Deadlock-Free Processes and Non-Zero Vectors

Simon Gay

School of Computing Science, University of Glasgow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plugging Components in a Compact Closed Category

- A component has a number of typed interaction points (ports).
- Duality describes pluggability: A and A^* .
- Compact closure distributes ports between the left and the right of a morphism.
- ► 1992–1997: interaction categories (classical concurrent processes): Abramsky, with Gay and Nagarajan.
- 2004-present: categorical quantum mechanics: Abramsky, Coecke and many others.

Specification Structures

Let C be a category. A *specification structure* S over C is defined by the following data:

- ▶ for each object A of C, a set P_SA of "properties over A".
- ▶ for each pair of objects *A*, *B* of *C*, a "Hoare triple" relation $S_{A,B} \subseteq P_SA \times C(A,B) \times P_SB$.

We write $\phi\{f\}\psi$ for $S_{A,B}(\phi, f, \psi)$. This relation is required to satisfy the following axioms, for $f : A \to B$, $g : B \to C$, $\phi \in P_S A$, $\psi \in P_S B$ and $\theta \in P_S C$:

$$\phi\{\mathsf{id}_A\}\phi\tag{1}$$

$$\phi\{f\}\psi,\psi\{g\}\theta \Longrightarrow \phi\{f;g\}\theta.$$
 (2)

Given C and S as above, we can define a new category C_S . An object of C_S is a pair (A, ϕ) with $A \in \text{ob } C$ and $\phi \in P_S A$. A C_S -morphism $f : (A, \phi) \to (B, \psi)$ is a morphism $f : A \to B$ in C such that $\phi\{f\}\psi$. Composition and identities are inherited from C; the axioms (1) and (2) ensure that C_S is a category.

Examples

1. C =**Set**, $P_S X = X$, $a\{f\}b \iff f(a) = b$.

Then C_S is the category of pointed sets. We think of it as a setting for compositional analysis of functions that have an additional property: mapping a distinguished element to a distinguished element.

 C = Rel, P_SX = {*}, *{R}* ⇐⇒ ∀x ∈ A, y, z ∈ B. xRy ∧ xRz ⇒ y = z. Then C_S is the category of sets and partial functions. We think of it as a setting for compositional analysis of relations that have an additional property: being a partial function.

Specification Structures over Structured Categories

Suppose that C is a monoidal category. If we have a specification structure S over C, and if we want to define a monoidal structure on C_S , then we must define an action

$$\otimes_{A,B}: P_{S}A \times P_{S}B \to P_{S}(A \otimes B)$$

and an element $I_S \in P_S I$ satisfying, for $f : A \to B$, $f' : A' \to B'$ and properties ϕ , ϕ' , ψ , ψ' , θ over suitable objects:

$$\begin{split} \phi\{f\}\psi, \phi'\{f'\}\psi' &\Longrightarrow (\phi \otimes \phi')\{f \otimes f'\}(\psi \otimes \psi') \\ ((\phi \otimes \psi) \otimes \theta)\{\operatorname{assoc}_{A,B,C}\}(\phi \otimes (\psi \otimes \theta)) \\ (I_S \otimes \phi)\{\operatorname{unitl}_A\}\phi \\ (\phi \otimes I_S)\{\operatorname{unitr}_A\}\phi. \end{split}$$

A Specification Structure for Deadlock-Free Processes

- All processes are deadlock-free (non-terminating), and their types in the specification structure contain enough information to support deadlock-free composition.
- The base category is compact closed, but the deadlock-free category is not compact closed; it is *-autonomous.
- The definition of the specification structure starts by defining, for processes p and q of type A, the relation

$p \bowtie q$

to mean that p and q can interact in A without deadlock.

This relation is used, through a sequence of formal definitions, to generate a specification structure.

A Specification Structure for Non-Zero Vectors

Take the base category to be **FDHilb**, and for vectors u and v define

$$u \bowtie v \iff \langle u \mid v \rangle \neq 0.$$

- Working through the same sequence of formal definitions yields a specification structure and a new category,
 FDHilb_{NZ}. All vectors are non-zero and morphisms preserve non-zero-ness.
- Non-zero vectors in FDHilb represent quantum states, and types in FDHilb_{NZ} do not distinguish between vectors that are scalar multiples. So the type structure of FDHilb_{NZ} might have some interpretation as a quantum logic.

Example 1

- {|0⟩}* is the type of vectors that have a non-zero component along |0⟩. It is convenient to write this type as |0⟩.
- For example: $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) : |0\rangle$.
- ▶ The Pauli map X can be given the type $|0\rangle \multimap |1\rangle$, so the application $X\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ is well-typed and the result has type $|1\rangle$.
- Interpretation:
 - 1. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ is non-zero because it has a non-zero component along $|0\rangle$.
 - 2. X maps vectors with a non-zero component along $|0\rangle$ to vectors with a non-zero component along $|1\rangle$.
 - 3. Therefore $X \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ is non-zero because it has a non-zero component along $|1\rangle$.

Example 2

Let π_0 be one of the projection operators corresponding to a standard basis measurement of a single qubit: $\pi_0|0\rangle = |0\rangle$, $\pi_0|1\rangle = \mathbf{0}$.

We can give π_0 the type

$$\pi_0: |0
angle
ightarrow |0
angle$$

If we have

 $|\psi\rangle$: $|0\rangle$

for some quantum state $|\psi
angle$, then we can conclude

 $\pi_{0}|\psi\rangle$: $|0\rangle$

and interpret this as the statement that measuring $|\psi\rangle$ has a non-zero probability of producing the result 0.

Example 3

Let $|\psi
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle)$ so we have $|\psi\rangle$: $|0\rangle$ and $|\psi\rangle$: $|1\rangle$. We can conclude $\pi_0 |\psi\rangle : |0\rangle$

and

 $\pi_1 |\psi
angle : |1
angle$

and interpret this as the statement that measuring $|\psi\rangle$ has a non-zero probability of producing either 0 or 1.

Definitions (1)

Definition

If A is an object of **FDHilb**, let $NZ(A) = \{v \in A \mid v \neq 0\}$ be its set of non-zero vectors.

Definition

The non-orthogonality relation \bowtie on NZ(A) is defined by

$$u \bowtie v \iff \langle u \mid v \rangle \neq 0.$$

Definition Let $U \subseteq NZ(A)$ for some object A.

$$\begin{array}{rcl} v \Join U & \Longleftrightarrow & \forall u \in U. \ v \Join u \\ U^* & = & \{ v \in \mathsf{NZ}(A) \mid v \bowtie U \}. \end{array}$$

Definitions (2)

Definition

1.
$$P_{NZ}A = \{U \subseteq NZ(A) \mid U^{**} = U\}$$

2. $v \models U \iff v \in U$.
3. $(-)^* : P_{NZ}A \rightarrow P_{NZ}A$ has already been defined.
4. $U \otimes V = \{u \otimes v \mid u \in U, v \in V\}^{**}$
 $U \multimap V = (U \otimes V^*)^*$
 $I_{NZ} = \mathbb{C} \setminus \{0\}.$

(ロ)、(型)、(E)、(E)、 E) の(の)

5.
$$U\{f\}V \iff |f\rangle \models U \multimap V.$$

Theorem NZ is a specification structure over **FDHilb**.

Conclusion and Open Questions

- I have a refinement of FDHilb in which vectors are non-zero, constructed as a specification structure.
- This is a new connection between Classical Samson and Quantum Samson.
- I have proved that the *-autonomous structure of FDHilb lifts to FDHilb_{NZ}, but I don't know whether FDHilb_{NZ} is compact closed.
- Does this construction really have any interesting application to quantum information?
- I invite anyone who is interested, to collaborate with me to finish this work.