an inheritance model for attribute grammars. In their model, symbols of
the grammar can inherit from each other. Symbol computations (see above)
that are defined on the base symbol are inherited. If desired, some of these
symbol computations can be redefined by the inheriting symbol.

Kastens and Waite only allow symbol computations to be inherited. In
other words, attribution rules that are associated with productions cannot

46

be inherited. This is because it is the symbol that is being inherited, not
the production. In contrast, the IP system being developed at Microsoft
allows the behaviour of a production to be inherited (via a mechanism called
forwarding). This facility has proved to be most useful when the inherited
production is defined as a composition. For example in a language that has
conditionals and gotos, the “while” construction could be defined as follows:

while(C,B) inherits: {
start:

if (C) {
B
goto start;

}
}

In the above notation, while(C,B) represents the following production:

while → condition stmt

The structure on the right is a pretty-printed version of the composition of a
number of production rules. IP also allows attribute rules to be overridden
in the new production.

3.4 Modular AGs: A Case Study

In this section, we describe a detailed example of a language extension. We
discuss the issues involved in describing the extension as a detachable mod-
ule. We show that the majority of the extension can be neatly modularised.
However, a few difficulties do arise. In particular, the code for the procedure
environment needs to be modified in a rather non-modular way.

In the example, we add exceptions to a simple imperative language. The
code for this example, which was written using our AG tool, is given in
Appendix A (page 59). Below we first give a brief description of the lan-
guage and the extension. Then we discuss the degree of modularity that we
managed to achieve in the specification of the extension.

47

let var int fib_zero in

fib_zero := 1 ;

let proc fib (val int n, ref int result)

if n == 0 then result := fib_zero

else let var int x in

fib(n - 1, x)

; result := n * x

fi in

let var int x in

fib(10, x)

Figure 3.7: A Program for Computing the Fibonacci Function

void f5(int p2, int& p1, int& x3)
{
if ((p2 == 0))

p1 = x3;
else

{
int x4;
{
f5((p2 - 1), x4, x3);
p1 = (p2 * x4);
}
}

}

void main()
{
{
int x3;
{
x3 = 1;
{
int x6;
f5(10, x6, x3);
}
}
}
}

Figure 3.8: The C Translation of the Fibonacci Program

3.4.1 The Base Language

The base language is a simple imperative language. Its grammar is given in
Appendix A.1.1 (page 60). An example program written in the language is
given in Figure 3.7 (page 48). This program computes the tenth Fibonacci
number. The C code that the program translates to is given in Figure 3.8
(page 48).

48

let exception divbyzero in
let proc divide (val int a, val int b, ref int result) : divbyzero

if b == 0
then raise divbyzero
else if a < b

then result := 0
else let var int x in

divide(a-b, b, x)
; result := x + 1

fi
fi in

let var int x in
try divide(10,2,x)
with divbyzero -> skip
end

Figure 3.9: A Program for Computing Integer Division

3.4.2 The Language Extension

The extension adds exceptions to the base language. This means that the
syntax of the language is extended with “try-with” and “raise” constructions.
There is also a new kind of declaration for introducing exception names.
Finally, procedure declarations must now be annotated with the exceptions
that they might raise. The details of these modifications to the grammar are
given in Appendix A.2.1 (page 69).

An example of a program that uses exceptions is given in Figure 3.9 (page
49). The C translation is given in Figure 3.10 (page 50). The translation
uses a global variable called exception of type exception enum. A “raise”
in the source language is translated to an assignment to this variable followed
by a jump command. The jump command jumps to the nearest enclosing
“catch” for the exception or if there is none available it returns from the
procedure. Therefore the translation of a procedure call is slightly more
complicated than it used to be. After a call to a procedure that might raise
an exception, the value of the global variable exception is checked. If it is
set, then another jump command is executed.

49

enum exception_enum {
NOEXCEPTION,
E1

};

exception_enum exception;

void f6(int p4, int p3, int& p2)
{
if ((p3 == 0))

{
exception = E1;
return;
}

else
if ((p4 < p3))

p2 = 0;
else

{
int x5;
{
{
f6((p4 - p3), p3, x5);
switch (exception) {
case E1:

return;
case NOEXCEPTION:

break;
}
}
p2 = (x5 + 1);
}
}

}

void main()
{
{
int x9;
{
{
f6(10, 2, x9);
switch (exception) {
case E1:

goto l8;
case NOEXCEPTION:

break;
}
}
goto l7;

l8: ;
switch (exception) {
case E1:

exception = NOEXCEPTION;
;
break;

}
l7: ;

}
}
}

Figure 3.10: The C Translation of the Divide Program

50

3.4.3 Modularising the Translator

The translator for the base language consists of three parts: the grammar,
the attribution rules and the support code, written in OCaml. We have at-
tempted to add exceptions to the language by modularly extending these
three parts. In this section we describe an idealised view of how this pro-
cess should proceed. In the next section we describe the problems that we
encountered in practice.

Extending the Grammar

Extending the grammar is done by adding new productions. For example
in our extension, we wish to add a new statement for raising an exception.
This is done by adding the following production:

stmt → RAISE IDENTIFIER { Raise }

This extension does not alter any existing grammar productions, so in that
sense it is modular. However, it will not integrate into the existing translator
unless it is accompanied by appropriate attribution rules. This is described
below.

Sometimes we may need to alter an existing production. For example
in our extension, a procedure definition can be annotated with the list of
exceptions that it might raise. The original production was:

decl → PROCDEF IDENTIFIER paramdeflist stmt { ProcDef }

In the modified production, an extra non-terminal (exns) is added for the
list of exceptions:

decl → PROCDEF IDENTIFIER paramdeflist exns stmt { ProcDef }

Existing attribution rules ignore the “exns” non-terminal, so this extension
does not affect them. In that sense this extension is modular. However, if
two separate language extensions try to modify the same production, then a
conflict may arise. In this situation extra code may need to be written which
describes how the two extensions should interact.

51

Extending the Attribution Rules

When new grammar productions are added, there are three ways in which
the attribution rules need to updated. Firstly, attribution rules need to be
defined for the new grammar productions such that they integrate into the
existing AG. For example, when we add the “Raise” production (given above)
to our language, we need to define “stmt.code” for that production. Secondly,
new attributes may need to be defined. For example, our extension needs to
define a range of new attributes that implement the semantics of exceptions.
These attributes are not only added to the new productions, but also to the
existing ones. Thirdly, existing attribution rules may need to be modified.
In our example, this happens to a number of the rules for “code”. This is
because extra code needs to be generated for implementing the exceptions.

We wish to make the implementation of our language extension as inde-
pendent as possible from the implementation of the base language. In other
words, we wish to avoid the second and third kinds of modifications listed
above. This might be possible if the base-language implementation provides
an appropriate set of hooks for the extension to use. Finding examples of
such hooks is an area that we intend to research.

Extending the Support Code

The support code for the translator is written in OCaml, which has a module
system. Therefore new support code can easily be added by adding a new
OCaml module. Non-modular extensions of the OCaml code happen when
the original code needs to be modified. As we shall describe below, this
happened in our translator, because a type definition needed to be changed.

3.4.4 Modularisation Difficulties

There are two areas in which our language extension is distinctly non-modular.
The first is code-generation and the second is the procedure environment.
The attribution rules which are involved are given in Appendix A.2.2 (page
75).

We needed to modify two attribution rules for the “code” attribute. They
are the rules for the “Program” and “ProcCall” productions. The modifi-
cation in the “Program” production creates a global variable for storing the
exception that is currently being raised. The modification in the “ProcCall”

52

production generates the extra code that is needed for handling exceptions
after a procedure call. These modifications are non-modular, because they
alter the implementation of the original translator. Unfortunately there is
no obvious solution to this problem. The modifications need to modify the
code generation process, so they are inherently non-modular.

In contrast, the problem with the procedure environment is induced by
our specification language rather than being an inherent problem. Due to the
inclusion of exceptions we now wish to carry an extra piece of information in
the procedure environment: the list of exceptions that might be thrown by
that procedure. It is not easy to modify the original procedure environment.
In the base language its type is defined to be procinfo Stringmap.t, where
the type procinfo is:

type procinfo = (Internalname.t * (typeval * paramkind) list
* Internalname.t list)

In the extended version of the language, we need to redefine procinfo:

type procinfo = (Internalname.t * (typeval * paramkind) list
* Internalname.t list * exnuses)

This is a distinctly non-modular change, because it affects every piece of code
that interacts with the environment. This is a shame, because conceptually
the operation that we are trying to perform is quite modular: we are merely
trying to pass a new piece of information around according to the scope rules
for procedures. By packaging all such information into one tuple we are
making an efficiency saving and reusing the code for passing environments
around. It would be nice if we could retain the efficiency saving and code
reuse, but also have a modular description.

3.5 Further Work: A Module System for At-

tribute Grammars

In Section 3.4 above we described a case study in which we added an extension
to a language. Although our description of the extension was reasonably
modular, it is clear that a better module system is required for our AG
specification language. In our continuing research, we intend to design an
appropriate module system. In this section, we shall present a few ideas for
the design.

53

3.5.1 Module Interfaces

A module is a component that can be described by an interface. The interface
should be a concise description of the “meaning” of the module. When we
design our module system, we need to decide what information needs to be
contained in the interface for a module.

In our case study, we saw that our extension added new productions to
the grammar. It defined attribute values on these new productions, but also
on productions of the base language. It also read attribute values defined by
the base language. These shared productions, non-terminals and attributes
are all points where a connection is formed between the extension and the
base language. Therefore, they should be included in the interface.

Glue

In our case study, we also saw that attribute grammar modules may not
always fit together seamlessly. For example, in our extension we needed to
modify the production rule “ProcDef” of the base-language. In cases like
this where the incompatibilities between two modules are only ‘superficial’,
a simple glue-language could be used to guide the composition. At present
the ‘superficial’ incompatibilities that we foresee are the following:

• The abstract syntax used in the two modules is incompatible, but es-
sentially very similar. An example of this is the problem with the
“ProcDef” production. In this case the glue-code could specify a new
abstract syntax and mappings from this new abstract syntax to the
abstract syntax of the two modules. This would allow both modules to
operate on the new abstract syntax.

• The two modules might use different names for the same object. For
example the first module might refer to the non-terminal “stmt”, which
is called “stat” in the second module. The glue-code could apply a
renaming to resolve this.

• The two modules might use a different data-representation for the same
attribute. For example, both modules might refer to the environment
attribute, but one represents it as an association list, whereas the other
uses a hash-table. The glue-code could provide two functions for con-
verting association-lists to hash-tables and vice-versa.

54

We believe that it is better to provide a glue-language than to allow modules
to modify the internals of other modules. Otherwise, modules which perform
modifications would have very complicated interfaces.

3.5.2 Improved Abstraction Facilities

In the case study, a modularity problem occurred when we wanted to pass
extra information around in the procedure environment. Due to a lack of
abstraction facilities, this involved modifying the code for the base language.
We suggest that an abstraction facility is required that allows us to describe
the procedure environment in a polymorphic way. That is, the code for
the environment should be independent of the data that it passes around.
It would then be easier to modify the data contained in the environment.
In Section 3.3.1 (page 44), we saw that patterns can be used to achieve
this kind of effect. However, we noted that patterns lack certain kinds of
parameterisation. We believe that there may be a better solution that is
based on the use of polymorphism and higher order functions in a functional
language. Such a solution would also be simple to implement, because we
are currently using OCaml to evaluate our attribute grammars.

55

Chapter 4

Conclusion

In this dissertation, we have suggested that programming languages could be
created by composing reusable language components. In particular, Domain
Adapted Languages could be created by adding a Domain Specific Language
Extension to a general purpose base language. Such reuse could make the
process of designing new languages simpler and quicker.

We wish to research the feasibility of language design reuse. We intend
to do this by conducting three related pieces of work. Firstly we need to find
a formalism for describing language components. In Chapter 3 (page 34),
we showed that with an appropriate module system, attribute grammars
will be suitable. Secondly, we need to test our formalism by building a new
programming language. We hope to demonstrate that our formalism allows
this to be done in a modular manner. In Chapter 2 (page 15), we described
a design for a language extension for Graphical User Interface programming.
This is the example that we shall use. Thirdly, we need to test our new
programming language by writing programs. We plan to write a text-editor
with similar functionality to Wordpad, an editor that is shipped with the
Microsoft Windows Operating System.

4.1 Research Goals

As described above, our research plan consists of three main components:

• Design an attribute grammar system.

• Design a GUI language extension.

56

• Write programs with the GUI language.

Our work on attribute grammars will focus on creating a module system
that will allow us to describe language components as separate modules. We
also need to design a “glue” language that will allow us to compose language
components, even when there are minor conflicts between the components.
Our experiment with GUI programming is intended to focus on describing the
extension as a reusable component. We would like to write the extension in
such a way that it can be added to more than one base language. Therefore,
our focus is not on finding new GUI programming techniques.

The schedule that we aim to follow is given in Table 4.1 (page 58).

4.1.1 Secondary Goals

In addition to the three main research goals listed above, there are some
other smaller topics that we would like to address. Some of these topics are
suggestions rather than definite plans. We may change this list in the future.

• We would like to research the similarity between attribute grammars
and the framework being used in Microsoft’s IP project. We intend to
do this by modeling the Microsoft framework as an extension version
of attribute grammars. This work will be done in collaboration with
E. Van Wyk.

• We would like to add domain specific error checking to our GUI lan-
guage. As we said in Section 1.2 (page 8), domain specific error checking
is an important motivation for introducing new language constructions.
We would like to implement an analysis tool that verifies that there are
no race conditions in the user interface of a program. (A race condition
might occur if there is a circular sequence of widget messages.)

• We would like to add our GUI language extension to more than one base
language. Initially, we shall add the extension to a “toy” imperative
language. If possible, we would also like to add the extension to a “real”
programming language. For this, we will need an attribute grammar
specification of the programming language. Unfortunately, we do not
know of any such specifications that are publically available.

57

Dates Task
2000 March Write paper on modeling Microsoft’s IP framework

with attribute grammars.
Apr – May Work on new attribute grammar tool.
June – July Implement GUI language extension.
Aug – Sept Write editor program with GUI language.
October Write paper on the attribute grammar module sys-

tem.
Nov – Dec Revise the attribute grammar system, based on our

experiences with the GUI language.
2001 Jan – Feb Implement new demos with the revised attribute

grammar tool.
March Write paper on improved attribute grammar tool.
Apr – Sept Write thesis.

Table 4.1: Research Schedule

58

Appendix A

Adding Exceptions to an
Imperative Language

This appendix contains the code for two translators. The first translator
translates a small imperative language to code written in C. The second
translator translates an extended version of the language that includes ex-
ceptions. The code for these translators is mostly written using our AG tool,
which is described in Chapter 3 (page 34). The remaining code consists of a
number of utility modules, written in plain OCaml.

We have divided our description of the attribution rules into ‘aspects’.
Although our AG tool does not currently provide any support for aspect
oriented modules, we have given an interface for each aspect. The interface
consists of three elements:

1. Whether the attribute is inherited or synthesised.

2. The type of the attribute

3. The non-terminals on which the attribute is ‘visible’. That is, the non-
terminals on which the attribute value is allowed to be read by other
modules.

Some of our aspects use internal attributes. These are attributes which are
only visible within that aspect. Such attributes are not listed in the interface
of the module.

59

A.1 The Base Language

The base language is a simple imperative language. It has procedures (but
not functions), that can be nested. It has two datatypes: integers and
multi-dimensional arrays of integers. A number of basic operations on these
datatypes are provided. At present, the compiler presented here does not
type-check the code. Such functionality could easily be added though. An-
other implementation flaw is that arrays which are supposed to be passed
by value are actually passed by reference. Again, the necessary code could
easily be added.

A.1.1 The Grammar

program → stmt EOF { Program }

stmt → LET decl IN stmt { Declaration }
| stmt SEMICOLON stmt { Composition }
| SKIP { Skip }
| IF expr THEN stmt ELSE stmt FI { Conditional }
| WHILE expr DO stmt OD { While }
| expr ASSIGN expr { Assign }
| IDENTIFIER paramlist { ProcCall }

expr → IDENTIFIER { Variable }
| INTCONST { IntConst }
| expr LBRACKET expr RBRACKET { ArrayAccess }
| expr PLUS expr { Plus }
| expr MINUS expr { Minus }
| expr TIMES expr { Times }
| expr AND expr { And }
| expr OR expr { Or }
| expr LESSTHAN expr { LessThan }
| expr EQUALS expr { Equals }
| LPAREN expr RPAREN { ExprGroup }

decl → PROCDEF IDENTIFIER paramdeflist stmt { ProcDef }
| VARDEF typeval IDENTIFIER { VarDef }

typeval → INT { IntType }
| ARRAY INTCONST OF typeval { ArrayType }

paramdeflist → LPAREN paramdefs RPAREN { Paramdeflist }
| LPAREN RPAREN { Paramdeflist0 }

60

paramdefs → paramdef COMMA paramdefs { Paramdefs }
| paramdef { Paramdefs1 }

paramdef → paramtype typeval IDENTIFIER { Paramdef }
paramtype → VAL { ParamVal }

| REF { ParamRef }

paramlist → LPAREN params RPAREN { Paramlist }
| LPAREN RPAREN { Paramlist0 }

params → expr COMMA params { Params }
| expr { Params1 }

A.1.2 Imperativelib.mli

This file is the interface file for Imperativelib.ml, which is an OCaml mod-
ule which contains a number of functions that are used by the translator. It
also defines a number of types.

open Kevutils

exception AnalysisError of string

type typeval = IntType | ArrayType of int * typeval

type paramkind = Val | Ref

type paramdef = (string * Internalname.t * typeval * paramkind)

type varinfo = (Internalname.t * typeval)

type paraminfo = (Internalname.t * (typeval * paramkind))

type procinfo = (Internalname.t * (typeval * paramkind) list * Internalname.t list)

module VarInfoSet : (Set.S with type elt = varinfo)

type varuses = VarInfoSet.t

type varenvir = varinfo Stringmap.t

type procenvir = procinfo Stringmap.t

type varusesclosure = varuses -> varuses

type codeclosure = string -> string

val varlokup : varenvir -> string -> varinfo

val proclokup : procenvir -> string -> procinfo

val paraminfo_of_paramdef : paramdef -> paraminfo

val add_paramdefs_to_varenvir : paramdef list -> varenvir -> varenvir

val varuses_of_paramdefs : paramdef list -> varuses

val convert_to_ctype : Internalname.t -> typeval -> paramkind ->

C.typeval * C.variable

A.1.3 Imperativelib.ml

This file is the implementation of the interface listed above.

open Kevutils

61

exception AnalysisError of string

type typeval = IntType | ArrayType of int * typeval

type paramkind = Val | Ref

type paramdef = (string * Internalname.t * typeval * paramkind)

type varinfo = (Internalname.t * typeval)

type paraminfo = (Internalname.t * (typeval * paramkind))

type procinfo = (Internalname.t * (typeval * paramkind) list * Internalname.t list)

type declkind = VarDecl of varinfo | ProcDecl of (Internalname.t * paraminfo list)

module VarInfo =

struct

type t = varinfo

let compare = fun (name1,_) (name2,_) -> Internalname.compare name1 name2

end

module VarInfoSet = Set.Make(VarInfo)

type varuses = VarInfoSet.t

type varenvir = varinfo Stringmap.t

type procenvir = procinfo Stringmap.t

type varusesclosure = varuses -> varuses

type codeclosure = string -> string

let varlokup env x =

try Stringmap.find x env

with Not_found ->

let env_elements = Stringmap.keys env in

raise (AnalysisError("The variable \"" ^ x ^ "\" does not exist.\n"

^ "The current variable environment is"

^ (stringconcat ": " ", " "." "empty." env_elements)))

let proclokup env x =

try Stringmap.find x env

with Not_found ->

let env_elements = Stringmap.keys env in

raise (AnalysisError("The procedure \"" ^ x ^ "\" does not exist.\n"

^ "The current procedure environment is"

^ (stringconcat ": " ", " "." "empty." env_elements)))

let paraminfo_of_paramdef = fun (name, newname, typeval, valres) ->

(newname, (typeval, valres))

let varinfo_of_paramdef = fun (name, newname, typeval, valres) ->

(newname, typeval)

let add_paramdefs_to_varenvir defs env =

let add map = fun (name, newname, typeval, valres) ->

Stringmap.add name (newname, typeval) map in

List.fold_left add env defs

let varuses_of_paramdefs defs =

let add set def = VarInfoSet.add (varinfo_of_paramdef def) set in

List.fold_left add VarInfoSet.empty defs

(* In our imperative language, type declarations are of the form:

62

var array 10 of int x. In C this becomes: int x[10]. In other words,

the array information needs to be moved onto the variable name.

This function does the conversion. Its output uses the C

library to represent the C. *)

let convert_to_ctype name typeval valres =

let rec mkvar = function

IntType -> C.Varname(Internalname.mkstring name)

| ArrayType(n, subtype) -> C.Array(n, mkvar subtype) in

let cvar = mkvar typeval in

let ctype = match typeval with

IntType -> (match valres with

Val -> C.Int

| Ref -> C.Ref(C.Int))

| ArrayType(_,_) -> C.Int in

(ctype, cvar)

A.1.4 Internalname.mli

Our translator frequently needs to generate unique names for internal vari-
ables and labels. This module introduces a new type for this purpose. The
create function generates a new unique name. The mkstring function gener-
ates a textual representation of the unique name. The string that was passed
as a parameter to the create function prefixes this textual representation.
This feature can be used to make the unique names slightly more readable.
The compare function makes this module an instance of OrderedType. This
makes it compatible with the Set and Map modules in the OCaml standard
library.

type t

val create : string -> t

val mkstring : t -> string

val compare : t -> t -> int

A.1.5 Internalname.ml

This module implements the above interface. A static counter is used to
generate unique numbers.

type t = InternalName of string * int

(* The following are used to generate unique function names *)

let unique_counter = ref 0

let get_unique_int () = incr unique_counter ; !unique_counter

let create initstr = InternalName(initstr, get_unique_int ())

let mkstring = fun (InternalName(initstr, n)) ->

63

(initstr ^ (string_of_int n))

let compare = fun (InternalName(_, m)) (InternalName(_, n)) -> m - n

A.1.6 compile.ml

This module is the top level of the translator. It calls the attribute grammar
as a subroutine and prints the results.

open Imperative_parser

open Imperativelib

open Lexutils

let _ =

initialise_lexer ()

; let lexbuf = Lexing.from_channel stdin in

try

let result = Imperative_parser.start_program Lexer.token lexbuf in

print_string (C.show (Lazy.force result))

with Parsing.Parse_error -> (match get_most_recent_position () with

(linenum,charnum) ->

Printf.eprintf " on line %d in column %d\n"

linenum charnum)

| AnalysisError(str) -> prerr_string ("Analysis error: " ^ str ^ "\n")

A.1.7 Attribution Rules

Here we list the attribution rules for the attribute grammar. We have grouped
the rules by aspect. We give an interface for each aspect as described on
page 59.

The proccode attribute

synthesised

type: C.declaration list

visible on: stmt

The language allows nested procedures to be defined. We are translating to
C, which does not have nested procedures. Therefore nested procedures need
to be lifted. The proccode attribute contains the list of procedures that have
been lifted out of a statement.

Declaration stmt_p.proccode <--- $decl.proccode @ $stmt.proccode ;;

Composition stmt_p.proccode <--- $stmt_1.proccode @ $stmt_2.proccode ;;

Skip stmt_p.proccode <--- [] ;;

64

Conditional stmt_p.proccode <--- $stmt_1.proccode @ $stmt_2.proccode ;;

While stmt_p.proccode <--- $stmt.proccode ;;

Assign stmt_p.proccode <--- [] ;;

ProcCall stmt_p.proccode <--- [] ;;

VarDef decl_p.proccode <--- [] ;;

ProcDef decl_p.proccode <---

let add_Ref = (fun (name, typeval) -> (name, (typeval, Ref))) in

let myuses = VarInfoSet.diff

$stmt.varuses

(varuses_of_paramdefs $paramdeflist.paramdefs) in

let extra_params = List.map add_Ref (VarInfoSet.elements myuses) in

let paramlist = List.map paraminfo_of_paramdef $paramdeflist.paramdefs in

let params = paramlist @ extra_params in

let code_of_param = fun (name, (typeval, valres)) ->

match convert_to_ctype name typeval valres with (ctype, cvar) ->

C.Paramdef(ctype, cvar) in

let params_code = List.map code_of_param params in

let thisdef =

C.Function(C.Void, Internalname.mkstring $decl_p.internalname,

params_code, [$stmt.code])

in

$stmt.proccode @ [thisdef] ;;

The code attribute

synthesised

type: C.program on program, C.stmt on stmt

visible on: program, stmt

This attribute contains the translation of the program. The C code that
the program is translated to is represented in tree form. This tree format is
defined in the C module. This attribute has a different type depending on the
non-terminal type that it is associated with. For example on program it has
type C.program and on stmt it has type C.stmt. The lifted procedures that
are stored in the proccode attribute are added to the code in the Program

production.
Rather than a code attribute, the decl non-terminal has a codeclosure

attribute. The use of closures allows greater flexibility. This is needed in the
VarDef production.

Program program_p.code <---

$stmt.proccode @ [C.Function(C.Void, "main", [], [$stmt.code])] ;;

Declaration stmt_p.code <--- $decl.codeclosure $stmt.code ;;

ProcDef decl_p.codeclosure <--- id ;;

VarDef decl_p.codeclosure <---

let name = $decl_p.internalname in

match convert_to_ctype name $typeval.typeval Val with (ctype, cvar) ->

65

fun stmtcode -> (C.Block(C.Decl(ctype, [cvar]) :: [stmtcode])) ;;

Composition stmt_p.code <--- C.Block($stmt_1.code::[$stmt_2.code]) ;;

Skip stmt_p.code <--- C.Skip ;;

Conditional stmt_p.code <--- C.IfThenElse($expr.code, $stmt_1.code, $stmt_2.code) ;;

While stmt_p.code <--- C.While($expr.code, $stmt.code) ;;

Assign stmt_p.code <--- C.Assign($expr_1.code, $expr_2.code) ;;

ProcCall stmt_p.code <---

match proclokup $stmt_p.procenvir $IDENTIFIER.lex with

(newname, _, extraparams) ->

let convert_extraparams = List.map (fun name -> C.VarUse(Internalname.mkstring name)) in

C.ProcCall(Internalname.mkstring newname,

$paramlist.code @ convert_extraparams extraparams) ;;

Variable expr_p.code <--- C.VarUse(

Internalname.mkstring (fst (varlokup $expr_p.varenvir $IDENTIFIER.lex))) ;;

IntConst expr_p.code <--- C.IntConst($INTCONST.lex) ;;

ArrayAccess expr_p.code <--- C.ArrayAccess($expr_1.code, $expr_2.code) ;;

ExprGroup expr_p.code <--- $expr.code ;;

Plus expr_p.code <--- C.Plus($expr_1.code, $expr_2.code) ;;

Minus expr_p.code <--- C.Minus($expr_1.code, $expr_2.code) ;;

Times expr_p.code <--- C.Times($expr_1.code, $expr_2.code) ;;

And expr_p.code <--- C.And($expr_1.code, $expr_2.code) ;;

Or expr_p.code <--- C.Or($expr_1.code, $expr_2.code) ;;

LessThan expr_p.code <--- C.LessThan($expr_1.code, $expr_2.code) ;;

Equals expr_p.code <--- C.Equals($expr_1.code, $expr_2.code) ;;

Paramlist paramlist_p.code <--- $params.code ;;

Paramlist0 paramlist_p.code <--- [] ;;

Params params_p.code <--- $expr.code :: $params.code ;;

Params1 params_p.code <--- [$expr.code] ;;

The procenvir attribute

inherited (copyable)

type: procinfo Stringmap.t

visible on: <all>

This attribute is the environment for procedures. It is a mapping from iden-
tifiers to procinfo. The type procinfo is a tuple containing the internal
name of the procedure, the types of its parameters and the list of free vari-
ables in its body. (In the C translation the free variables need to be passed
as additional parameters, because C does not support nested procedures.)

Program stmt.procenvir <--- Stringmap.empty ;;

Declaration stmt.procenvir <--- Stringmap.merge $decl.procdefs $stmt_p.procenvir ;;

Declaration decl.procenvir <--- Stringmap.merge $decl.procdefs $stmt_p.procenvir ;;

VarDef decl_p.procdefs <--- Stringmap.empty ;;

ProcDef decl_p.procdefs <---

let myuses = VarInfoSet.diff $stmt.varuses

66

(varuses_of_paramdefs $paramdeflist.paramdefs) in

Stringmap.singleton $IDENTIFIER.lex

($decl_p.internalname,

List.map (cp snd paraminfo_of_paramdef) $paramdeflist.paramdefs,

List.map fst (VarInfoSet.elements myuses)) ;;

The varenvir attribute

inherited (copyable)

type: varinfo Stringmap.t

visible on: <all>

This attribute is the environment for variables. It is a mapping from identi-
fiers to varinfo. The type varinfo is a tuple containing the internal name
of the variable and its type.

Program stmt.varenvir <--- Stringmap.empty ;;

Declaration stmt.varenvir <--- Stringmap.merge $decl.vardefs $stmt_p.varenvir ;;

ProcDef stmt.varenvir <--- add_paramdefs_to_varenvir $paramdeflist.paramdefs

$decl_p.varenvir ;;

ProcDef decl_p.vardefs <--- Stringmap.empty ;;

VarDef decl_p.vardefs <--- Stringmap.singleton

$IDENTIFIER.lex

($decl_p.internalname, $typeval.typeval) ;;

The varuses attribute

synthesised

type: VarInfoSet.t

visible on: stmt

This attribute is used to collect the list of variable uses in a statement. It is
used to determine the list of free variable occurrences in a procedure body.
This information is needed for the translation to C, because C does not have
nested procedures.

Declaration stmt_p.varuses <---

let uses = $stmt.varuses in

let closure = $decl.varusesclosure in

closure uses ;;

ProcDef decl_p.varusesclosure <---

let myuses = VarInfoSet.diff $stmt.varuses

(varuses_of_paramdefs $paramdeflist.paramdefs) in

fun curruses -> VarInfoSet.union myuses curruses ;;

67

VarDef decl_p.varusesclosure <---

let mydef = ($decl_p.internalname, $typeval.typeval) in

fun curruses -> VarInfoSet.remove mydef curruses ;;

Composition stmt_p.varuses <--- VarInfoSet.union $stmt_1.varuses $stmt_2.varuses ;;

Skip stmt_p.varuses <--- VarInfoSet.empty ;;

Conditional stmt_p.varuses <--- VarInfoSet.union $expr.varuses

(VarInfoSet.union $stmt_1.varuses $stmt_2.varuses) ;;

While stmt_p.varuses <--- VarInfoSet.union $expr.varuses $stmt.varuses ;;

Assign stmt_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

ProcCall stmt_p.varuses <--- $paramlist.varuses ;;

Variable expr_p.varuses <--- VarInfoSet.singleton

(varlokup $expr_p.varenvir $IDENTIFIER.lex) ;;

IntConst expr_p.varuses <--- VarInfoSet.empty ;;

ArrayAccess expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

Plus expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

Minus expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

Times expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

And expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

Or expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

LessThan expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

Equals expr_p.varuses <--- VarInfoSet.union $expr_1.varuses $expr_2.varuses ;;

ExprGroup expr_p.varuses <--- $expr.varuses ;;

Paramlist paramlist_p.varuses <--- $params.varuses ;;

Paramlist0 paramlist_p.varuses <--- VarInfoSet.empty ;;

Params params_p.varuses <--- VarInfoSet.union $expr.varuses $params.varuses ;;

Params1 params_p.varuses <--- $expr.varuses ;;

The internalname attribute

inherited

type: Internalname.t

visible on: decl

During the translation variables and procedures are renamed to ensure unique-
ness. The Internalname module is used to generate unique names.

ProcDef decl_p.internalnameprefix <--- "f" ;;

VarDef decl_p.internalnameprefix <--- "x" ;;

Declaration decl.internalname <--- Internalname.create $decl.internalnameprefix ;;

The typeval attribute

synthesised

type: typeval

visible on: typeval

68

This attribute gives the internal representation of a type.

IntType typeval_p.typeval <--- IntType ;;

ArrayType typeval_p.typeval <--- ArrayType($INTCONST.lex, $typeval.typeval) ;;

The paramdefs attribute

synthesised

type: paramdef list

visible on: paramdeflist

This attribute contains information about the parameters of a procedure.
The type paramdef is a tuple containing the name of the parameter, its
internal name, its type and its passing convention.

Paramdeflist paramdeflist_p.paramdefs <--- $paramdefs.paramdefs ;;

Paramdeflist0 paramdeflist_p.paramdefs <--- [] ;;

Paramdefs paramdefs_p.paramdefs <--- $paramdef.paramdefs

:: $paramdefs.paramdefs ;;

Paramdefs1 paramdefs_p.paramdefs <--- [$paramdef.paramdefs] ;;

Paramdef paramdef_p.paramdefs <---

($IDENTIFIER.lex, Internalname.create "p", $typeval.typeval, $paramtype.paramkind) ;;

ParamVal paramtype_p.paramkind <--- Val ;;

ParamRef paramtype_p.paramkind <--- Ref ;;

A.2 The Extension

Adding the language extension for exceptions involves modifying both the
grammar and the attribution rules. In most cases these modifications can
be made by simply adding extra rules to the original specification. However
there are a few exceptions, which are noted in the descriptions below.

A.2.1 The Grammar Extensions

To add exceptions to the language, we need to add a number of new produc-
tions to the grammar. In particular “try-with” and “raise” constructions are
added. A new kind of declaration is also added for declaring new exceptions.

One of the productions below is a modification rather than an addition.
The production “ProcDef” was also present in the original grammar, but it
has been modified here. It contains a new non-terminal called “exns”, which
is the list of exceptions that the procedure raises. This list must be explicitly
declared by the programmer.

69

stmt → TRY stmt WITH catches END { Try }
| RAISE IDENTIFIER { Raise }

catches → catch ALT catches { Catches }
| catch { Catches1 }

catch → IDENTIFIER ARROW stmt { Catch }

decl → PROCDEF IDENTIFIER paramdeflist exns stmt { ProcDef }
| EXCEPTION IDENTIFIER { ExnDef }

exns → COLON exnlist { Exns }
| { NoExns }

exnlist → exn COMMA exnlist { ExnList }
| exn { ExnList1 }

exn → IDENTIFIER { Exn }

A.2.2 Attribution Rules

To enable the language extension, new attribute rules need to be added and
certain old attribute rules need to be redefined. These changes are listed
below.

Definitions for existing attributes

We have introduced a number of new productions in previously established
contexts. Attribute rules need to be defined to make these productions com-
patible with their context. For example the “Try” production needs to define
a rule for the attribute “varuses” on the “stmt” non-terminal. Below, we list
all the new rules of this kind except those defining the code attribute. The
definitions for the code attribute are listed later.

ExnDef decl_p.procdefs <--- Stringmap.empty ;;

ExnDef decl_p.vardefs <--- Stringmap.empty ;;

ExnDef decl_p.codeclosure <--- id ;;

ExnDef decl_p.proccode <--- [] ;;

Try stmt_p.proccode <--- $stmt.proccode @ $catches.proccode ;;

Raise stmt_p.proccode <--- [] ;;

Catches catches_p.proccode <--- $catch.proccode @ $catches.proccode ;;

Catches1 catches_p.proccode <--- $catch.proccode ;;

Catch catch_p.proccode <--- $stmt.proccode ;;

ExnDef decl_p.varusesclosure <--- id ;;

Try stmt_p.varuses <--- VarInfoSet.union $stmt.varuses $catches.varuses ;;

Raise stmt_p.varuses <--- VarInfoSet.empty ;;

Catches catches_p.varuses <--- VarInfoSet.union $catch.varuses $catches.varuses ;;

Catches1 catches_p.varuses <--- $catch.varuses ;;

Catch catch_p.varuses <--- $stmt.varuses ;;

ExnDef decl_p.internalnameprefix <--- "E" ;;

70

The exnenvir attribute

inherited (copyable)

type: Internalname.t Stringmap.t

visible on: <all>

The base language has an environment for variables and procedures. Here
we introduce a third for exceptions.

Program stmt.exnenvir <--- Stringmap.empty ;;

Declaration stmt.exnenvir <--- Stringmap.merge $decl.exndefs $stmt_p.exnenvir ;;

ProcDef decl_p.exndefs <--- Stringmap.empty ;;

VarDef decl_p.exndefs <--- Stringmap.empty ;;

ExnDef decl_p.exndefs <--- Stringmap.singleton $IDENTIFIER.lex $decl_p.internalname ;;

The exncontext attribute

inherited (copyable)

type: Internalname.t InternalnameMap.t

visible on: <all>

A “try-with” construction introduces labelled blocks of code that should
be jumped to when an exception occurs. The exncontext attribute is an
environment mapping exception names to those labels.

The goto statement in C only allows jumps within the same procedure.
Therefore raise commands that appear within a subroutine cannot be trans-
lated to a goto. Instead they are translated to return commands. This is
why the ProcDef production passes an empty environment to the procedure
body.

Try stmt.exncontext <---

let labelname = $catches.jumplabel in

let add_to_env env (exn_name, exn_id) = InternalnameMap.add exn_id labelname env in

List.fold_left add_to_env $stmt_p.exncontext $catches.caughtexns ;;

Try catches.exncontext <--- $stmt_p.exncontext ;;

Program stmt.exncontext <--- InternalnameMap.empty ;;

ProcDef stmt.exncontext <--- InternalnameMap.empty ;;

Catches catches_p.jumplabel <--- Internalname.create "l" ;;

Catches1 catches_p.jumplabel <--- Internalname.create "l" ;;

71

The exnalldefs attribute

synthesised

type: Internalname.t list

visible on: stmt

This attribute collects every exception definition that occurs in the program.
This is because the C translation defines the list of all exceptions as a single
global enum.

Declaration stmt_p.exnalldefs <--- (Stringmap.data $decl.exndefs) @ $stmt.exnalldefs ;;

Composition stmt_p.exnalldefs <--- $stmt_1.exnalldefs @ $stmt_2.exnalldefs ;;

Skip stmt_p.exnalldefs <--- [] ;;

Conditional stmt_p.exnalldefs <--- $stmt_1.exnalldefs @ $stmt_2.exnalldefs ;;

While stmt_p.exnalldefs <--- $stmt.exnalldefs ;;

Assign stmt_p.exnalldefs <--- [] ;;

ProcCall stmt_p.exnalldefs <--- [] ;;

Try stmt_p.exnalldefs <--- $stmt.exnalldefs @ $catches.exnalldefs ;;

Raise stmt_p.exnalldefs <--- [] ;;

Catches catches_p.exnalldefs <--- $catch.exnalldefs @ $catches.exnalldefs ;;

Catches1 catches_p.exnalldefs <--- $catch.exnalldefs ;;

Catch catch_p.exnalldefs <--- $stmt.exnalldefs ;;

The exnerrors attribute

synthesised

type: string list

visible on: program

This attribute collects the list of incorrect exception uses. There are two
kinds of error. Firstly the programmer might have raised an exception in a
procedure, but forgotten to add that exception to the signature of the proce-
dure. Secondly the programmer might have forgotten to catch an exception.
This second error is spotted when a raised exception can escape the scope in
which it is defined.

Program program_p.exnerrors <--- $stmt.exnerrors ;;

Declaration stmt_p.exnerrors <---

let uses = $stmt.exnuses in

let defs = Stringmap.assoclist $decl.exndefs in

let uncaught = intersect defs uses in

let mkmessage = fun (name, id) ->

"The exception \"" ^ name ^ "\" may be raised and not caught." in

(List.map mkmessage uncaught) @ $decl.exnerrors @ $stmt.exnerrors ;;

72

ProcDef decl_p.exnerrors <---

let undeclared_exns = list_diff $stmt.exnuses $exns.procexns in

let procname = $IDENTIFIER.lex in

let mkmessage = fun (name, id) ->

"The function \"" ^ procname ^ "\" does not declare the "

^ "exception \"" ^ name ^ "\" which may be raised during its execution." in

(List.map mkmessage undeclared_exns) @ $stmt.exnerrors ;;

VarDef decl_p.exnerrors <--- [] ;;

ExnDef decl_p.exnerrors <--- [] ;;

Composition stmt_p.exnerrors <--- $stmt_1.exnerrors @ $stmt_2.exnerrors ;;

Skip stmt_p.exnerrors <--- [] ;;

Conditional stmt_p.exnerrors <--- $stmt_1.exnerrors @ $stmt_2.exnerrors ;;

While stmt_p.exnerrors <--- $stmt.exnerrors ;;

Assign stmt_p.exnerrors <--- [] ;;

ProcCall stmt_p.exnerrors <--- [] ;;

Try stmt_p.exnerrors <--- $stmt.exnerrors @ $catches.exnerrors ;;

Raise stmt_p.exnerrors <--- [] ;;

Catches catches_p.exnerrors <--- $catch.exnerrors @ $catches.exnerrors ;;

Catches1 catches_p.exnerrors <--- $catch.exnerrors ;;

Catch catch_p.exnerrors <--- $stmt.exnerrors ;;

The exnuses attribute

synthesised

type: (string * Internalname.t) list

visible on: stmt

This attribute enumerates the exceptions that might be raised by a particular
statement. It is used to calculate the exnerrors attribute.

Declaration stmt_p.exnuses <--- $stmt.exnuses ;;

Composition stmt_p.exnuses <--- $stmt_1.exnuses @ $stmt_2.exnuses ;;

Skip stmt_p.exnuses <--- [] ;;

Conditional stmt_p.exnuses <--- $stmt_1.exnuses @ $stmt_2.exnuses ;;

While stmt_p.exnuses <--- $stmt.exnuses ;;

Assign stmt_p.exnuses <--- [] ;;

ProcCall stmt_p.exnuses <--- match proclokup $stmt_p.procenvir $IDENTIFIER.lex with

(_,_,_,exnuses) -> exnuses ;;

Try stmt_p.exnuses <---

(* The exceptions which are caught should be removed from the set *)

let myuses = list_diff $stmt.exnuses $catches.caughtexns in

myuses @ $catches.exnuses ;;

Raise stmt_p.exnuses <---

[($IDENTIFIER.lex, exnlokup $stmt_p.exnenvir $IDENTIFIER.lex)] ;;

Catches catches_p.exnuses <--- $catch.exnuses @ $catches.exnuses ;;

Catches1 catches_p.exnuses <--- $catch.exnuses ;;

Catch catch_p.exnuses <--- $stmt.exnuses ;;

73

The procexns attribute

synthesised

type: (string * Internalname.t) list

visible on: exns

This attribute contains the list of exceptions that a procedure is declared
to throw. This list is compared with the list of exceptions that are actually
thrown. Any discrepancies are enumerated by the exnerrors attribute.

Exns exns_p.procexns <--- $exnlist.procexns ;;

NoExns exns_p.procexns <--- [] ;;

ExnList exnlist_p.procexns <--- $exn.procexns :: $exnlist.procexns ;;

ExnList1 exnlist_p.procexns <--- [$exn.procexns] ;;

Exn exn_p.procexns <---

($IDENTIFIER.lex, exnlokup $exn_p.exnenvir $IDENTIFIER.lex) ;;

The caughtexns attribute

synthesised

type: (string * Internalname.t) list

visible on: catches

This attribute enumerates the exceptions that are caught by the “with” sec-
tion of a “try-with” block.

Catches catches_p.caughtexns <--- $catch.caughtexns :: $catches.caughtexns ;;

Catches1 catches_p.caughtexns <--- [$catch.caughtexns] ;;

Catch catch_p.caughtexns <---

($IDENTIFIER.lex, exnlokup $catch_p.exnenvir $IDENTIFIER.lex) ;;

The code attribute

We have defined two new statements, so we need to define their code at-
tribute. The “try-with” statement translates to a switch statement that
switches on the kind of exception raised. If no exception was raised then
the code jumps past the switch statement. The translation of the “raise”
statement first updates the value of the global variable exception. Then it
jumps to the appropriate “catch”. It may be that the exception was raised
in a sub-routine. in this case the “raise” statement simply returns from the
sub-routine. Below we describe how the translation of procedure calls has
been modified to collaborate with this behaviour.

74

Try stmt_p.code <---

let endlabel = Internalname.mkstring (Internalname.create "l") in

C.Block([$stmt.code

;C.Goto(endlabel)

;C.Label(Internalname.mkstring $catches.jumplabel)

;C.Switch(C.VarUse("exception"),

$catches.code)

;C.Label(endlabel)

]) ;;

Raise stmt_p.code <---

let exn_name = exnlokup $stmt_p.exnenvir $IDENTIFIER.lex in

C.Block([C.Assign(C.VarUse("exception"),

C.VarUse(Internalname.mkstring exn_name));

try let label = InternalnameMap.find exn_name $stmt_p.exncontext in

C.Goto(Internalname.mkstring label)

with Not_found -> C.Return

]) ;;

Catches catches_p.code <--- $catch.code :: $catches.code ;;

Catches1 catches_p.code <--- [$catch.code] ;;

Catch catch_p.code <---

let exn_name = exnlokup $catch_p.exnenvir $IDENTIFIER.lex in

let exnvar = C.VarUse(Internalname.mkstring exn_name) in

let reset = C.Assign(C.VarUse("exception"), C.VarUse("NOEXCEPTION")) in

C.Case(exnvar,[reset; $stmt.code; C.Break]) ;;

Modifications to previously defined attributes

Extending the language with exceptions has consequences for some of the
existing attributes. Three attribute computations need to be redefined.

Firstly, the code attribute for procedure calls needs to be modified. After
a call to a procedure that may raise an exception, we need to check if an
exception was raised. The C translation does this by switching on the value
of the global variable exception.

ProcCall stmt_p.code <---

match proclokup $stmt_p.procenvir $IDENTIFIER.lex with

(newname, _, extraparams, exnuses) ->

let convert_extraparams = List.map (fun name -> C.VarUse(Internalname.mkstring name)) in

let proccall = C.ProcCall(Internalname.mkstring newname,

$paramlist.code @ convert_extraparams extraparams) in

match exnuses with

[] -> proccall

| _::_ -> let mkcase = fun (name, id) ->

let jumpcmd = try let label = InternalnameMap.find id $stmt_p.exncontext in

C.Goto(Internalname.mkstring label)

with Not_found -> C.Return in

let exnvar = C.VarUse(Internalname.mkstring id) in

C.Case(exnvar, [jumpcmd]) in

let exn_switch =

C.Switch(C.VarUse("exception"),

List.map mkcase exnuses @

75

[C.Case(C.VarUse("NOEXCEPTION"), [C.Break])]) in

C.Block([proccall; exn_switch]) ;;

Secondly, the procedure environment needs to be modified. It needs to
contain an extra piece of information: the list of exceptions that the proce-
dure might raise.

ProcDef decl_p.procdefs <---

let myuses = VarInfoSet.diff $stmt.varuses

(varuses_of_paramdefs $paramdeflist.paramdefs) in

Stringmap.singleton $IDENTIFIER.lex

($decl_p.internalname,

List.map (cp snd paraminfo_of_paramdef) $paramdeflist.paramdefs,

List.map fst (VarInfoSet.elements myuses),

$exns.procexns) ;;

Thirdly, at the top level the C translation needs to define an enum of all
the exceptions.

Program program_p.code <---

let exnalldefs = $stmt.exnalldefs in

(match exnalldefs with

[] -> []

| _::_ -> let mkenumentry exndef = (Internalname.mkstring exndef, None) in

[C.Enum("exception_enum",

("NOEXCEPTION", None) :: List.map mkenumentry exnalldefs)

; C.Globalvar(C.Typename("exception_enum"), [C.Varname("exception")])

]

) @

$stmt.proccode @ [C.Function(C.Void, "main", [], [$stmt.code])] ;;

76

Bibliography

[1] Cantu, M. (October 1999) Mastering Delphi 5 . Sybex.

[2] Cheatham, T. J. (1966) “The introduction of definitional facilities into
higher level programming languages.” In: AFIPS (Fall Joint Computer
Conference, 29). (pages 623–637).

[3] Dueck, G. D. P. and Cormack, G. V. (April 1990) “Modular at-
tribute grammars.” The Computer Journal , 33(2): pages 164–172. See
also: research report CS-88-19, University of Waterloo (May 1988).

[4] Engler, D. R. (October 15–17 1997) “Incorporating application se-
mantics and control into compilation.” In: Proceedings of the Conference
on Domain-Specific Languages (DSL-97). Berkeley: USENIX Associa-
tion, (pages 103–118).

[5] Farnum, C. (1992) “Pattern-based tree attribution.” In: Conference
record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages: papers presented at the sym-
posium, Albuquerque, New Mexico, January 19–22, 1992 . New York,
NY, USA: ACM Press, (pages 211–222).

[6] Feldman, S. I. (August 1978) “Make – A program for maintaining
computer programs.” Technical Report Computing Science Technical
Report No. 57, Bell Laboratories.

[7] Fraser, C. W. and Hanson, D. R. (1995) A Retargetable C Com-
piler: Design and Implementation. Redwood City, CA, USA: Ben-
jamin/Cummings Pub. Co.

[8] Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. (1995)
Design Patterns . Reading, MA: Addison Wesley.

77

[9] Ganzinger, H. and Giegerich, R. (June 1984) “Attribute coupled
grammars.” ACM SIGPLAN Notices , 19(6): pages 157–170.

[10] Harvey, B. (1997) Computer Science Logo Style. MIT Press, second
edition.

[11] Johnson, R. E. and Foote, B. (1988) “Designing reusable classes.”
Journal of Object-Oriented Programming , 1(2): pages 22–35.

[12] Johnson, S. C. (1975) “YACC: Yet another compiler compiler.” Com-
puting Science Technical Report , 32.

[13] Johnsson, T. (1987) “Attribute grammars as a functional program-
ming paradigm.” In: Kahn, G. (editor), Functional Programming Lan-
guages and Computer Architecture, volume 274 of Lecture Notes in Com-
puter Science. Springer-Verlag, (pages 154–173).

[14] Jullig, R. K. and DeRemer, F. (June 1984) “Regular right-part
attribute grammars.” ACM SIGPLAN Notices , 19(6): pages 171–178.

[15] Kastens, U. and Waite, W. M. (October 1994) “Modularity and
reusability in attribute grammars.” Acta Informatica, 31(7): pages 601–
627.

[16] Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming
Language, Second Edition. Englewood Cliffs (NJ), USA: Prentice-Hall.

[17] Knuth, D. E. (1968) “Semantics of context-free languages.” Mathe-
matical Systems Theory , 2: pages 127–146.

[18] Krasner, G. E. and Pope, S. T. (August/September 1988) “A
cookbook for using the model-view-controller user interface paradigm
in smalltalk-80.” Journal of Object-Oriented Programming , 1(3):
pages 26–49.

[19] Kruglinski, D. J.; Shepherd, G.; and Wingo, S. (1998) Program-
ming Microsoft Visual C++. Microsoft Press, fifth edition.

[20] Leavenworth, B. (1966) “Syntax macros and extended translations.”
Communications of the ACM , 9(11): pages 790–793.

78

[21] Leroy, X.; Rémy, D.; Vouillon, J.; and Doligez, D. (November
1999) The Objective Caml system release 2.04 . Institut National de
Recherche en Informatique et en Automatique. Available from URL
http://caml.inria.fr/.

[22] de Moor, O.; Peyton-Jones, S.; and Van Wyk, E. (1999) “Aspect
oriented compilers.” In: First International Symposium on Generative
and Component-Based Software Engineering .

[23] Ousterhout, J. (1994) Tcl and the Tk Toolkit . Addison-Wesley.

[24] Petzold, C. (1999) Programming Windows . Microsoft Press, fifth
edition.

[25] Schneider, J.-G. and Nierstrasz, O. (1999) “Components, scripts
and glue.” In: Barroca, L.; Hall, J.; and Hall, P. (editors), Software
Architectures – Advances and Applications . Springer, (pages 13–25).

[26] Simonyi, C. (1996) “Intentional programming: Innovation in the legacy
age.” Presented at IFIP Working group 2.1. Available from URL
http://www.research.microsoft.com/research/ip/.

[27] Stichnoth, J. M. and Gross, T. (October 15–17 1997) “Code com-
position as an implementation language for compilers.” In: Proceedings
of the Conference on Domain-Specific Languages (DSL-97). Berkeley:
USENIX Association, (pages 119–132).

[28] Swierstra, D. and Vogt, H. (June 1991) “Higher order attribute
grammars.” In: Alblas, H. and Melichar, B. (editors), Proceedings of
International Summer School on Attribute Grammars, Applications and
Systems , volume 545 of Lecture Notes in Computer Science. Springer
Verlag, (pages 256–296).

[29] van Wijngaarden, A.; Mailloux, B. J.; Peck, J. E. L.; and
Koster, C. H. A. (1969) “Report on the algorithmic language ALGOL
68.” Numerische Mathematik , 14(2): pages 79–218.

[30] Van Wyk, E. (2000) “Domain specific meta languages.” In: ACM
Symposium on Applied Computing .

79

[31] Zimmerman, M. W. (editor) (1998) Microsoft Visual Basic 6.0 Pro-
grammer’s Guide. Microsoft Press.

80

	Introduction
	A Categorisation of Programming Languages
	Pros and Cons of Domain Specific and Domain Adapted Languages
	Domain Specific Language Extensions
	Intentional Programming
	Requirements of an Intentional Programming Environment
	Ecology

	Previous Work
	Macros
	Extensible Compilers

	GUI Language Extensions
	The Microsoft Foundation Classes
	The MFC Application Framework
	The Document-View Architecture
	The Message Mapping System
	MFC's Use of Inheritance
	Wizards: Guiding the Programmer through the Framework
	A Summary of MFC

	Visual Basic --- A Domain Adapted Language for Programming GUIs
	An Example
	Delegating Work with VB
	Pros and Cons of VB

	MFC vs VB Conclusion
	An Experiment
	The Design
	Translation
	Future Improvements to the Widget Language

	An Attribute Grammar Tool
	Introduction to Attribute Grammars
	An Example
	An Overview of the AG
	The Attribute Definition Functions

	Current Features of the AG Tool
	Positive Features of the AG Tool
	Negative Features of the AG Tool

	Previous Work on Making AGs Modular
	Pattern AGs
	Remote Attribute Access
	Symbol Computations
	Inheritance

	Modular AGs: A Case Study
	The Base Language
	The Language Extension
	Modularising the Translator
	Modularisation Difficulties

	Further Work: A Module System for Attribute Grammars
	Module Interfaces
	Improved Abstraction Facilities

	Conclusion
	Research Goals
	Secondary Goals

	Adding Exceptions to an Imperative Language
	The Base Language
	The Grammar
	Imperativelib.mli
	Imperativelib.ml
	Internalname.mli
	Internalname.ml
	compile.ml
	Attribution Rules

	The Extension
	The Grammar Extensions
	Attribution Rules

