Categorical coherence in the untyped setting

Peter M. Hines

SamsonFest - Oxford - May 2013

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

(日)

Untyped categories

Categories with only one object (i.e. monoids)

- with additional categorical properties.

Properties such as:

Monoidal Tensors, Cartesian or Compact Closure, Duals, Traces, Projections / Injections, Enrichment, &c.

Where might we find such structures?

- Untyped computation (λ calculus & C-monoids)
- Polymorphic types (System F, parametrized types)
- Fractals (e.g. the Cantor space)
- State machines (Pushdown automata / binary stacks)
- Linguistics and models of meaning
- (Infinite-dimensional) quantum mechanics
- Group theory (Thompson's V and F groups)
- Semigroup theory (The polycyclic monoids P_n)
- Crystallography and Tilings
- Modular arithmetic & cryptography

◆母 ▶ ▲目 ▶ ▲目 ▶ ● ● ●

Why study coherence in this setting?

Doesn't MacLane tell us all we need to know about coherence?

Is there anything special about *untyped* categories?

They test the limits of various coherence theorems.

Output of a Untypedness itself is the strictification of a

certain categorical property,

- closely connected to coherence for associativity.

Why study coherence in this setting?

Doesn't MacLane tell us all we need to know about coherence?

Is there anything special about *untyped* categories?

- They test the limits of various coherence theorems.
- Output of a Untypedness itself is the strictification of a

certain categorical property,

- closely connected to coherence for associativity.

A simple example

The Cantor monoid ${\cal U}$

- Single object: N.
- Arrows: all bijections on \mathbb{N} .

The monoidal structure

We have a tensor
$$(_\star_) : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$$
.

$$(f \star g)(n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

<<p>・

크

The coherence isomorphisms:

• The associativity isomorphism:

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

• The symmetry isomorphism:

$$\sigma(n) = \begin{cases} n-1 & n \text{ odd,} \\ \\ n+1 & n \text{ even.} \end{cases}$$

MacLane's **pentagon** and **hexagon** conditions are satisfied.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

A 3 > 1

Is it because / is absent?

We can make a genuine monoidal category from (\mathcal{U}, \star) .

How to: adjoin a strict unit

- **①** Take the coproduct with the trivial monoid *I*, giving $\mathcal{U} \coprod I$.
- Extend _ * _ to the coproduct by

$$I \star_{-} = Id_{\mathcal{U} \coprod I} = - \star I$$

③ $(U \coprod I, _ \star _)$ is a genuine monoidal category.

(Construction based on the theory of Saavedra units).

(日)

Some 'peculiarities' of the Cantor monoid

Within the Cantor monoid $(\mathcal{U}, -\star -)$

Associativity is not strict, even though

$$X \star (Y \star Z) = (X \star Y) \star Z$$

- Ont all canonical (for associativity) diagrams commute.
- **3** No strictly associative tensor on \mathcal{U} can exist.

< 同 > < ∃ >

Canonical diagrams that do not commute

This canonical diagram does not commute:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

→ 문 → 문

Yes, there are two paths you can go by,

Using a randomly chosen number:

Taking the right hand path, $60 \mapsto 60$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Yes, there are two paths you can go by, but ...

On the left hand path,

Samson is 60, not 240; this diagram does not commute!

Not all canonical (for associativity) diagrams commute.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Is there a conflict with MacLane's Theorem?

http://en.wikipedia.org/wiki/Monoidal_category

"It follows that **any diagram** whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

< ロ > < 団 > < 団 > < 団 > 、

Untangling The Web – N.S.A. guide to internet use

- Do not as a rule rely on Wikipedia as your sole source of information.
- The best thing about Wikipedia are the <u>external links</u> from entries.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

A (10) + A (10) +

Categories for the working mathematician (1st ed.)

(p.158) Moreover, all diagrams involving [canonical iso.s] must commute.

- (p. 159) These three [coherence] diagrams imply that "all" such diagrams commute.
- (p. 161) We can only prove that every "formal" diagram commutes.

<ロ> <同> <同> < 同> < 同> < 同> < □> <

MacLane's coherence theorem for associativity

All diagrams *within the image of a certain functor* are guaranteed to commute.

This **commonly**, but not **always**, means all canonical diagrams.

We are interested in situations where this is not the case.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

We will work with monogenic categories

Objects are generated by:

- Some object S,
- A tensor $(_ \otimes _)$.

This is not a restriction -

- S should be thought of as a 'variable symbol'.
- We will also rely on naturality.

The source of the functor

(Buxus Sempervirens)

This is based on (non-empty) binary trees.

- Leaves labelled by *x*,
- Branchings labelled by \Box .

The **rank** of a tree is the number of leaves.

4 ∃ ≥

크

A posetal category of trees

MacLane's category \mathcal{W} .

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.

— write this as $(v \leftarrow u) \in W(u, v)$.

MacLane's theorem relies on a monoidal functor

 $\mathcal{WSub}:(\mathcal{W},\Box)\to(\mathcal{C},\otimes)$

This is based on a notion of *substitution*.

i.e. mapping formal symbols to concrete objects & arrows.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

The functor itself

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of \mathcal{W} :

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of C:

크

On arrows:

- $WSub(u \leftarrow u) = 1_{-}$.
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{-,-,-}$

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

On arrows:

- $WSub(u \leftarrow u) = 1_$.
- $WSub(a \Box v \leftarrow a \Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{-,-,-}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

・ロト ・四ト ・ヨト ・ヨト

臣

On arrows:

- $WSub(u \leftarrow u) = 1_$.
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{-,-,-}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On arrows:

- $WSub(u \leftarrow u) = 1_{-}$.
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,.,.}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

peter.hines@york.ac.uk

・ロト ・四ト ・ヨト ・ヨト

크

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of C is the image of an arrow of W
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*?

– This is only the case when W*Sub* is an *embedding*!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲御▶ ▲理▶ ▲理▶

The story so far ...

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (C, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*? – This is only the case when *WSub* is an *embedding*!

▲御▶ ▲理▶ ▲理▶

The story so far ...

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (C, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*?

- This is only the case when *WSub* is an *embedding*!

Given a **badly-behaved** category (\mathcal{C}, \otimes) , we can *build a well-behaved* (non-strict) version.

Think of this as the **Platonic Ideal** of (\mathcal{C}, \otimes) .

We (still) assume C is *monogenic*, with objects generated by $\{S, _ \otimes _\}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Constructing Plat_C

Objects are free binary trees

There is an instantiation map $Inst : Ob(Plat_{\mathcal{C}}) \rightarrow Ob(\mathcal{C})$

$S \Box ((S \Box S) \Box S) \mapsto S \otimes ((S \otimes S) \otimes S)$

This is not just a matter of syntax!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

< ロ > < 団 > < 団 > < 団 > 、

크

What about arrows?

Homsets are copies of homsets of $\ensuremath{\mathcal{C}}$

Given trees T_1 , T_2 ,

 $Plat_{\mathcal{C}}(T_1, T_2) = \mathcal{C}(Inst(T_1), Inst(T_2))$

Composition is inherited from C in the obvious way.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The tensor (\Box) : $Plat_{\mathcal{C}} \times Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$

The tensor of $Plat_{\mathcal{C}}$ is

- (Objects) A free formal pairing, A□B,
- (Arrows) Inherited from (\mathcal{C}, \otimes) , so $f \Box g \stackrel{\text{def.}}{=} f \otimes g$.

peter.hines@york.ac.uk

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - の Q @

Some properties of the platonic ideal ...

The functor

$\mathcal{W}Sub: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$

is always monic.

As a corollary: All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

(日)

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}$$
Sub : $(\mathcal{W}, \Box) \rightarrow (Plat_{\mathcal{C}}, \Box)$

is always monic.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

(日)

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}Sub: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$$

is always **monic**.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.
A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

The 'Platonic Ideal' of an untyped monoidal category

Can we build an **untyped** category over which all canonical diagrams commute?

The simplest possible case:

The trivial monoidal category (\mathcal{I}, \otimes) .

- Objects: $Ob(\mathcal{I}) = \{x\}.$
- Arrows: $I(x, x) = \{1_x\}.$

• Tensor:

$$x \otimes x = x$$
, $\mathbf{1}_x \otimes \mathbf{1}_x = \mathbf{1}_x$

< 同 > < ∃ >

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:

(Arrows) For all trees T_1 , T_2 ,

 $Plat_{\mathcal{I}}(T_1, T_2)$ is a single-element set.

There is a unique arrow between any two trees!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

(P.H. 1997) The prototypical self-similar category (\mathcal{X}, \Box)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:

- **(**) was introduced to study **self-similarity** $S \cong S \otimes S$,
- ② contains MacLane's (W, \Box) as a wide subcategory.

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd : S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd : S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Examples of self-similarity

(Infinitary examples)

The natural numbers \mathbb{N} , Separable Hilbert spaces, Infinite matrices, the Cantor set & other fractals, Binary stacks, &c.

(Untyped examples)

C-monoids, the Cantor monoid *U*, any untyped monoidal category.

(Trivial examples)

The unit object I of any monoidal category.

A (10) A (10)

What is strict self-similarity?

Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ \rhd: S \rightarrow S \otimes S$$

be strict identities?

We only have one object, $S = S \otimes S$.

Take the identity as both the code and decode arrows.

Untyped = Strictly Self-Similar.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

크

What is strict self-similarity?

Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ \rhd: S \rightarrow S \otimes S$$

be strict identities?

In **untyped** monoidal categories:

We only have one object, $S = S \otimes S$.

Take the identity as both the code and decode arrows.

Untyped \equiv Strictly Self-Similar.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Question: Does there exist a *strictification* procedure for self-similarity?

Essential preliminaries

We need a coherence theorem for self-similarity.

and how it relates to associativity.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

A (10) A (10)

Coherence for Self-Similarity

(a special case of a much more general theory)

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

臣

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \Box)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$\mathcal{X}\textit{Sub}:(\mathcal{X},\Box)\to(\mathcal{C},\otimes)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

The self-similarity substitution functor

An inductive definition of \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (\mathcal{C}, \otimes)$

On objects:

$$\begin{array}{rccc} x & \mapsto & S \\ u \Box v & \mapsto & \mathcal{X} Sub(u) \otimes \mathcal{X} Sub(v) \end{array}$$

On arrows:

$$(x \leftarrow x) \quad \mapsto \quad \mathbf{1}_{S} \in \mathcal{C}(S, S)$$

$$(x \leftarrow x \Box x) \quad \mapsto \quad \lhd \in \mathcal{C}(S \otimes S, S)$$

 $(x \Box x \leftarrow x) \quad \mapsto \quad \rhd \in \mathcal{C}(S, S \otimes S)$

 $(b \Box v \leftarrow a \Box u) \mapsto \mathcal{X} Sub(b \leftarrow a) \otimes \mathcal{X} Sub(v \leftarrow u)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

Every arrow built up from

 $\{\triangleleft\,,\,\triangleright\,,\,\mathbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$

is the image of an arrow in \mathcal{X} .

(1) The image of every diagram in $\mathcal X$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

• 同 • • 三 • • 三 •

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\textbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

is the image of an arrow in \mathcal{X} .

(1) The image of every diagram in $\mathcal X$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

- $\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$
- 2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\textbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

is the image of an arrow in \mathcal{X} .

③ The image of every diagram in \mathcal{X} commutes.

(日)

590

臣

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.

Every canonical (for self-similarity) diagram in $(Plat_{\mathcal{C}}, \Box)$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

크

Relating associativity and self-similarity

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲@ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

Comparing the associativity and self-similarity categories.

Mac	Lane's	$(\mathcal{W},$	□)
		\ ''' ?	_,

Objects: Binary trees.

Arrows: Unique arrow between two trees *of the same rank*.

The category (\mathcal{X}, \Box)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion $(\mathcal{W}, \Box) \hookrightarrow (\mathcal{X}, \Box)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Is associativity a restriction of self-similarity?

Does the following diagram commute?

Does the associativity functor

factor through

the self-similarity functor?

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

• Image: A image:

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \Box)

For arbitrary trees *u*, *e*, *v*,

$$t_{uev} = ((u \Box e) \Box v \leftarrow u \Box (e \Box v)$$
$$l_v = (v \leftarrow e \Box v)$$
$$r_u = (u \leftarrow u \Box e)$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲ 御 ▶ ▲ 国 ▶

글 🕨 🗉 🖻

The following diagram over (\mathcal{X}, \Box) commutes:

Let's apply $\mathcal{X}Sub$ to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

크

The following diagram over (\mathcal{X}, \Box) commutes:

Let's apply \mathcal{X} Sub to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

peter.hines@york.ac.uk

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's **units triangle** — *E* is the unit object for (C, \otimes) .

The choice of *e* was *arbitrary* — every object is the unit object!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's **units triangle** — *E* is the unit object for (\mathcal{C}, \otimes) .

The choice of *e* was *arbitrary* — every object is the unit object!

peter.hines@york.ac.uk

A general result

The following diagram commutes

exactly when (\mathcal{C}, \otimes) is degenerate —

i.e. all objects are isomorphic to the unit object.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

日本・日本・日本・

크

Generalising Isbell's argument

Strict associativity: All arrows of (𝔅, □) are mapped to identities of (𝔅, ⊗)

Strict self-similarity: All arrows of (X, □) are mapped to the identity of (C, ⊗).

W*Sub* trivially factors through X*Sub*.

The conclusion

Strictly associative untyped monoidal categories are degenerate.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Another way of looking at things:

One cannot simultaneously strictify

(I) Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$ (II) Self-Similarity $S \cong S \otimes S$

The 'No Simultaneous Strictification' Theorem

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

크

Strictifying associativity ...

transforms untyped structures into typed structures.

Strictifying self-similarity ...

transforms strict associativity into lax associativity.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

How to strictify self-similarity

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲御▶ ▲臣▶ ▲臣▶ 三臣

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal ($Plat_{\mathcal{C}}, \Box$)
- Use the (monic) self-similarity substitution functor

 \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (Plat_{\mathcal{C}}, \Box)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

• 同 • • 三 • • 三 •

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal (*Plat*_C, □)
- Use the (monic) self-similarity substitution functor

 \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (Plat_{\mathcal{C}}, \Box)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

• 同 • • 三 • • 三 •

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal ($Plat_{\mathcal{C}}, \Box$)
- Use the (monic) self-similarity substitution functor

 $\mathcal{X}\textit{Sub}: (\mathcal{X}, \Box) \to (\textit{Plat}_{\mathcal{C}}, \Box)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ 戸 ト ・ 三 ト ・ 三 ト

A simple, almost painless, procedure (II)

The image of *X* Sub is a wide subcategory of (*Plat_C*, □).
It contains, for all objects *A*,
a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : *Plat*_C \rightarrow *Plat*_C.

peter.hines@york.ac.uk

• Image: A image:

A simple, almost painless, procedure (II)

The image of *X* Sub is a wide subcategory of (*Plat_C*, □).
It contains, for all objects *A*,
a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : $Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$.

The type-erasing endofunctor

Objects

 $\Phi(A) = S$, for all objects A

• Functoriality is trivial ...

peter.hines@york.ac.uk

<<p>・

臣
A natural tensor on C(S, S)

As a final step:

Define a tensor $(_ \star _)$ on C(S, S) by

 $(C(S, S), _ \star _)$ is an untyped monoidal category!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

Type-erasing as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\textit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\textit{S},\textit{S}),\star)$

is a monoidal functor.

What we have ...

A monoidal functor from $Plat_{\mathcal{C}}$ to an untyped monoidal category.

every canonical (for self-similarity) arrow is mapped to 1_S.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Type-erasing as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\textit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\textit{S},\textit{S}),\star)$

is a monoidal functor.

What we have ...

A monoidal functor from $Plat_{\mathcal{C}}$ to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1_S .

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

A useful property

Basic Category Theory

diagram \mathfrak{D} commutes \Rightarrow diagram $\Phi(\mathfrak{D})$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

As above, so below

In this case ...

diagram \mathfrak{D} commutes \Leftrightarrow diagram $\Phi(\mathfrak{D})$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲ 同 ▶ → 三 ▶

포 문 문

To arrive where we started

A monogenic category:

- The generating object: natural numbers N.
- The arrows bijective functions.
- The tensor disjoint union $A \uplus B = A \times \{0\} \cup B \times \{1\}$.

Let us strictify this self-similar structure.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

The end is where we started from

The Cantor monoid:

The object	The natural numbers $\mathbb N$
The arrows	All bijections $\mathbb{N} \to \mathbb{N}$
The tensor	$(f \star g)(n) = \begin{cases} 2.f(\frac{n}{2}) & n \text{ even,} \\ 2.g(\frac{n-1}{2}) + 1 & n \text{ odd.} \end{cases}$
The associativity isomorphism	$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-3}{2} & n \pmod{4} = 3. \end{cases}$
The symmetry isomorphism	$\sigma(n) = \begin{cases} n+1 & n \text{ even,} \\ n-1 & n \text{ odd.} \end{cases}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

peter.hines@york.ac.uk

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣