
Functional Quantum Programming

Shin-Cheng Mu Richard Bird

DRAFT

Abstract

It has been shown that non-determinism, both angelic and demonic,

can be encoded in a functional language in different representation of

sets. In this paper we see quantum programming as a special kind of

non-deterministic programming where negative probabilities are allowed.

The point is demonstrated by coding two simple quantum algorithms in

Haskell. A monadic style of quantum programming is also proposed. Pro-

grams are written in an imperative style but the programmer is encour-

aged to think in terms of values rather than quantum registers.

1 Introduction

It was noted by [4] in 1982 a profound difference between the nature of physical
evolution under the laws of quantum physics and classical physics. Simulation
of quantum mechanics on a classical computer usually faces an exponential
slowdown in running time. On the other side of the same coin, this also suggests
the potential power of a new generation of machines based their laws on quantum
physics.

Since then a new branch of technology bloomed to explore this new pos-
sibility. Efforts has been put into realisation of quantum computing devices.
Developments on algorithms for those machines, however, is still slow. It was
not until a decade later when the first quantum algorithm attracted people’s at-
tention was presented by Deutsch and Jozsa [2]. Some impressive breakthrough
was made since then, the most famous one being Shor’s factorisation algorithm.
Further improvements again slowed down. Today we have a small number of
quantum algorithms, most of them variations of each other and can be classified
into two main categories [11].

It seems like a good chance for we computing scientists, with knowledge
about algorithms and programming languages, to get involved. However, quan-
tum physics itself is a subject one can spend a life’s effort on. It is thus desirable
to build an abstraction layer upon the details of physics, pretty much like how
computing scientists today invent algorithms without knowing how the electrons
flow in the chips. Particularly favourable would be a programming language de-
signed for quantum computing, yet allowing reasoning the way we used to do.
Previous attempts has yielded promising results. In particular, a extension of

1

Dijkstra’s guarded command language was proposed in [9, 11], incorporating a
calculus for program refinement.

This paper explores a complementary approach: to simulate quantum pro-
gramming in a functional language. The idea of embedding non-determinism
in a functional language through different representation of sets has been pro-
posed in [7]. Quantum programming can be seen as one of its special case
involving probability. We will illustrate this by coding some quantum algo-
rithms in Haskell. Finally, a monadic style for writing quantum programs is
proposed.

2 Non-determinism and the list monad

Before going into quantum computing, we will first review some known facts
about lists, list monads, and their use for modelling non-determinism. As an
example, consider the problem of computing an arbitrary (consecutive) seg-
ment of a given list. An elegant way to formulate the problem is to use two
relations, or two non-deterministic functions prefix and suffix . The relation
prefix :: [a] → [a] non-deterministically returns an arbitrary prefix of the given
list, while suffix :: [a] → [a] returns an arbitrary suffix. The problem is thus
formulates as segment = suffix · prefix .

Working in a functional language, however, we do not have non-deterministic
functions, as they violate the basic requirement for being a function – to yield
the same value for the same input. Nevertheless, non-deterministic functions
can be simulated by functions returning the set of all possible solutions[7]. A
function prefixes returning the set of all prefixes of the input list can be defined
by:

prefixes :: [a]→ Set [a]
prefixes [] = singleton []
prefixes (a : x) = singleton [] ‘union‘map (a :) (prefixes x)

where singleton returns a singleton set, union performs set union, and map is
overloaded for sets. One possible representation of sets in Haskell is via lists,
i.e,

typeSet a = [a]

In this case, the two set constructing functions above can simply be defined by
singleton x = [x] and union = (++). Similarly, suffices can be defined by:

suffixes :: [a]→ Set [a]
suffixes [] = singleton []
suffixes (a : x) = (a : x) ‘union‘ suffixes x

The function segments , which returns the set of all consecutive segments of a
given list, can thus be composed as below with the help of primitive list operators
map and concat .

segments :: [a]→ Set [a]
segments = concat ·map suffixes · prefixes

2

The use of a concat after a map to compose two list-returning functions is a
general pattern captured by the list monad. This is how the (�=) operator for
the list monad is defined.

x �= f = concat (map f x)

The instance of (�=) above has type [a] → (a → [b]) → [b]. We can think
of it as an apply function for lists, applying a list-returning function to a list
of values. Furthermore, Haskell programmers are equipped with a convenient
do-notation for monads. The functions prefixes and segments can be re-written
in do-notation as below.

prefixes [] = return []
prefixes (a : x) = return [] ‘union‘

(do y ← prefixes x

return (a : y))

segments x = do y ← prefixes x

z ← suffixes y

return z

The do-notation gives programmers a feeling that they are dealing with a single
value rather than a set of them. In the definition for segments , for instance,
identifiers y and z have type [a]. It looks like we take one arbitrary prefix of
x , calling it y , take one arbitrary suffix of y , calling it z , and return it. The
fact that there is a whole set of values to be processed is taken care of by the
underlying (�=) operator.

Simulating non-determinism with sets represented by lists is similar to an-
gelic non-determinism in logic programming. All the answers are enumerated
in a list and are ready to be taken one by one. In fact, the list monad has
close relationship with backtracking and has been used to model the semantics
of logic programming [10].

It may also be the case that the programmer only needs one arbitrary seg-
ment of the given list, no matter which one it is. It can be done with the help
of a function choose defined below.

choose :: [a]→ IOa

choose x = do i ← randomRIO(0, length x − 1)
return (x !!i)

It picks an arbitrary element of the set by taking a random number. The
function segment returning an arbitrary segment can thus be written as:

segment :: [a]→ IO [a]
segment = choose · segments

An obvious explanation why choose has to wrap the returned value in an IO

monad is that the primitive taking a random number in the Haskell Prelude
involves the IO monad. The more fundamental reason, however, is that it

3

preserves the validity of many important program transformation laws. Say,
beta reduction is still valid because segment , or choose, are functions. They
always return the same action of choosing an element from a set, although the
action may yield different results each time it is carried out.

Interestingly, if it can be made sure that choose is the only way the contents
of the set will be accessed (say, by making the set an abstract datatype with
methods singleton, union and choose), an optimisation can be performed. In-
stead of collecting all the answers in a list and make the choice in the last step,
we can decide which element to choose on-the-fly at the time of set union by
some unsafe operation. The “set” representation will therefore only contain one
element.

data Set a = Only a

singleton = Only

x ‘union‘ y = if r then x else y

where r = unsafePerformIO (randomIO :: IOBool)
choose (Only a) = return a

Now that the decision is made earlier, choose simply returns the only element
that is left. The routine unsafePerformIO , or its equivalent, is not part of the
standard Haskell library but is supported by most implementations. As the
name suggests, it forces the IO action given. At each set union, a random
boolean r is taken, by which union picks one of its two arguments. Functions
prefixes , suffixes and segments , if redefined using these new set operations, do
pass around only one element of the set and are potentially faster. Conceptually,
however, we can pretend that we are still passing the entire set around, except
for there is no way to read its contents until choose finally picks one element
in it, or, collapses the non-determinism. The use of IO monad preserves the
program transformation laws just like before.

This way of dealing with non-determinism has been seen before in [8], as an
attempt to add exception handling to Haskell. What could not be determined
was what exception to raise. Conceptually, an entire set of exceptions are raised,
while there is no way to know which one it is until we catch the exceptions using
a primitive returning a value wrapped in IO . In practice, of course, only one
exception is actually raised. Which one it is depends on the order of evaluation.

3 Simulating quantum computing

Now we come to quantum computing. In section 3.1 we will talk about how a
quantum bit and a quantum register can be simulated in Haskell and in section
3.2 some operators on them. We will then present, as examples, two quantum
algorithms in section 3.3 and 3.4.

4

3.1 Qubits and quregs

A qubit is the quantum analogy of a bit and a qureg that of a multi-bits register.
While a bit is either true or false, a qubit may be found to be in either states
with certain probabilities. Following the ket notation of Dirac [3], a bit yielding
value 0 is denoted by |0〉 and a bit yielding 1 by |1〉. The state of a qubit ψ is
linear superposition of classical states, written as a wave function

|ψ〉 = a|0〉+ b|1〉

where a and b, called amplitudes, are complex numbers satisfying |a|2+|b|2 = 1.
Intuitively, we say that |a|2 and |b|2 denote the probability that ψ is observed
to have value 0 and 1, respectively. In this paper, it suffices to use possibly
negative real numbers in place of complex numbers. A qubit can thus naturally
be represented by two real numbers.

One might expect that a two-bits qureg can be represented by two qubits
(or four real numbers), a three-bits qureg by three qubits (or six real numbers).
However, an important quantum physical phenomena called entanglement shows
that such a representation does not give us the full power of quantum computing.
The four (eight) possible values of a two-bits (three-bits) qureg have to be
considered separately. Displayed below is a two-bits qureg.

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d |11〉

In general, an n-bit is represented by a vector of 2n real numbers, sum of their
squares being 1. Simulating a qureg this way incurs an exponential overhead,
a common phenomena when simulating quantum mechanics on a classical com-
puter. It is not yet known whether this exponential overhead is inevitable. Look
at it from the other side, it shows that a qureg has an exponentially larger ca-
pacity to represent information than a classical register, a fundamental reason
why quantum computers are potentially powerful.

We can represent a qureg by a vector of real numbers, corresponding to the
amplitudes.

typeQuReg = [Float]

Say, [0 ·5, 0 ·5, 0 ·5, 0 ·5] represents a two-bit qureg with equal probability, 0 ·25,
for all the four values. Simple vector operations like addition and scalar are also
defined.

plus :: QuReg → QuReg → QuReg

plus = zipWith (+)

scalar :: Float → QuReg → QuReg

scalar a = map (a×)

In the derivations later, where no confusion occurs, we will simply use the
symbols (+) and (×) for clarity.

5

The readers may have noticed the connection with the previous section.
While a set can be represented by a list enumerating all its elements, a proba-
bilistic set can be represented by a list of elements, each paired with the proba-
bility that it is in the set. If the domain of elements is finite and totally ordered,
the elements can be omitted, leaving in the list only the probabilities. The rep-
resentation for quregs here is a further extension, allowing the probabilities to
be negative (or complex) numbers.

The function δ n embeds a classical state |i〉 into an n-bit qureg.

δ :: Int → Int → QuReg

δ n i = repeatN i 0 ++ [1] ++ repeatN (2n − i − 1) 0
repeatN n = take n · repeat

Say, δ 2 2 = [0, 0, 1, 0]. In this paper we will write a quantum state in the ket
notation, say |10〉, and its vector representation [0, 0, 1, 0] interchangeably.

In classical programming, the joint state of two variables is their cartesian
product. Its quantum analogy is tensor product, defined by:

(⊗) :: QuReg → QuReg → QuReg

q ⊗ r = [a × b | a ← q , b ← r]

Say, the probability that a two-bits qureg has value 01 is the probability that
the first bit has value 0 times the probability the second bit has value 1.

[a, b] ⊗ [c, d] = [a × c, a × d , b × c, b × d]

The state |01〉 is equivalent to |0〉 ⊗ |1〉. Indeed, [1, 0]⊗ [0, 1] = [0, 1, 0, 0].

3.2 Quantum operators

Since an n-bit qureg can spontaneously be in 2n states, one would imagine that
if we apply a function f to it, we compute the value of f on 2n inputs in just
one step. An interesting dilemma, however, is that although we have so much
information in a qureg, there is no way to read all of it! In a simulation, we do
have at hand the amplitudes in the vector all the time and are free to make as
many observations as we want. In real quantum computing, however, an obser-
vation collapses the quantum state. It is also called finalisation. Its most simple
form, diagonal finalisation, is to toss a dice, biased according to the probabili-
ties represented by the amplitudes of the qureg, and return the corresponding
value. More complicated finalisations can be transformed in terms of a diagonal
finalisation after some quantum operators. We represent a diagonal finalisation
by a function finalise, which yields an IO action:

finalise :: QuReg → IO Int

It will be used in pretty much the same way as the function choose in section 2.

6

Although we cannot observe the values of f on all the inputs, we can still,
via some alternative ways to apply f to the qureg, extract some properties of f

of interest to us. One possibility is as below:

trans :: (Int → Int)→ QuReg → QuReg

trans f q = zipWith (×) signs q

where signs = map (λx → (−1)(f x)) [0 · ·2n − 1]
n = log2(length q)

Let f be a function from {0 ··2n−1} to an integer, trans f is a quantum operator
which flips the signs of the amplitudes if f yields an odd value. For example,

trans id [
1

2
,
1

2
,
1

2
,
1

2
] = [

1

2
,−1

2
,
1

2
,−1

2
]

Some quantum operators are defined by tensor product lifted to functions.
Given a quantum operator h and k on m and n-bits quregs respectively, h ⊗ k

is a quantum operator on (m + n)-bits quregs, defined by

(h ⊗ k)(q ⊗ r) = (h q) ⊗ (k r)

However, as we mentioned above, an (m+n)-bits qureg is represented by a vector
of 2m+n real numbers, and, due to entanglement, it is not always possible to
decompose it back to two quregs of sizes m and n. How do we compute h ⊗ k ,
then? The answer lies in linearity of quantum operators, that is, they distribute
into summation. We take m = n = 1 in the example below. The tensor product
h ⊗ k can be distributed into the sums of a given two-bits qureg.

(h ⊗ k) (a|00〉+ b|01〉+ c|10〉+ d |11〉)
= {linearity}

a × (h ⊗ k) |00〉+ b × (h ⊗ k) |01〉
+ c × (h ⊗ k) |10〉+ d × (h ⊗ k) |11〉

= {tensor product, |xy〉 = |x 〉 ⊗ |y〉}
a × (h |0〉 ⊗ k |0〉) + b × (h |0〉 ⊗ k |1〉)
+ c × (h |1〉 ⊗ k |0〉) + d × (h |1〉 ⊗ k |1〉)

Now each of the h |x 〉 ⊗ k |y〉 are dealing with concrete states and can be com-
puted accordingly. They each results in a 2-bit qureg. These quregs are then
summed up with weights given by the amplitudes. More generally, tensor prod-
ucts of functions can be defined by:

(h ⊗ k) q = foldr1 plus (zipWith scalar q ts)
where ts = [p ⊗ r | p ← hq , r ← kq]

hq = map (h · δ (n − 1)) [0 · ·2n−1 − 1]
kq = map (k · δ 1) [0, 1]
n = log2(length q)

For simplicity we consider only the case when k is an operator on qubits, which
is sufficient for the examples this paper.

7

As an example of quantum operator defined in terms of tensor products, the
Hadamard function defined on qubits is defined by:

H1(a|0〉 + b|1〉) =
1√
2
(a + b)|0〉+ 1√

2
(a − b)|1〉

The n-bits version, on the other hand, is defined by repeating tensor product
(H1 ⊗H1 . . .⊗H1) n times. Its Haskell translation is immediate.

hadamard q = had (length q) q

where h [a, b] = [1
√

2
× (a + b), 1

√

2
× (a − b)]

had 1 = h

had (n + 1) = had n ⊗ h

We will talk a bit more about the Hadamard function. To get a feel of it, we
derive its closed form for two-bits quregs. Note that h |0〉 = h [1, 0] = [1

√

2
, 1
√

2
]

and h |0〉 = h [0, 1] = [1
√

2
,− 1

√

2
].

hadamard (a|00〉+ b|01〉+ c|10〉+ d |11〉)
= {linearity}

a × hadamard |00〉+ b × hadamard |01〉
+ c × hadamard |10〉+ d × hadamard |11〉

= {tensor product}
a × (h |0〉 ⊗ h |0〉) + b × (h |0〉 ⊗ h |1〉)
+ c × (h |1〉 ⊗ h |0〉) + d × (h |1〉 ⊗ h |1〉)

= {definition of h}
a × ([1

√

2
, 1
√

2
]⊗ [1

√

2
, 1
√

2
]) + b × ([1

√

2
, 1
√

2
]⊗ [1

√

2
,− 1

√

2
])

+ c × ([1
√

2
,− 1

√

2
]⊗ [1

√

2
, 1
√

2
]) + d × ([1

√

2
,− 1

√

2
]⊗ [1

√

2
,− 1

√

2
])

= {tensor product}
a × [12 ,

1
2 ,

1
2 ,

1
2] + b × [12 ,− 1

2 ,
1
2 ,− 1

2]
+ c × [12 ,

1
2 ,− 1

2 ,− 1
2] + d × [12 ,− 1

2 ,− 1
2 ,

1
2]

= {arithmetics}
[12 (a + b + c + d), 1

2 (a − b + c − d),
1
2 (a + b − c − d), 1

2 (a − b − c + d)]

Some observations. First, applying the Hadamard function to |00〉, we
get hadamard |00〉 = hadamard [1, 0, 0, 0] = [1

2 ,
1
2 ,

1
2 ,

1
2]. It helps to prepare a

qureg with equal probabilities for each values. Indeed, one of the many uses of
Hadamard function is to initialise quregs. The following function ini prepares
an n-bit qureg initialised to equal probabilities for all values.

ini :: Int → QuReg

ini n = hadamard (δ n 0)

Second, the Hadamard function sums up the amplitudes to state |00〉. For all
other states, it gives an equal number of positive and negative signs to each of

8

the amplitudes before the summation. This behaviour will turn out to be useful
later.

3.3 The Deutsch-Jozsa classification

For quite a while, although people knew about the potential of quantum com-
puters, there are no algorithms to exploit their computing power, until Deutsch
and Jozsa demonstrated the first widely recognised quantum algorithm. It was
first presented by Deutsch[1], dealing with qubits, but did not attract much
attention until later extended to n-bits case by Deutsch and Jozsa[2].

Being one of the earliest quantum algorithms, it deals with a rather artificial
problem. Given is a function f :: {0 · ·2n − 1} → {0, 1} for some n ≥ 1. We
know nothing about the function except for that it is either constant (i.e. f a

always yields the same value for all a) or balanced (i.e. the sets {a | f (a) = 0}
and {a | f (a) = 1} has the same size). How do we find out which case it is? On
classical computers, it may take as many as 2n−1 + 1 applications of f before
we can safely make a conclusion. Can we do that with only one (quantum)
application?

Their algorithm simply reads:

dj :: Int → (Int → Int)→ IO Int

dj n f = (finalise · hadamard · trans f · ini)n

As mentioned in the previous section, the function ini initialises the qureg
to equal probability for all the 2n values. For n = 2, for instance, ini 2 yields
[12 ,

1
2 ,

1
2 ,

1
2]. The lifted function trans f is then applied to this initialised qureg.

In the case that f is a constant function always yielding zero, none of the
signs get changed. In other words, trans (const 0) (ini 2) = [1

2 ,
1
2 ,

1
2 ,

1
2]. The

last hadamard function then sums all the probabilities to state |00〉, while the
probabilities for all other states get cancelled out, yielding the qureg [1, 0, 0, 0].

Similarly, when f is a constant function always returning 1, all the signs will
be changed. The probability of state |00〉 will be −1 and those of other states
still got cancelled out. The resulting qureg would be [−1, 0, 0, 0]. In both cases,
the finalise step will give us 0 with 100% probability.

When f is balanced, however, we will have an equal number of 1
2 s and − 1

2 s
after the trans f step. So it becomes |00〉 to be cancelled out. Finalisation may
yield any value but 0.

In summary, if the Deutsch-Jozsa algorithm yields 0, f is a constant function.
If we get any other value, we may conclude that f is balanced.

3.4 Grover’s point search algorithm

The Deutsch-Jozsa algorithm always delivers the desired result. The more typ-
ical quantum algorithm, like the one in this section described by Grover [5],
computes the result within a margin of error. The problem is: given an array of
2n bits containing a single 1, represented by a function f :: {0 · ·2n−1} → {0, 1},
find the index where the 1 is.

9

Grover’s algorithm uses a loop after the initialisation. The initialisation
prepares a qureg with the same positive amplitudes for all possible values. In
each iteration of the loop, first the function trans f is applied to the prepared
qureg. Only the amplitude corresponding to the only entry in f yielding 1 will
have its sign changed. Call it q . The function diffusion is applied to q . Its local
identifier avg stands for the average of the amplitudes in q . It creates a new
qureg whose amplitudes result from subtracting from avg each amplitudes in q .
The effect is that all the amplitudes are inverted about the average. The entry
for which f yields 1 gets bigger because its sign was just changed, making it
furthest from the average. The difference between this entry and others is thus
amplified. The more iterations run, the more possible that this entry will be
chosen in the end. The algorithm reads:

grover :: Int → (Int → Int)→ Int → IO Int

grover n f i = (finalise · loop i (diffusion · trans f) · ini)n

where loop i f = head · drop i · iterate f

diffusion q = map (λx → 2× avg − x) q

where avg = 1
2n × sum q

The important choice of i , which determines the number of iterations performed,
will not be discussed here. A number proportional to

√
2n will be sufficient,

while traditional searching algorithm needs at best O(2n) time.

4 Quregs as monads

Let us look again at the distributivity law in section 3.2. Given a quantum
operator f should satisfy that given any quantum state q :

f q

= {assume q = a|00〉+ b|01〉+ c|10〉+ d |11〉}
f (a|00〉+ b|01〉+ c|10〉+ d |11〉)

= {linearity}
a × f |00〉+ b × f |01〉
+ c × f |10〉+ d × f |11〉

In fact, all n-bit quantum operators can be written as n × n unitary matrices
and their application is interpreted as matrix multiplication. Applying f to |00〉,
|01〉. . . etc is actually recovering the columns of the matrix.

If we abstract the above expression over f and q , that is, define an apply

function for quantum operators, what would its type be? Clearly, q has type
QuReg . The operator f should have type QuReg → QuReg . However, in the
expression above, f is only applied to classical states, i.e. ordinary values. So
we may simplify its type to Int → QuReg . The result of the application should,
of course, be a QuReg . The apply functions should thus have type

apply :: (Int → QuReg)→ QuReg → QuReg

10

or, if we reverse the position of f and q :

apply :: QuReg → (Int → QuReg)→ QuReg

But, that resembles the type of the monadic (�=) operator! That inspires the
idea that we can write quantum programs in a monadic style.

True, a qureg cannot be a monad, because it does not take a type parameter
like the list type constructor1. Never the less, you can still define a (�=) and
return operator for quregs. It is just that you cannot use do-notation, which is
just a convenient syntax sugar anyway. The (�=) operator can be defined by:

(�=) :: QuReg → (Int → QuReg)→ QuReg

q �= f = foldr1 plus (zipWith scalar q (map f [0 · ·2n − 1]))
where n = log2(length q)

while the return :: Int → QuReg operator is simply defined by return = δ.
Assume that the do-notation is extended to quregs. The monadic version of

the Deutsch-Jozsa algorithm can be simply written as

dj n f = finalise (do x ← ini n

y ← trans n f x

hadamard n y)

Like with the list monad, the do-notation encourages the programmer to think
in terms of individual values. In the definition above, the identifiers x and y

has type Int . The programmer pretends that a concrete value x is extracted
from the initialised qureg, fed to function trans f , resulting in another concrete
integer y , and fed to the Hadamard function. We all know very well, however,
that this feeling of value-based programming is only a metaphor. What actually
happens in the monad is that all possible values are fed to trans f and hadamard

and then summed up with different weights.
We still need to make corresponding changes to the basic quantum operators.

Now that the job of feeding different values to quantum operators is dealt with
by (�=), tensor product on functions has a simpler definition.

(h ⊗ k) x = h (x ‘div ‘ 2)⊗ k (x ‘mod ‘ 2)

Hadamard function now takes concrete values, and an extra parameter specify-
ing the size of the qureg. The biggest change is in the sub-function h.

hadamard 1 = h

hadamard (n + 1) = had n ⊗ h

where h 0 = [1
√

2
, 1
√

2
]

h 1 = [1
√

2
,− 1

√

2
]

1Some other representations for quregs can be generalised to contain a type parameter,

but some context restrictions on the parameter will need to be satisfied. So it cannot be a

monad in the Haskell sense anyway.

11

The definition of h is basically just writing down the matrix corresponding to
the quantum operator. The definition of trans f is similar to δ, except for it can
be either a 1 or a −1 in the middle.

trans n f x = repeatN i 0 ++ [(−1)(f x)] ++ repeatN (2n − i − 1) 0

Similarly, the Grover’s searching algorithm can be written in monadic style
as below.

grover n f i = finalise (do x ← ini n

loop i x)
where loop 0 x = return x

loop (i + 1) x = do y ← trans n f x

z ← diffusion n y

loop i z

It is made clear that the algorithm is a loop after the initialisation, while the
loop consists of two steps. First the current state is fed to trans f , then to
amplify n. Amplify is again defined in a way similar to δ.

diffusion n i = repeatN i 1
2n ++ [2× 1

2n − 1] ++ repeatN (2n − i − 1) 1
2n

As a comparision, in the quantum computing texts, the matrix for the diffusion

step is usually defined by Dij = 2
2n if i 6= j and Dii = 2

2n − 1. We are really
writing the same matrix here.

This monadic style gives the programmer a feeling of imperative program-
ming. The reader is encouraged to compare it with [11], where an extended
version of Dijkstra’s guarded command language was proposed as the program-
ming language of choice for quantum programming with quregs the basic unit
to operate on, or with [6], where a C-like language manipulating the values was
used but the amplitudes are entirely implicit and must be discovered though
all traces of the program. Whether the monadic style is appropriate, easier for
the programmers, and whether it gives new insight into quantum programming,
remains to be seen.

Another interesting phenomena is that it is not possible to apply the same
optimisation as in section 2. Every intermediate value matters, and once the
non-determinism is collapsed pre-maturely, the computation cannot carry on in
the same way. That is another reason why simulating quantum computation on
a classical device is bound to be expensive.

5 Conclusion

We have demonstrated the relationship between quantum programming and
the usual way encoding non-determinism in representations of sets. Starting
from the list representation, we showed how non-determinism can be encoded
in sets in a functional language. Demonic non-determinism is encapsulated in
an alternative representation of sets. Accessing the contents of the set yields a
value wrapped in an IO monad, thus non-deterministic choice is allowed to be

12

unsafely performed at an earlier stage. This is a continuation of the theme in
[7, 8].

A qureg is represented by a special kind of probabilistic set in which negative
probabilities are allowed. Quantum programming is then seen as a special kind
of non-deterministic programming where the non-determinism is not allowed to
collapse pre-maturely as in the previous case.

A monadic style of quantum programming is also proposed. Programs are
written in an imperative style but the programmer is encouraged to think in
terms of values rather than quregs. Whether it gives new insight into quantum
programming, however, remains to be seen.

Acknowledgement

This work was inspired by Tony Hoare during Mu’s summer internship job
in Microsoft Research Ltd., Cambridge. Much of the facts about quantum
computing presented in this paper is based on Paolo Zuliani’s D.Phil thesis.
Thanks is due to Paolo Zuliani for valuable discussions.

References

[1] D. Deutsch. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. In Proceedings of the Royal Society, Series A,
volume 400, pages 97–117, 1985.

[2] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum com-
puter. In Proceedings of the Royal Society, Series A, volume 439, pages
553–558, 1992.

[3] P. A. M. Dirac. The Principles of Quantum Mechanics, 4th edition. Oxford
University Press, 1958.

[4] R. P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21:467–488, 1982.

[5] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the 28th ACM Symposium on Theory of Computing, pages
212–219, 1996.

[6] L. K. Grover. Searching with quantum computers. Dr. Dobb’s Journal,
April 2001.

[7] J. Hughes and J. O’Donnell. Expressing and reasoning about non-
deterministic programs. Functional Programming Glasgow 1989, pages
308–328, 1990.

[8] S. P. Jones, A. Reid, C. A. R. Hoare, S. Marlow, and F. Henderson. A
semantics for imprecise exceptions. In Proceedings of the SIGPLAN Sym-
posium on Programming Language Design and Implementation (PLDI’99),
Atlanta, 1999.

13

[9] J. W. Sanders and P. Zuliani. Quantum programming . In R. C. Backhouse
and J. N. F. d. Oliveira, editors, Mathematics of Program Construction
2000, number 1837 in Lecture Notes in Computer Science, pages 80–99.
Springer-Verlag, 2000.

[10] S. Seres, M. Spivey, and C. A. R. Hoare. Algebra of logic programming. In
Proceedings of ICLP’99, Las Cruces, USA, 1999.

[11] P. Zuliani. Quantum Programming. PhD thesis, Oxford University, 2001.

14

