The logic of quantum mechanics - take II

arXiv:1204.3458

_ genesis -

- genesis -
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff and von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff and von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[1936 - 2000] many followed them, ...
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff and von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[1936 - 2000] many followed them, ... and FAILED.
— the mathematics of it -
— the mathematics of it -
Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.
— the mathematics of it —
Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.

WHY?

— the mathematics of it -
Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.

WHY?

von Neumann: only used it since it was 'available'.
— the physics of it —
— the physics of it -
von Neumann crafted Birkhoff-von Neumann Quantum 'Logic' to capture the concept of superposition.

— the physics of it -

von Neumann crafted Birkhoff-von Neumann Quantum 'Logic' to capture the concept of superposition.

Schrödinger (1935): the stuff which is the true soul of quantum theory is how quantum systems compose.

— the physics of it -

von Neumann crafted Birkhoff-von Neumann Quantum 'Logic' to capture the concept of superposition.

Schrödinger (1935): the stuff which is the true soul of quantum theory is how quantum systems compose.

Quantum Computer Scientists: Schrödinger is right!

- the game plan -

— the game plan -

Task 0. Solve:

$$
\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?
$$

> — the game plan —

Task 0. Solve:

$$
\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?
$$

i.e. axiomatize " \otimes " without reference to spaces.

- the game plan -

Task 0. Solve:

$$
\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?
$$

i.e. axiomatize " \otimes " without reference to spaces.

Task 1. Investigate which assumptions (i.e. which structure) on \otimes is needed to deduce physical phenomena.

- the game plan -

Task 0. Solve:

$$
\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?
$$

i.e. axiomatize " \otimes " without reference to spaces.

Task 1. Investigate which assumptions (i.e. which structure) on \otimes is needed to deduce physical phenomena.

Task 2. Investigate wether such an "interaction structure" appear elsewhere in "our classical reality".

Outcome 1a:

Outcome 1a: "Sheer ratio of results to assumptions"

Hans Halvorson (2010) Editorial to: Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge University Press.

Outcome 1a: "Sheer ratio of results to assumptions" confirms that we are probing something very essential.

Hans Halvorson (2010) Editorial to: Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge University Press.

Outcome 1a: "Sheer ratio of results to assumptions" confirms that we are probing something very essential.

Outcome 1b: Exposing this structure has already helped to solve open problems elsewhere.

E.g.: Ross Duncan \& Simon Perdrix (2010) Rewriting measurement-based quantum computations with generalised flow. ICALP'10.

Outcome 1a: "Sheer ratio of results to assumptions" confirms that we are probing something very essential.

Outcome 1b: Exposing this structure has already helped to solve open problems elsewhere.

Outcome 1c: Framework is a simple intuitive (but rigorous) diagrammatic language,

Outcome 1a: "Sheer ratio of results to assumptions" confirms that we are probing something very essential.

Outcome 1b: Exposing this structure has already helped to solve open problems elsewhere.

Outcome 1c: Framework is a simple intuitive (but rigorous) diagrammatic language, meanwhile adopted by others e.g. Lucien Hardy in arXiv:1005.5164:
"... we join the quantum picturalism revolution [1]"
[1] BC (2010) Quantum picturalism. Contemporary Physics 51, 59-83.

Outcome 2a:

Behaviors of matter (Abramsky-C; LiCS'04, quant-ph/0402130) :

Meaning in language (Clark-C-Sadrzadeh; Linguistic Analysis, arXiv:1003.4394) :

Knowledge updating (C-Spekkens; Synthese, arXiv:1102.2368):

- the logic of it -

— the logic of it —

WHAT IS "LOGIC"?
— the logic of it —

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.

"Alice and Bob ate everything or nothing, then got sick."
connectives $(\wedge, \vee):$ and, or
negation (\neg) : not (cf. nothing $=$ not something)
entailment (\Rightarrow) : then
quantifiers (\forall, \exists) : every(thing), some(thing)
constants (a, b) : thing
variable (x) : Alice, Bob
predicates $(P(x), R(x, y))$: eating, getting sick
truth valuation $(0,1)$: true, false
$(\forall z: \operatorname{Eat}(a, z) \wedge \operatorname{Eat}(b, z)) \wedge \neg(\exists z: \operatorname{Eat}(a, z) \wedge \operatorname{Eat}(b, z)) \Rightarrow \operatorname{Sick}(a), \operatorname{Sick}(b)$
— the logic of it -

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.
Pragmatic option 2: Logic lets machines reason.
— the logic of it —

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.

Pragmatic option 2: Logic lets machines reason.

Cf. the soft incarnation of AI in robotics, automated theorem proving, automated theory exploration, ...

NEW!
You can now purchase TheoryMine T-shirts, mouse-pads and mugs!

Home Page	Name a Theorem	F.A.Q.	About Us	Gift Packs	Testimonials

2] WE discover a theorem

[^0]
— the logic of it —

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.
Pragmatic option 2: Logic lets machines reason.
Our framework appeals to both senses of logic, and moreover induces important new applications:
— the logic of it —

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.
Pragmatic option 2: Logic lets machines reason.
Our framework appeals to both senses of logic, and moreover induces important new applications:
From truth to meaning in natural language processing:

- eUnNTuM Lnculstics Leap formard forartifical inteligence (December 2010)
— the logic of it —

WHAT IS "LOGIC"?

Pragmatic option 1: Logic is structure in language.
Pragmatic option 2: Logic lets machines reason.
Our framework appeals to both senses of logic, and moreover induces important new applications:

From truth to meaning in natural language processing: - NeWSCientist (December 2010)

Automated theorem generation for graphical theories:

- http://sites.google.com/site/quantomatic/

MINIMAL QUANTUM PROCESS LANGUAGE

Samson Abramsky \& BC (2004) A categorical semantics for quantum protocols. In: IEEE-LiCS'04. quant-ph / 0402130

BC (2005) Kindergarten quantum mechanics. quant -ph / 0510032

— wire and box language -

Box $:=\begin{aligned} & \text { - } \leftarrow \text { output wire (s) } \\ & f \text { input wire(s) }\end{aligned}$

Interpretation: wire := system ; box := process

one system: n subsystems: no system:

- wire and box games -

sequential or causal or connected composition:

parallel or acausal or disconnected composition:

$$
f \otimes g \equiv \underset{\square}{f}
$$

- merely a new notation? -

- quantitative metric -

$$
f: A \rightarrow B
$$

- quantitative metric -

$$
f^{\dagger}: B \rightarrow A
$$

— asserting (pure) entanglement -

—asserting (pure) entanglement -

\Rightarrow introduce 'parallel wire' between systems:

subject to: only topology matters!

— quantum-like -

E.g.

Transpose:

Conjugate:

$$
a=?
$$

$$
a^{*}=1
$$

$$
A^{+} .1
$$

\Rightarrow quantum teleportation
— symbolically: dagger compact categories -

Thm. [Kelly-Laplaza '80; Selinger '05] An equational statement between expressions in dagger compact categorical language holds if and only if it is derivable in the graphical notation via homotopy.

Thm. [Hasegawa-Hofmann-Plotkin; Selinger '08]

An equational statement between expressions in dagger compact categorical language holds if and only if it is derivable in the dagger compact category of finite dimensional Hilbert spaces, linear maps, tensor product and adjoints.
— symbolically: dagger compact categories -

In words: Any equation involving:

- states, operations, effects
- unitarity, adjoints (e.g. self-adjoint), projections
- Bell-states/effects, transpose, conjugation
- inner-product, trace, Hilbert-Schmidt norm
- positivity, completely positive maps, ...
holds in quantum theory if and only if it can be derived in the graphical language via homotopy.
— kindergarten quantum mechanics: the experiment -

Contest in problem solving between:

- Children using quantum picturalism
- Physics teachers using ordinary QM

The children will win!
[1] BC (2010) Quantum picturalism. Contemporary Physics 51, 59-83.

A SLIGHTLY DIFFERENT LANGUAGE FOR NATURAL LANGUAGE MEANING

QUANTUM LINGUISTICS Leap forward for artificial intelligence

BC, Mehrnoosh Sadrzadeh \& Stephen Clark (2010) Mathematical foundations for a compositional distributional model of meaning. arXiv:1003.4394
— the from-words-to-a-sentence process —

— the from-words-to-a-sentence process —

Consider meanings of words, e.g. as vectors (cf. Google):

— the from-words-to-a-sentence process -

What is the meaning the sentence made up of these?

— the from-words-to-a-sentence process —

I.e. how do we/machines produce meanings of sentences?

— the from-words-to-a-sentence process -

I.e. how do we/machines produce meanings of sentences?

Gerald Gazdar (1996) Paradigm merger in natural language processing. In:
Computing tomorrow: future research directions in computer science, eds.,
I. Wand and R. Milner, Cambridge University Press.
— the from-words-to-a-sentence process —

Information flow within a verb:

— the from-words-to-a-sentence process -

Information flow within a verb:

object

Again we have:

— grammar as pregroups - Lambek '99 -

_ grammar as pregroups - Lambek '99 -
For noun type n, verb type is ${ }^{-1}(n) \cdot s \cdot(n)^{-1}$, so:

- grammar as pregroups - Lambek '99 -

For noun type n, verb type is ${ }^{-1}(n) \cdot s \cdot(n)^{-1}$, so:

$$
n \cdot{ }^{-1}(n) \cdot s \cdot(n)^{-1} \cdot n=s
$$

- grammar as pregroups - Lambek'99 -

For noun type n, verb type is ${ }^{-1}(n) \cdot s \cdot(n)^{-1}$, so:

$$
n \cdot{ }^{-1}(n) \cdot s \cdot(n)^{-1} \cdot n=s
$$

Diagrammatic typing:

$(\mathrm{n})^{-1}$
n

- grammar as pregroups - Lambek'99 -

For noun type n, verb type is ${ }^{-1}(n) \cdot s \cdot(n)^{-1}$, so:

$$
n \cdot{ }^{-1}(n) \cdot s \cdot(n)^{-1} \cdot n=s
$$

Diagrammatic meaning:

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{l i k e} \otimes \overrightarrow{\text { Bob }}-$

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}$ -

- $\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}$ -

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}$ -

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}$ -

Alice

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}$ -

$-\overrightarrow{\text { Alice }} \otimes \overrightarrow{\text { does }} \otimes \overrightarrow{\text { not }} \otimes \overrightarrow{\text { like }} \otimes \overrightarrow{\text { Bob }}-$

— experiment: word disambiguation -
E.g. what is "saw" in: "Alice saw Bob with a saw".

Model	High	Low	ρ
Baseline	0.47	0.44	0.16
Add	0.90	0.90	0.05
Multiply	0.67	0.59	0.17
Categorical (1)	$\mathbf{0 . 7 3}$	$\mathbf{0 . 7 2}$	$\mathbf{0 . 2 1}$
Categorical (2)	$\mathbf{0 . 3 4}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 2 8}$
UpperBound	4.80	2.49	0.62

Edward Grefenstette \& Mehrnoosh Sadrzadeh (2011) Experimental support for a categorical compositional distributional model of meaning. Accepted for: Empirical Methods in Natural Language Processing (EMNLP'11).

WHERE DOES THE ANALOGY STOP?

- Frobenius algebras -

quantum.1: classical data/observables

$$
\text { 'spiders' }=\{{\underset{\sim}{n}}_{\overbrace{n}^{m}}^{\langle }\}
$$

such that, for $k>0$:

$\overline{B C} \&$ Dusko Pavlovic (2007) Quantum measurement without sums. In: Mathematics of Quantum Computing and Technology. quant-ph/0608035
BC, Dusko Pavlovic \& Jamie Vicary (2008) A new description of orthogonal bases. Mathematical Structures in Computer Science. 0810.0812

- Frobenius algebras -

quantum.2: complementary quantum observables

BC \& Ross Duncan (2008) Interacting quantum observables. ICALP'08 \& New Journal of Physics 13, 043016. arXiv: 0906.4725

Miriam Backens (2012) The ZX-calculus is complete for stabilizer quantum mechanics. In: Proc. Quantum Physic and Logic IX.

- Frobenius algebras -

quantum.3: entangelement classes

$$
\begin{aligned}
& \frac{G H Z=|000\rangle+|111\rangle}{W=|001\rangle+|010\rangle+|100\rangle}=\frac{\text { 'special' CFAs }}{\text { 'anti-special' CFAs }} \\
& \begin{array}{l}
=\frac{\square(\dot{Q}=1}{\square \boldsymbol{Q}=\boldsymbol{Q}} \\
=\frac{\times}{+} \Rightarrow \text { distributivity }
\end{array}
\end{aligned}
$$

BC \& Aleks Kissinger (2010) The compositional structure of multipartite quantum entanglement. ICALP'10. arXiv:1002.2540

- Frobenius algebras -

Language-meaning:

(the) man who Alice hates

Stephen Clark, BC and Mehrnoosh Sadrzadeh (2013) The Frobenius Anatomy of Relative Pronouns. MOL'13.

[^0]: $[3]$ THEY get a

