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How I met your Samson



• very high speed (+)

• very low power (+)

• high footprint (-)

• design and verification (-)

why async?





C

The Muller C-element is the typical synchronisation gate. It pro-
duces an output if it receives signals on both inputs.

X
The exclusive or is a merging gate, which outputs if it receives a
signal on either input.

T

The toggle gate alternates (deterministically or nondeterministi-
cally) between the two outputs whenever it receives an input.

The forking wire can be seen as a gate which duplicates its input
signal.

By signal we understand either a high-to-low or a low-to-high change in
voltage on a pin. Other more complex gates can be introduced either as primitives
or constructed out of these.

The main correctness challenge of the design of asynchronous circuits is to
avoid so called “glitches”: two signals which travel along the same wire can, if
too close to each other, cancel each other out:

The reason is that the wires in a circuit are not ideal conductors but have
capacitance, which acts like an inertial delay. If the signals are too close, they are
“absorbed” by the capacitive inertia. A typical glitchy circuit is the one below:

X

If the two wires going into the xor gate have di↵erent enough delays the
circuit will output two signals, otherwise it will produce no output.

1.1 Ebergen’s trace model

Glitchy circuits are obviously undersirable. In order to assess the absence of
glitches a circuit must be modeled. The most widely used is a trace model due to
Ebergen [5]. We will present it briefly below. ByK : A1⌦· · ·⌦Am ! A0

1⌦· · ·⌦A0
n

let us denote a circuit K with inputs A1, . . . , Am and outputs A0
1, . . . , A

0
n and

let us denote by JKK the set of traces modelling that circuit, where each event
represents an input/output on the port as identified by the label in the signature.
Using the notation of regular expressions extended with interleaving (� |�) and
prefix closure ([�]), the basic gates given above are modelled as:

JC : A1 ⌦A2 ! A0K =
⇥
((A1 |A2) ·A0)⇤

⇤

JX : A1 ⌦A2 ! A0K =
⇥
(A1A

0 +A2A
0)⇤

⇤

JT : A ! A0
1 ⌦A0

2K =
⇥
(AA0

1 +AA0
2)

⇤⇤

JF : A ! A0
1 ⌦A0

2K =
⇥
(A · (A0

1 |A0
2))

⇤⇤.
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A trace model is also given for the wire:

JW : A ! A0K =
⇥
(AA0)⇤

⇤
.

The composition on a common port is the usual “synchronisation and hiding”
used in trace models of processes such as CSP [6, 7] and it can be used to model
larger circuits.

Although the Ebergen trace model is useful and useable, it has practical and
mathematical disadvantages. The behaviour of circuits is not fully defined, e.g. it
is assumed that a Fork will not receive two consecutive inputs unless an output
intervenes. This indeed corresponds to safe, glitch-free behaviour. However, in
order to verify whether a circuit is safe, the formula for (de)composition needs
to be elaborated and we must verify that, indeed, the outputs from one circuit
do not violate the input assumptions on the other. Technically this is done by
showing that there exists a correct projection of the composite traces onto the
components. This is an awkward semantic condition of correctness, very di�cult
to check either by hand or automatically.

Another technical shortcoming of the Ebergen trace model is that the wire
model is not an identity for composition because input-output alternation is
not preserved automatically by composition. Composing W : A1 ! A2 with
W 0 : A2 ! A3 allows the production of traces such as A1A1A3A3, which project
correctly on the components but are not themselves wire-like in behaviour. This
means that Wire is not even idempotent. This technical problem becomes an
issue if we aim to structure asynchronous circuits into a category which, as
discussed below, is highly desirable.

Acknowledgments This paper is inspired in goals and methodology by Abram-
sky, Coecke and their collaborators work on categorical, algebraic and diagram-
matic foundations for quantum computing [8]. This work greatly benefitted from
conversations with Peter Selinger, John Baez, Bob Coecke, Samson Abramsky,
Prakash Panangaden, Bertrfried Fauser, Alex Smith, Paul B. Levy, Claudio Her-
mida and Paul-André Melliès.

2 Preliminaries

Let in : A ! A + B be the usual injection and out : A + B * A be its section
(a partial function). If f : A * B is a (partial) function let f⇤ : A⇤ ! B⇤ be
the (total) function defined as its point-wise lifting to the corresponding free
monoids.

f⇤(✏) = ✏

f⇤(a · w) = f(a) · f⇤(w) if f is defined at a 2 A

f⇤(a · w) = f⇤(w) if f is not defined at a.

Let ◆ : A⇤ ! (A + B)⇤ be the retraction of the point-wise lifting of out :
A+B * A and let ! = out⇤ : (A+B)⇤ ! A⇤. If f ✓ (X+Y )⇤ and g ✓ (Y +Z)⇤

Ebergen’s model



we want some kind of 
monoidal category



Wire is not identity

W :  A1 → A2
W’ : A2 → A3

W’oW ∋ A1.A1.A3.A3 



Wire is not realistic
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an affine model 

3 An a�ne model

In this section we will develop a simple, idealised model of asynchronous circuits
in which there exists an idealised wire component behaving like a genuine iden-
tity. The model is developed in two stages. First we examine an a�ne use model
in which every input is received at most once. This model is a simplified version
of Ebergen’s trace model. In subsequent sections we lift the model to a setting
in which inputs can be received an arbitrary number of times. Unlike Ebergen’s
model, there will be no assumption of seriality, i.e. several inputs can be pro-
cessed before the output is issued. The idealised wire model is the key component
that allows the structuring of the model in a category. However, as explained in
the previous section, this model is physically unrealisable, a weakness which we
remedy separately.

The basic gates given above are modelled as before, except that Kleene and
prefix closure are not required:

JC : A1 ⌦A2 ! A0K = (A1 |A2) ·A0

JX : A1 ⌦A2 ! A0K = A1A
0 +A2A

0

JT : A ! A0
1 ⌦A0

2K = AA0
1 +AA0

2

JF : A ! A0
1 ⌦A0

2K = A · (A0
1 |A0

2)

JW : A ! A0K = AA0

JU : ; ! AK = ✏

JE : A ! ;K = A

JP : ; ! AK = A.

In addition to the conventional gates we also have an open connector (W ), a
“dangling-input” connector (U) and a “dangling-output” connector (E). Finally,
we have a one-pulse generator component P .

We introduce the following notations. If f ✓ (X + Y )⇤ we write f : X ! Y .

If f : X ! Y, g : Y ! Z, with X,Y, Z mutually disjoint, then f ; g
def
= f ||Y g.

For any f : X ! Y, f 0 : X 0 ! Y 0, with X,X 0, Y, Y 0 mutually disjoint, then

f ⌦ g
def
= (f ; inl⇤) ||; (g; inr⇤). It is immediate that in this case f ; g : X ! Z and

f ⌦ g : X +X 0 ! Y + Y 0.
The definition of wire can be extended in the obvious way to that of a bus.

W 0 : ; ! ;, W 0 def
= id;

W k : A1 ⌦ · · ·⌦Ak ! A0
1 ⌦ · · ·⌦A0

k, W k def
= W k�1 ⌦W.

Theorem 3.04 A�nely-used asynchronous circuits form category, which we
shall call A↵Asy, where

1. Objects are ports of shape A1 ⌦ · · ·⌦An.
2. Morphisms f : X ! Y are sets of traces f ✓ (X + Y )⇤.
3. Composition of morphisms f : X ! Y, g : Y ! Z is defined as f ; g = f ||Y g.



a symmetric monoidal 
category



algebraic structure

4. The identity morphism on X is Wn if X = A1 ⌦ · · ·⌦An.

Proof. The associativity of composition is Lem. 2.02. The fact that Wn is an
identity is immediate.

Theorem 3.05 A↵Asy is a symmetric monoidal category where

1. The tensor of two objects is X ⌦ Y = X + Y .
2. The tensor of two morphisms f : X ! Y, g : Y ! Z is f ⌦ g : X ⌦ X 0 !

Y ⌦ Y 0.
3. The unit object is ;.
4. The associator, left identity, right identity and symmetry are the correspond-

ing isomorphisms for disjoint sum, lifted pointwise to sequences.

Proof. We show that ⌦ is functorial for composition, i.e. if f : X ! Y, g : Y !
Z, f 0 : X 0 ! Y 0, g0 : Y 0 ! Z 0, then (f ⌦ f 0); (g ⌦ g0) = f ; f 0 ⌦ g; g0. Lets write
U = X +X 0 + Y + Y 0 + Z + Z 0. Expanding the definitions, the LHS is

((f ; inl; ◆XX0Y Y 0

XY \ f 0; inr; ◆XX0Y Y 0

X0Y 0 ); ◆UXX0Y Y 0

\ (g; inl; ◆Y Y 0ZZ0

Y Z \ g0; inr; ◆Y Y 0ZZ0

Y 0Z0 ); ◆UY Y 0ZZ0);!XX0ZZ0

U

We use Lem. 2.01(2) and we combine consecutive injections to rewrite LHS as

LHS = (f ; inl; ◆UXY \ f 0; inr; ◆UX0Y 0 \ g; inl; ◆UY Z \ g0; inr; ◆UY 0Z0);!XX0ZZ0

U

Using similar algebraic manipulations the RHS can be brought to the same form.
The functoriality of ⌦ on identity is by definition. The coherence properties

are the same as for disjoint sum and are preserved by point-wise lifting.

This model is, of course, limited in that it gives the wrong result for glitchy
circuits, which do not behave in an a�ne way. For example F ;X = ;, which
can be interpreted as the fact that this composition has no “safe” traces. An
additional serious limitation is that linearity cannot model circuits where the
output is fed back into an input port.

However, this model is a stepping stone which we shall elaborate towards
more realistic behaviours in a way in which basic algebraic properties are pre-
served. Here are some of the main such properties.

Theorem 3.06 In A↵Asy

1. (A,X,U) is a commutative monoid, with T a retract of X.

Associativity (W ⌦X);X = (X ⌦W );X.

X

X X

X
=

Unit (U ⌦W );X = (W ⌦ U);X = W .

X X= =

Commutativity �A;X = X.

X = X

Retract T ;X = W .

XT =

2. (A,C, P ) is a commutative monoid with U an absorbing element.

Associativity (W ⌦ C);C = (C ⌦W );C.

C

C

C

C
=

Unit (P ⌦W );C = (W ⌦ P );C = W

C
C

= =

P

P

Commutativity �A;C = C.

C C=

Absorbing element (W ⌦ U);C = (U ⌦W );C = U

C C= =

3. (A,F,E) is a co-commutative co-monoid, with C a section of F .

Co-associativity F ; (F ⌦W ) = F ; (W ⌦ F ).

=

Co-unit F ; (W ⌦ E) = F ; (E ⌦W ).

= =

Co-commutativity F ; �A = F .

=

Section F ;C = W

C =



more algebraic structure
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yet more algebraic structure 
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even more algebraic structureThe non-trivial interplay of the basic gates gives rise to a richer algebraic struc-
ture:

Theorem 3.07 1. (A,X,E, F, U) is a bialgebra.
Distributivity X;F = (F ⌦ F ); (W ⌦ �A ⌦W ); (X ⌦X).

X

X

X

=

Unit E;F = E ⌦ E.

X =

Co-unit X;U = U ⌦ U .

=

2. (A,C, F,X) is a Laplace pairing (in the sense of Rota, as per [9]).

(X ⌦W );C = (W ⌦W ⌦ F ); (W ⌦ �A ⌦W ); (C ⌦ C);X.

X

C

C

C

X=

Proof. The proof is immediate from definitions.

The notion of Laplace pairing above is “categorified” in the obvious way from
the conventional algebraic formulation: (x� y)⌦ z = (x⌦ z)� (y ⌦ z).

The proofs of Thm. 3.06 and Thm. 3.07 are immediate from definitions and
only involve simple calculations. Note that all the compositions above are “safe”
in the sense that “no traces are lost in the composition”. In Ebergen’s termi-
nology, the interaction between components has no computation interference.
Exploiting equality in the presence of “interference” would allow us to introduce
more equations (e.g. T ;C = ; = F ;X), but we will see in the following section
why such equations are not interesting.

4 An interleaved model

4.1 An idealised wire model

The next step is to “lift” the model from the previous a�ne use to unrestricted
use. Given a set of traces f we define !f as the smallest set of traces containing
f , closed under self-interleaving. We define closure under self-interleaving as:
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proofs are very easy calculations 
(no iteration)



interleaved model with 
idealized wiresf0 = ;, fk = f | fk�1, !f =

S
i�0 f

i. Note that if f : X ! Y then !f : X ! Y .
We define C = !C, X = !X, T = !T , F = !F , W = !W , U = !U , E = !E,
P = !P , the models of basic components, closed under self-interleaving. This is
a crucial di↵erence between this model and Ebergen’s, we do not assume serial
use. However, the consequence is that the wire W has the physically unrealistic
behaviour of an infinite-bounded bu↵er which can receive (and store) any n
signals as inputs before issuing them as outputs.

Definition 4.11 We say that f : X ! Y, g : Y ! Z compose safely if and only
if !(f ; g) = !f ; !g.

Our notion of safety corresponds to Ebergen’s computational noninterference.
We can see that T ;C = !(T ;C) = ;, whereas T;C includes traces such as AAA0,
with A the input and A0 the output of the composition.

Lemma 4.12 All the compositions in Thms. 3.06 and 3.07 are safe in the sense
of Def. 4.11.

Proof. Immediate, by inspection.

Lemma 4.13 If f : X ! Y, f 0 : X 0 ! Y 0 then !(f ⌦ g) = !f ⌦ !g.

Proof. Immediate from Prop. 2.03.

Theorem 4.14 Asynchronous circuits with an interleaved model form a com-
pact closed category, called IdAsy where

– composition is defined as in A↵Asy;
– identity is W;
– the structural monoidal morphisms (associator, left identity, right identity,

symmetry, unit, co-unit) are obtained by applying !� to the corresponding
structural morphisms in A↵Asy;

– objects are self-dual A⇤ = A;
– the unit ⌘A : I ! A⇤

1 ⌦ A2 and the co-unit ✏A : A⇤
1 ⌦ A2 ! I have the same

sets of traces as the identity W : A1 ! A2.

In the compact-closed category it is convenient to define the dual of a morphism
f : A ! B as f⇤ : B⇤ ! A⇤, f⇤ = (⌘A ⌦ idB⇤); (idA⇤ ⌦ f ⌦ idB⇤); (idA⇤ ⌦ ✏B⇤).
This construct has an intuitive diagrammatic representation:

fA B f*

A*

B*

Note that:

f0 = ;, fk = f | fk�1, !f =
S

i�0 f
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X

X

X

=

Unit E;F = E ⌦ E.

X =

Co-unit X;U = U ⌦ U .

=
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X

C

C

C

X=

Proof. The proof is immediate from definitions.

The notion of Laplace pairing above is “categorified” in the obvious way from
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Lemma 4.15 U

⇤ = E.

Theorem 4.16 The algebraic structure of A↵Asy is preserved by interleaving
(!�) in IdAsy:

– (A,X,U) is a commutative monoid with T a retract of X.
– (A,C,P) is a commutative monoid with U an absorbing element.
– (A,F,E) is a co-commutative co-monoid with C a section of F
– (A,X,E,F,U) is a bialgebra.
– (A,C,F,X) is a Laplace pairing.

Proof. Composition in IdAsy is defined like in A↵Asy and it is associative.
W is an identity immediately from Lem. 4.14(1) because composition with W
is safe for any morphism. Similarly, all the equations defining the symmetric
compact closed structure involve only safe compositions, so are preserved by self-
interleaving. The equations involved in Thms. 3.06 and 3.07 are also constructed
out of safe compositions (Lem. 4.12).

The safety requirement in Lem. 4.12 is essential since self-interleaving may in-
troduce new traces in unsafe compositions. For example F ;X = ; but F ;X2 =
AA0A0, and in fact F;X = !(AA0A0) where F ;X : A ! A0. This example also
illustrates the physically unrealistic nature of this model, because consecutive
signals A0A0 are never absorbed by the wire capacitance. A realistic model should
give F;X = !(A · (A0A0 + ✏)), reflecting the fact that in this composition consec-
utive A0 signals may, non-deterministically, disappear.

To prepare the ground for a more realistic model we introduce a new com-
ponent K : A ! A0 defined as JKK = !(AA0 + AA). We call this component a

capacitive wire and we represent it as
K

. Not accidentally, this
is reminiscent of the symbol conventionally used for unknown bounded delay;
this is an unknown bounded capacitance. Its behaviour is to either propagate a
signal correctly or to absorb consecutive inputs, non-deterministically.

Let |t| be the length of a sequence. Let t v t0 denote a prefix t of a sequence
t0. It is easy to see that all sequences in K have more inputs than outputs in any
prefix and, overall, an even number of outputs can be lost.

Lemma 4.17 Let ◆k : (A1 + A2)⇤ ! Ai for k = 1, 2. t 2 JK : A1 ! A2K if and
only if both these conditions hold:

– there exsists k 2 N such that |t; ◆1|� |t; ◆2| = 2k
– for any prefix p v t, |p; ◆1| � |p; ◆2|.

The capacitive wire has the following important property:

Lemma 4.18 1. K : A ! A is idempotent, i.e. K;K = K.
2. K

n : An ! An is idempotent, i.e. Kn;Kn = K

n.

Proof. The idempotence of K is proved showing that the two conditions of
Lem. 4.17 are preserved by composition. If the first capacitive wire loses 2k
signals and the second capacitive wire loses 2k0 signals then their composition
loses 2(k + k0) signals, which is also a valid trace in a capacitive wire.

The second property follows immediately from the naturality of ⌦.
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remove the idealized wire component 
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recovering the categorical structure

4.2 A capacitive wire model

We are now in a position to give a more physically accurate account of asyn-
chronous circuits by removing the idealised wire W from the set of basic compo-
nents. However, this raises a technical problem because W plays a structural role
in the category as the identity. Also, the traces of the compact-closed unit (⌘A)
and co-unit (✏A) behave like idealised wires. In order to restore the categorical
structure we use the following standard construction.

Definition 4.21 The Karoubi envelope of category C, sometimes written Split(C),
is the category whose objects are pairs of the form (A, e) where A is an object of
C and e : A ! A is an idempotent of C, and whose morphisms are triples of the
form (e, f, e0) : (A, e) ! (A, e0) where f : A ! A0 is a morphism of C satisfying
f = e; f ; e0.

Definition 4.22 The category of delay-insensitive asynchronous circuits is de-
fined as DIAsy = Split(IdAsy).

The basic morphisms of the DIAsy category are

1. c = (K⌦ K);C;K
2. x = (K⌦ K);X;K
3. t = K;T; (K⌦ K)
4. f = K;F; (K⌦ K).

The physical and diagrammatic representation of this construction is that all
basic gates have capacitive wires as connectors:

K
K

K

K

K
K

K

K

x

c

t

f

KC=

X

T

K
K

K

F

=

=

=

Lemma 4.23 1. c = C;K = (K⌦ K);C
2. x = X;K = (K⌦ K);X
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3. t = T; ( K⌦ K) = K;T
4 . f = F; ( K⌦ K) = K;F .

P r o o f . F ro m Le m . 4 . 1 7 . F o r e x a m pl e , i n t h e c a s e o f c i f m re s pe c t i v e l y m 0 s i g n a l s
a rri v e a s i n pu t , m � 2 k re s pe c t i v e l y m 0 � 2 k 0 re a c h t h e C - g a t e a n d m i n ( m �
2 k , m 0 � 2 k 0 ) a re o u t pu t . F o r po s t - c o m po s i t i o n w i t h K , m i n ( m , m 0 ) � 2 k 00 =
m i n ( m � 2 k 00, m 0 � 2 k 00 ) s i g n a l s a re o u t pu t . F o r a n y c h o i c e o f k , k 0 w e t a k e
k 00 = m ax ( k , k 0 ) .

W e a l s o h a v e

Proposition 4.24 1 . e = K;E = E

2 . u = U;K = U

3. p = P;K = P .

D i a g ra m m a t i c a l l y :

K

K

K

P P

=

=

=

T h e fi rs t t w o e qu a l i t i e s a re o b v i o u s . F o r t h e l a s t o n e , s i n c e P g e n e ra t e s a n a r b i -
t r a r y n u m b e r o f s i g n a l s i t d o e s n o t m a t t e r t h a n s o m e o f t h e m a re l o s t .

Th e ore m 4.25 T h e c a t e g o r y o f d e l a y - i n s e n s i t i v e a s y n c h r o n o u s c i r c u i t s D I A sy

i s c o m p a c t c l o s e d w i t h

1 . d u a l o b j e c t s ( A ,K) ⇤ = ( A ⇤,K⇤ )
2 . u n i t ⌘ A : I ! A ⇤ ⌦ A d e fi n e d a s ⌘ A = ⌘ A; ( K⇤ ⌦ K) ;
3. c o - u n i t ✏ A : A ⇤ ⌦ A ! I d e fi n e d a s ✏ A = ( K⇤ ⌦ K) ; ✏ A .

D i a g ra m m a t i c a l l y , t h e u n i t a n d c o - u n i t o f t h e c l o s e d s t ru c t u re a re :

K

K

K

K

M o re o v e r, t h e f a c t t h a t K i s a n i d e m po t e n t m e a n s t h a t t h e e x i s t i n g a l g e b ra i c
s t ru c t u re i s pre s e rv e d b y t h e c o n s t ru c t i o n .

Th e ore m 4.26 T h e a l g e b r a i c s t r u c t u r e o f A ↵ A sy a n d I d A sy i s p r e s e r v e d i n
D I A sy :

– ( A , x, u) i s a c o m m u t a t i v e m o n o i d w i t h t a r e t r a c t o f x .

3. t = T; (K⌦ K) = K;T
4. f = F; (K⌦ K) = K;F.

Proof. From Lem. 4.17. For example, in the case of c if m respectively m0 signals
arrive as input, m � 2k respectively m0 � 2k0 reach the C-gate and min(m �
2k,m0 � 2k0) are output. For post-composition with K, min(m,m0) � 2k00 =
min(m � 2k00,m0 � 2k00) signals are output. For any choice of k, k0 we take
k00 = max(k, k0).

We also have

Proposit ion 4.24 1. e = K;E = E

2. u = U;K = U

3. p = P;K = P.

Diagrammatically:

K

K

K

P P

=

=

=

The first two equalities are obvious. For the last one, since P generates an arbi-
trary number of signals it does not matter than some of them are lost.

T heorem 4.25 The category of delay-insensitive asynchronous circuits D IA sy
is compact closed with

1. dual objects (A,K)⇤ = (A⇤,K⇤)
2. unit ηA : I ! A⇤ ⌦A defined as ηA = ηA; (K⇤ ⌦ K);
3. co-unit �A : A⇤ ⌦A ! I defined as �A = (K⇤ ⌦ K);�A.

Diagrammatically, the unit and co-unit of the closed structure are:

K

K

K

K

Moreover, the fact that K is an idempotent means that the existing algebraic
structure is preserved by the construction.

T heorem 4.26 The algebraic structure of A �A sy and I dA sy is preserved in
D IA sy :

– (A, x, u) is a commutative monoid with t a retract of x.



applications



– (A, c, p) is a commutative monoid with u an absorbing element.
– (A, f, e) is a co-commutative co-monoid with c a section of f
– (A, x, e, f, u) is a bialgebra.
– (A, c, f, x) is a Laplace pairing.

Proof. Immediate. For example distributivity in the bialgebra ((A, x, e, f, u) is:

(f ⌦ f); (K⌦ ((K⌦ K); �A)⌦ K); (x⌦ x)

= K

2; (F⌦ F); (W ⌦ � ⌦W);X2;K2 (Lem. 4.23)

= K

2;X;F;K2 (Thm. 4.16)

= x; f. (Lem. 4.23)

Note that the proposition above involves circuits in a realistic model of glitchy
circuits. The fact that we use the idealised connectorW in proofs does not detract
from the realism of the model.

To conclude, the category we have constructed has a complex trace model,
which incorporates circuits with glitches. Reasoning directly in the trace model
is awkward. However, its compact closed structure and rich algebraic properties
provide a useful framework in which reasoning can be carried out more abstractly,
algebraically or diagrammatically.

5 Applications

The Geometry of Synthesis project [10–12] shows how a higher-level program-
ming language can be compiled directly into static asynchronous circuits, more
specifically Event Logic, starting from its game semantic model [13]. The model
of asynchronous circuits used there is based on the category D IA sy of delay-
insensitive circuits but reasoning is carried out at the level of traces, and is
tedious. As an application, we will show just one of the equivalences that needs
to be proved in order to prove the soundness of the technique, and we do it in a
purely algebraic or diagrammatic fashion [11].

We first introduce the Event Logic component CALL : A⇤ ⌦A ! (A⇤ ⌦A)⌦
(A⇤ ⌦ A). It works as a stateful multiplexer-demultiplexer circuit between one
occurrence of A⇤ ⌦ A on the left and two on the right. In [11] it is used to im-
plement the diagonal morphism in a Cartesian category of circuits of particular
shape. One of the required equations of the Cartesian product, mapped into cir-

cuits, amounts to showing that ⌘A;CALL; (u
⇤⌦e⌦ id

2
) = ⌘A. Diagrammatically,

this is:

Lemma 5.07

CALL =

The implementation of CALL, not a basic circuit, is given below.

x

x

x

c

c

In the category, the construction is:

CALL = (x⇤ ⌦ id); (id
⇤ ⌦ �); (id

⇤ ⌦ ⌘ ⌦ id ⌦ ⌘ ⌦ id
⇤
);

(f⇤ ⌦ id ⌦ id
⇤ ⌦ id ⌦ f

⇤); (id
⇤ ⌦ DW ⌦ id

⇤
),

where

DW = (id ⌦ f ⌦ id); (id
2 ⌦ ⌘2 ⌦ id

2
); (id ⌦ x⌦ � ⌦ x⌦ id);

(c⌦ id
2 ⌦ c); (f ⌦ id

2 ⌦ f); (id ⌦ ✏2 ⌦ id)

In the structural morphisms, if the index is not specified, it is by default A, so
⌘ = ⌘A, and so on. It is quite clear that trace-level reasoning about such circuits
is extremely di�cult! On the other hand, the algebraic proof of Lem. 5.07 is a
sequence of straightforward calculations using categorical and algebraic proper-
ties. The diagrammatic representation of the proof, as a rewriting of the circuit
is given in Fig. 1.

The key circuit simplifications come out the fact that e and x are either unit
or co-unit or absorbing element for x, c, f taken as (co)monoids. This process of
reduction results in the circuit ⌘; �; (id⌦⌘⌦ id); (c⌦ f

⇤). Standard diagrammatic
reasoning using the compact-closed structure allows bringing the circuit to the
simpler form ⌘; ((f; c)⌦ id) where using the fact that c is a section of f completes
the proof.

6 Conclusion

In this paper we have constructed a trace model for delay-insensitive asyn-
chronous circuits similar to Ebergen’s, but generalised to handle glitchy be-
haviour. We showed that even in the absence of an idealised connector, which
would behave naturally as an identity for compositions, such circuits can be
structured in a category by taking advantage of the Karoubi envelope construc-
tion where the idempotent is a realistic connector of unknown capacitance. We
further show that even though the trace model is complicated and very awkward
as a basis for reasoning about such circuits, they enjoy many algebraic properties

where 
CALL is:

trace-level reasoning?



x

x

x

c

c

x

x

x
c

c

c

Fig. 1. Proof of Lem. 5.07

unit / counit
of

monoids / comonoids

compact-closed
structure

c section of f



conclusion

• very preliminary

• normal forms?

• completeness

• model of feed-back? 

• causality

which allow diagrammatic reasoning consistent with common intuitions about
such circuits. Such properties seem promising as a starting point for mechanised
reasoning via, for example, circuit rewriting.

The most severe limitation of this model is its handling of circuits where
feedback leads to non-terminating behavior. It is only a model of terminating
computations, represented as complete traces. Technically, this is due to the
fact that, unlike Ebergen, we do not adopt prefix closure. Prefix-closure cannot
be naively introduced because causality loops created by feedback can lead to
unrealistic solutions. For example this circuit

= P

would be trace-equivalent to p (pulse), when in fact it is equivalent to u (dangling
input). Our model instead equates

X

=

with u; e (an unresponsive circuit) which is sound but incomplete. To fix this
problem causality, which we currently ignore, needs to be introduced in the
model.

In a more theoretical direction it would be interesting to examine how the
specific algebraic structures arising in asynchronous circuits interact with the
generic framework introduced by Burroni [14] and further developed by La-
font [15], in which boolean circuits can be reduced to unique canonical forms.
These notions are essential if we aim to automate reasoning about asynchronous
circuits.
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