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Thank you Samson for bringing us all together.
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Nominal techniques

Nominal techniques are obtained by taking names seriously;
specifically, using Fraenkel-Mostowski sets.

So we assume a symmetric class of atoms or urelemente. Use a
permutative convention that a, b, c, . . . range over distinct atoms.

Set theorists: assume we are in the hierarchy of Fraenkel–
Mostowski sets. Category theorists: assume we are in the Schanuel
Topos.

Every element has an atoms–permutation action π·x , and a
supporting set of atoms supp(x). Write a#x when a 6∈ supp(x).

These are our assumptions.
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Nominal techniques

We should take names seriously because they are everywhere, and
they are elementary. More elementary than ‘function’. More
elementary than ‘first-order predicate’.

So we should be able to build first-order logic and the λ-calculus.
Just out of names.

Given a set X we make a Boolean algebra out of its powerset
pset(X ). Refining this, we get Stone duality.

So powersets give us propositional logic.

Surely, nominal powersets (sets with names and binding) should
give us predicate logic (propositions with names and binding).
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Nominal algebras

You can build algebras over nominal sets. Specifically [capasn
2006,capasn-jv 2008] you can specify a nominal algebra for
substitution—σ-algebras:

(σid) x [a 7→a] = x
(σ#) a#x ⇒ x [a 7→u] = x
(σα) b#x ⇒ x [a 7→u] = ((b a)·x)[b 7→u]
(σσ) a#v ⇒ x [a 7→u][b 7→v ] = x [b 7→v ][a 7→u[b 7→v ]]

You know these axioms, as lemmas: ‘if x 6∈ fv(t) then t[s/x ] = t’
is a lemma of syntax; (σ#) abstracts this. Need ‘nominal’ for the
freshness side-condition.

Validity of (σσ) on concrete syntax is often called the substitution
lemma.
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Example σ-algebras

The axioms were specified in a paper on nominal algebra in 2006.

Examples of σ-algebras include:

I first-order syntax with substitution,
I λ-calculus terms with capture-avoiding substitution,
I non-syntactic models including Tarski-style valuation

semantics and (amazingly)
I any cumulative hierarchy model of FM sets [stusun 2009].

The axioms are sound and complete for each of the classes of
models above. So there are lots of models of these things, of
greatly differing complexities.

Pick one, call it X.
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Nominal power sets

Given a σ-algebra X its nominal powerset powerset(X) has a dual
structure which I call an σ-algebra (amgis-algebra):

( σid) p[a←[a] = p
( σα) b#p ⇒ p[u←[a] = (b a)·(p[u←[b])
( σσ) a#v ⇒ p[v← [b][u←[a] = p[u[b 7→v ]←[a][v←[b]

This looks a bit like a σ-algebra, but the axioms are all ‘inside
out’—as one might expect.

p[u←[a] = {x ∈ X | x [a 7→u] ∈ p} p ∈ pset(X)

So ( σσ) comes about since x [a 7→u][b 7→v ] ∈ p if and only if
x [b 7→v ][a 7→u[b 7→v ]] ∈ p by (σσ).
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Nominal power sets

Take powersets again, and you get back a σ-algebra.

So if X is a σ-algebra, so is powerset(powerset(X)).

So far so good.

This is not as easy as I might make it sound. Here is the definition
of the σ-action from the λ-calculus paper:

X [a 7→u] = {p | Nc .p[u←[c] ∈ (c a)·X} X ∈ pset(pset(X))

Check out the ‘nominal’ stuff going on here: N, and permutation
on sets of sets of sets.

But what you end up with in the end is a σ-algebra.
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Nominal powersets

Powersets are lattices.

We can interpret ⊥ and ∧ in pset(pset(X)) as the empty set and
intersection.

We can interpret negation as complement.

Easy. Well known. Standard.
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Fresh limits

New concept: nominal powersets have fresh-finite limits [nomspl
2012].

This means that given X ∈ pset(pset(X)), ∀a.X is the greatest
subset of X such that a#∀a.X . So ∀a.X is the a#limit of {X}.

In the presence of the aforementioned σ-action, this coincides with
the intersection of X [a 7→u] for all u.
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Equality

However, the definitions are not the same. The proofs work using
the a#limit characterisation, not the infinite-intersection
characterisation.

(Why? Intuitively,
∧

u X [a 7→u] depends on the size of the set of u,
whereas an a#limit does not. Discuss here shades of (∀R) rule.)

So we have ⊥, ∧, ¬, and ∀. In nominal powersets, we can interpret
first-order logic.
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Equality

We can go further and interpret u = v as

{p ∈ pset(X) | Nc .p[u←[c] = p[v←[c]}.

Nis the new-quantifier meaning ‘for some/any fresh c ’.

So we have equality too. In nominal powersets, we can interpret
first-order logic with equality!
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References

I’ve simplified—a lot!

See “Stone duality for first-order logic” [stodfo 2011] and see
“Semantics out of context” http://arxiv.org/abs/1305.6291
(submitted).

Warning: the papers are 32 and 56 pages long respectively. It’s
meaty stuff.

But what we get out of them is a comprehensive account of
first-order logic in nominal sets: as a nominal algebra, a nominal
lattice, and as a topological (a Stone) space, along with soundness,
completeness, duality results, and translations of traditional Tarski
and Herbrand models to the nominal framework.

The ideas are simple enough and are drawn directly from studying
pset(pset(X)) for a σ-algebra X, as outlined. All we have done is
take names seriously and use powersets.
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λ-calculus

A similar story, only harder because λ is harder. See
http://arxiv.org/abs/1305.5968 (86 pages!).

Assume that X has a combination action

◦ : pset(X)× pset(X)→ pset(pset(X))

(that’s an odd type). Also assume that atoms are a subset of X.

The combination action acts pointwise to give a binary application
function on sets of sets pset(pset(X))2 → pset(pset(X)). This has
a right adjoint (•.
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λ-calculus

So given X and Y we can form X•Y and Y(•X , and X•Y ⊆ Z if
and only if X ⊆ Y(•Z .

Then λa.X can be identified with ∀a.(∂a(•X ), where
∂a = {p | a ∈ p}.

β-reduction and η-expansion emerge from the adjoint properties of
• and (•:

I (∂a(•X )•∂a ⊆ X leads to β-reduction, and
I X ⊆ ∂a(•(X•∂a) leads to η-expansion.
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A flavour: the notion of filter used in both papers

A filter in D is a nonempty subset p ⊆ |D| (which need not have
finite support) such that:

1. ⊥ 6∈ p.
2. If x ∈ p and x ≤ x ′ then x ′ ∈ p.
3. If x ∈ p and x ′ ∈ p then x ∧ x ′ ∈ p.
4. If Nb.(b a)·x ∈ p then ∀a.x ∈ p.
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A flavour: why the nominal models are not just ordinary
models

Tarski-style models of FOL can be converted into corresponding
nominal structures. I.e. valuation-based models have natural
nominal and σ-algebra structure.

These models are complete; they have all limits, because the
standard poset of Booleans {⊥,>} is complete and the Tarski
denotation of a predicate φ is a function from valuations to
{⊥,>}.

The nominal models give φ a semantic in a nominal Stone space.
Open and open compact sets are not closed under arbitrary
intersections (i.e. do not have all limits).

They only have fresh-finite limits. Precise characterisation of FOL.
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Why are the papers so difficult?

You’ve got to set up the axiomatisation, which is non-trivial
because the ‘nominal’ aspects of the quantifiers have not been
explored before.

You have to set up nominal algebras; we can’t assume the reader
knows them.

Then you find the right notion of filter and topology, then prove
duality. Duality results are difficult (and addictive).

Soundness is fairly easy but completeness is not a straightforward
generalisation of the non-nominal case. More hard work.

Plus, all these things are interacting with one another like crazy. A
change on page 50 can lead to changes on pages 10 to 80 (and
often does).

In the case of λ it’s even more delicate, because Y(•X is negative
in Y . The proofs get really tight.
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What is this good for?

I probably don’t have to sell this so hard to this audience. You are
probably better-qualified to answer this question than me.

Interpret predicates and λ-terms as open sets. Interpret ∀ as a
literal intersection, and also as a fresh-finite limit.

The models are absolute (no valuations).

Duality results for both FOL and the λ-calculus and
representations in nominal powersets (sketched in this talk).

Direct derivation of first-order logic with equality and the
λ-calculus just from atoms and powersets. Great personal
satisfaction.
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