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why async!?

very high speed (+)
very low power (+)
high footprint (-)

design and verification (-)




TURING AWARD

MICROPIPELINES

IVAN E. SUTHERLAND

The pipeline processor is a common paradigm for very
high speed computing machinery. Pipeline processors
provide high speed because their separate stages can
operate concurrently, much as different people on a
manufacturing assembly line work concurrently on ma-
terial passing down the line. Although the concurrency
of pipeline processors makes their design a demanding
task, they can be found in graphics processors, in signal
processing devices, in integrated circuit components for
doing arithmetic, and in the instruction interpretation
units and arithmetic operations of general purpose
computing machinery.

Because | plan to describe a variety of pipeline pro-
cessors, I will start by suggesting names for their var-

that they are elastic.

I assign the name micropipeline to a particularly sim-
ple form of event-driven elastic pipeline with or with-
out internal processing. The micro part of this name
seems appropriate to me because micropipelines con-
tain very simple circuitry, because micropipelines are
useful in very short lengths, and because micropipe-
lines are suitable for layout in microelectronic form.

[ have chosen micropipelines as the subject of this
lecture for three reasons. First, micropipelines are sim-
ple and easy to understand. I believe that simple ideas
are best, and I find beauty in the simplicity and sym-
metry of micropipelines. Second, | see confusion sur-
rounding the design of FIFOs. I offer this description of




The Muller C-element is the typical synchronisation gate. It pro-
:C>‘ duces an output if it receives signals on both inputs.




Ebergen’s model

[C A1®A2%A’_::
[X 0 Ay @ Ay — A = |
[T:A— Al ® AY] = |
[F:A— Al ® AL =|




we want some kind of

monoidal category




Wire is not identity

W: Al = A2
W' :A2 = A3
WoW > Al.Al.LA3.A3




Wire is not realistic




can we have a

‘nice’ model?




an affine model

W :A— A’
U : () — A
[E: A — ()]

ICIA1®A2 %A/
:X:A1®A2 %A/
IT:A— A} ® Al
[F: A— A} @ A5]

[P :()— A]

= (A1 | Ag) - A
— A A"+ A A’
= AA] + AA,
= A (A} ] Ay)
= AA’




a symmetric monoidal

category




algebraic structure

1. (A, X,U) is a commutative monoid, with T a retract of X.

Associativity (W X); X = (X W); X.

D D
-

UoW):X =(WaU):;X =W.

:}W@

Commutativity v4; X = X.

[o— <> =

Retract 7. X =W.

- <=




more algebraic structure

2. (A,C, P) is a commutative monoid with U an absorbing element.

Associativity (W C);C = (C W);C.

DO w D

Unit (PoW);C=(W®P);C=W

Da
O <> <=
Commutativity v4;C = C.

< o) <3> C )

Absorbing element (W U);C=UxW),;C=U

i_}<ﬁ>- > O




yet more algebraic structure

3. (A, F, F) is a co-commutative co-monoid, with C' a section of F.

Co-associativity F; (FW)=F;(W & F).

_<3>— -

Co-unit F'; W E)=F;(E®W).

—=
— < <>

Co-commutativity F';v4 =

—L_X <§> —

Section F;C =W

_ :C}<E>




even more algebraic structure

Theorem 3.07 1. (A, X,E,F,U) is a bialgebra.
Distributivity X;F = (FQF);(W @74 @ W); (X ® X).

Jo— <= ><)W

D

Unit E;F=FEQFE.

Ao <>

Co-unit X;:U=UQ®U.

B—




further algebraic structure

2. (A,C,F,X) 1s a Laplace pairing (in the sense of Rota, as per [9]).

(XW),C=WIWRF);(W®yyiW); (CxC);X.

D @ =




fake algebraic structure




proofs are very easy calculations

(no iteration)




interleaved model with
idealized wires

fr=0,= 71 11f =U,sf" Note that if f: X — Y then !f : X - Y.
We define C = IC, X=X, T=IT. F=!F, W=1!W,U=1IU, E=1FE,

Definition 4.11 We say that f : X — Y, q:Y — Z compose sately if and only
if W fi9)=11;lg.

Lemma 4.12 All the compositions in Thms. 3.06 and 3.07 are safe in the sense
of Def. 4.11.

Lemma 4.13 If f . X =Y, f : X' =>Y then(f®g) =1f®lg.

T C—{




Theorem 4.14 Asynchronous circuits with an interleaved model form a com-
pact closed category, called IdAsy where

composition is defined as in AffAsy;
wdentity 1s W,
the structural monoidal morphisms (associator, left identity, right identity,

symmetry, unit, co-unit) are obtained by applying !— to the corresponding
structural morphisms in AffAsy;

objects are self-dual A* = A;

the unit na : I — A7 ® As and the co-unit €4 : A7 ® Ao — I have the same
sets of traces as the identity W : A1 — As.




Theorem 4.16 The algebraic structure of AffAsy is preserved by interleaving

(1—) in IdAsy:

F.U) is a bialgebra.
X) is a Laplace pairing.




K]

capacitive wires

— 1(AA’ + AA).




Lemma 4.18 1. K: A — A is idempotent, i.e. K;K = K.




towards physical realism:

remove the idealized wire component
\'A%




recovering the categorical structure

Definition 4.21 The Karoubi envelope of category C, sometimes written Split(C),
is the category whose objects are pairs of the form (A, e) where A is an object of
Cande: A— A s an idempotent of C, and whose morphisms are triples of the
form (e, f,e'): (A,e) = (A,€e') where f : A — A’ is a morphism of C satisfying
f=ef;¢e.







Theorem 4.25 The category of delay-insensitive asynchronous circuits D | A sy
IS compact closed with

1. dual obects A,K*  A* K*

2. unitn, | A" ®A definedasn, na K'®K;
3. co-unit Ty A*® A — | defined as Ty K*® K L.

Theorem 4.26 The algebraic structure of AODASYy and |dA Sy is preserved in
DIAsy:




applications



where —@

CALL is:

trace-level reasoning?




unit / counit
of
monoids / comonoids

compact-closed
structure

c section of f




conclusion

® very preliminary

® normal forms?

® completeness

® model of feed-back? ~— J)O—

i

® causality




