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Plugging Components in a Compact Closed Category

I A component has a number of typed interaction points
(ports).

I Duality describes pluggability: A and A∗.

I Compact closure distributes ports between the left and the
right of a morphism.

I 1992–1997: interaction categories (classical concurrent
processes): Abramsky, with Gay and Nagarajan.

I 2004–present: categorical quantum mechanics: Abramsky,
Coecke and many others.



Specification Structures
Let C be a category. A specification structure S over C is defined
by the following data:

I for each object A of C, a set PSA of “properties over A”.

I for each pair of objects A, B of C, a “Hoare triple” relation
SA,B ⊆ PSA× C(A,B)× PSB.

We write φ{f }ψ for SA,B(φ, f , ψ). This relation is required to
satisfy the following axioms, for f : A→ B, g : B → C , φ ∈ PSA,
ψ ∈ PSB and θ ∈ PSC :

φ{idA}φ (1)

φ{f }ψ,ψ{g}θ =⇒ φ{f ; g}θ. (2)

Given C and S as above, we can define a new category CS . An
object of CS is a pair (A, φ) with A ∈ ob C and φ ∈ PSA. A
CS -morphism f : (A, φ)→ (B, ψ) is a morphism f : A→ B in C
such that φ{f }ψ. Composition and identities are inherited from C;
the axioms (1) and (2) ensure that CS is a category.



Examples

1. C = Set, PSX = X , a{f }b ⇐⇒ f (a) = b.
Then CS is the category of pointed sets. We think of it as a
setting for compositional analysis of functions that have an
additional property: mapping a distinguished element to a
distinguished element.

2. C = Rel, PSX = {∗},
∗{R}∗ ⇐⇒ ∀x ∈ A, y , z ∈ B. xRy ∧ xRz =⇒ y = z .
Then CS is the category of sets and partial functions. We
think of it as a setting for compositional analysis of relations
that have an additional property: being a partial function.



Specification Structures over Structured Categories

Suppose that C is a monoidal category. If we have a specification
structure S over C, and if we want to define a monoidal structure
on CS , then we must define an action

⊗A,B : PSA× PSB → PS(A⊗ B)

and an element IS ∈ PS I satisfying, for f : A→ B, f ′ : A′ → B ′

and properties φ, φ′, ψ, ψ′, θ over suitable objects:

φ{f }ψ, φ′{f ′}ψ′ =⇒ (φ⊗ φ′){f ⊗ f ′}(ψ ⊗ ψ′)
((φ⊗ ψ)⊗ θ){assocA,B,C}(φ⊗ (ψ ⊗ θ))

(IS ⊗ φ){unitlA}φ
(φ⊗ IS){unitrA}φ.



A Specification Structure for Deadlock-Free Processes

I All processes are deadlock-free (non-terminating), and their
types in the specification structure contain enough
information to support deadlock-free composition.

I The base category is compact closed, but the deadlock-free
category is not compact closed; it is ∗-autonomous.

I The definition of the specification structure starts by defining,
for processes p and q of type A, the relation

p ./ q

to mean that p and q can interact in A without deadlock.

I This relation is used, through a sequence of formal definitions,
to generate a specification structure.



A Specification Structure for Non-Zero Vectors

I Take the base category to be FDHilb, and for vectors u and v
define

u ./ v ⇐⇒ 〈u | v〉 6= 0.

I Working through the same sequence of formal definitions
yields a specification structure and a new category,
FDHilbNZ. All vectors are non-zero and morphisms preserve
non-zero-ness.

I Non-zero vectors in FDHilb represent quantum states, and
types in FDHilbNZ do not distinguish between vectors that
are scalar multiples. So the type structure of FDHilbNZ might
have some interpretation as a quantum logic.



Example 1

I {|0〉}∗ is the type of vectors that have a non-zero component
along |0〉. It is convenient to write this type as |0〉.

I For example: 1√
2

(|0〉+ |1〉) : |0〉.
I The Pauli map X can be given the type |0〉( |1〉, so the

application X 1√
2

(|0〉+ |1〉) is well-typed and the result has

type |1〉.
I Interpretation:

1. 1√
2

(|0〉+ |1〉) is non-zero because it has a non-zero component

along |0〉.
2. X maps vectors with a non-zero component along |0〉 to

vectors with a non-zero component along |1〉.
3. Therefore X 1√

2
(|0〉+ |1〉) is non-zero because it has a non-zero

component along |1〉.



Example 2

Let π0 be one of the projection operators corresponding to a
standard basis measurement of a single qubit: π0|0〉 = |0〉,
π0|1〉 = 0.

We can give π0 the type

π0 : |0〉 → |0〉

If we have
|ψ〉 : |0〉

for some quantum state |ψ〉, then we can conclude

π0|ψ〉 : |0〉

and interpret this as the statement that measuring |ψ〉 has a
non-zero probability of producing the result 0.



Example 3

Let

|ψ〉 =
1√
2

(|0〉+ |1〉)

so we have
|ψ〉 : |0〉

and
|ψ〉 : |1〉.

We can conclude
π0|ψ〉 : |0〉

and
π1|ψ〉 : |1〉

and interpret this as the statement that measuring |ψ〉 has a
non-zero probability of producing either 0 or 1.



Definitions (1)

Definition
If A is an object of FDHilb, let NZ(A) = {v ∈ A | v 6= 0} be its
set of non-zero vectors.

Definition
The non-orthogonality relation ./ on NZ(A) is defined by

u ./ v ⇐⇒ 〈u | v〉 6= 0.

Definition
Let U ⊆ NZ(A) for some object A.

v ./ U ⇐⇒ ∀u ∈ U. v ./ u

U∗ = {v ∈ NZ(A) | v ./ U}.



Definitions (2)

Definition

1. PNZA = {U ⊆ NZ(A) | U∗∗ = U}
2. v |= U ⇐⇒ v ∈ U.

3. (−)∗ : PNZA→ PNZA has already been defined.

4.
U ⊗ V = {u ⊗ v | u ∈ U, v ∈ V }∗∗

U ( V = (U ⊗ V ∗)∗

INZ = C \ {0}.

5. U{f }V ⇐⇒ |f 〉 |= U ( V .

Theorem
NZ is a specification structure over FDHilb.



Conclusion and Open Questions

I I have a refinement of FDHilb in which vectors are non-zero,
constructed as a specification structure.

I This is a new connection between Classical Samson and
Quantum Samson.

I I have proved that the ∗-autonomous structure of FDHilb lifts
to FDHilbNZ, but I don’t know whether FDHilbNZ is
compact closed.

I Does this construction really have any interesting application
to quantum information?

I I invite anyone who is interested, to collaborate with me to
finish this work.


