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The Untyped Setting

Untyped categories

Categories with only one object (i.e. monoids)

– with additional categorical properties.

Properties such as:

Monoidal Tensors, Cartesian or Compact Closure,

Duals, Traces, Projections / Injections, Enrichment, &c.
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Where might we find such structures?

Untyped computation (λ calculus & C-monoids)

Polymorphic types (System F , parametrized types)

Fractals (e.g. the Cantor space)

State machines (Pushdown automata / binary stacks)

Linguistics and models of meaning

(Infinite-dimensional) quantum mechanics

Group theory (Thompson’s V and F groups)

Semigroup theory (The polycyclic monoids Pn)

Crystallography and Tilings

Modular arithmetic & cryptography
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Why study coherence in this setting?

Doesn’t MacLane tell us all we need to know about coherence?

Is there anything special about untyped categories?

1 They test the limits of various coherence theorems.

2 Untypedness itself is the strictification of a

certain categorical property,

– closely connected to coherence for associativity.
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A simple example

The Cantor monoid U
Single object: N.
Arrows: all bijections on N.

The monoidal structure

We have a tensor ( ? ) : U × U → U .

(f ? g)(n) =


2.f
(n

2

)
n even,

2.g
(n−1

2

)
+ 1 n odd.
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The coherence isomorphisms:

The associativity isomorphism:

τ(n) =


2n n (mod 2) = 0,

n + 1 n (mod 4) = 1,

n−1
2 n (mod 4) = 3.

The symmetry isomorphism:

σ(n) =


n − 1 n odd,

n + 1 n even.

MacLane’s pentagon and hexagon
conditions are satisfied.
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Is it because I is absent?

We can make a genuine monoidal category from (U , ?).

How to: adjoin a strict unit

1 Take the coproduct with the trivial monoid I, giving U
∐

I.

2 Extend ? to the coproduct by

I ? = IdU∐
I = ? I

3 (U
∐

I, ? ) is a genuine monoidal category.

(Construction based on the theory of Saavedra units).
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Some ‘peculiarities’ of the Cantor monoid

Within the Cantor monoid (U , ? )

1 Associativity is not strict, even though

X ? (Y ? Z ) = (X ? Y ) ? Z

2 Not all canonical (for associativity) diagrams commute.

3 No strictly associative tensor on U can exist.
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Canonical diagrams that do not commute

This canonical diagram does not commute:

N

τ

��

N

τ?1N
88

1N?τ &&
N
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Yes, there are two paths you can go by,

Using a randomly chosen number:

60

n 7→n
''
60

Taking the right hand path, 60 7→ 60
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Yes, there are two paths you can go by, but ...

On the left hand path,

120

n 7→2n

��

60

n 7→2n
77

240

Samson is 60, not 240; this diagram does not commute!

Not all canonical (for associativity) diagrams commute.
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Is there a conflict with MacLane’s Theorem?

http://en.wikipedia.org/wiki/Monoidal category

“It follows that any diagram whose
morphisms are built using [canonical
isomorphisms], identities and tensor
product commutes.”
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Tinker, Tailor, Soldier, Sarcasm

Untangling The Web – N.S.A. guide to internet use

Do not as a rule rely on Wikipedia
as your sole source of information.
The best thing about Wikipedia are
the external links from entries.
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MacLane, on MacLane’s Theorem

Categories for the working mathematician (1st ed.)

(p.158) Moreover, all diagrams involving [canonical iso.s]
must commute.

(p. 159) These three [coherence] diagrams imply that “all” such
diagrams commute.

(p. 161) We can only prove that every “formal” diagram commutes.
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What does his theorem say?

MacLane’s coherence theorem for associativity

All diagrams within the image of a certain
functor are guaranteed to commute.

This commonly, but not always, means all canonical diagrams.

We are interested in situations where this is not the case.
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Coherence for associativity — a convention

We will work with monogenic categories

Objects are generated by:
Some object S,
A tensor ( ⊗ ).

This is not a restriction —

S should be thought of as a ‘variable symbol’.

We will also rely on naturality.
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The source of the functor (Buxus Sempervirens)

This is based on (non-empty) binary trees.

�

x �

� x

x x

Leaves labelled by x ,

Branchings labelled by �.

The rank of a tree is the number of leaves.
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A posetal category of trees

MacLane’s categoryW.

(Objects) All non-empty binary trees.

(Arrows) A unique arrow between any two trees
of the same rank.

— write this as (v ← u) ∈ W(u, v).

Key points:

1 ( � ) is a monoidal tensor onW.

2 W is posetal — all diagrams overW commute.
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MacLane’s Substitution Functor

MacLane’s theorem relies on a monoidal functor

WSub : (W,�)→ (C,⊗)

This is based on a notion of substitution.

i.e. mapping formal symbols to concrete objects & arrows.
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The functor itself

On objects:

WSub(x) = S,

WSub(u�v) =WSub(u)⊗WSub(v).

An object ofW:

�

x �

� x

x x

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 peter.hines@york.ac.uk



An inductively defined functor (I)

On objects:

WSub(x) = S,

WSub(u�v) =WSub(u)⊗WSub(v).

An object of C:
⊗

S ⊗

⊗ S

S S
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An inductively defined functor (II)

On arrows:

WSub(u ← u) = 1 .

WSub(a�v ← a�u) = 1 ⊗WSub(v ← u).

WSub(v�b ← u�b) =WSub(v ← u)⊗ 1 .

WSub((a�b)�c ← a�(b�c)) = τ , , .

The role of the Pentagon

The Pentagon condition =⇒ WSub is a monoidal functor.
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The story so far ...

We have a functorWSub : (W,�)→ (C,⊗).

Every object of C is the image of an object ofW

Every canonical arrow of C is the image of an arrow ofW

Every diagram overW commutes.

As a corollary:

The image of every diagram in (W ,�) commutes in (C,⊗).

Question: Are all canonical diagrams in the image ofWSub?

– This is only the case whenWSub is an embedding!
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How to Rectify the Anomaly

Given a badly-behaved category (C,⊗), we can

build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (C,⊗).

We (still) assume C is monogenic, with objects generated by {S, ⊗ }
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Constructing PlatC

Objects are free binary trees
�

S �

� S

S S

Leaves labelled by S ∈ Ob(C),

Branchings labelled by �.

There is an instantiation map Inst : Ob(PlatC)→ Ob(C)

S�((S�S)�S) 7→ S ⊗ ((S ⊗ S)⊗ S)

This is not just a matter of syntax!
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Constructing PlatC

What about arrows?

Homsets are copies of homsets of C

Given trees T1,T2,

PlatC(T1,T2) = C(Inst(T1), Inst(T2))

Composition is inherited from C in the obvious way.
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The tensor ( � ) : PlatC × PlatC → PlatC

A f // X

A�X
f�g // B�Y

B g // Y



The tensor of PlatC is

(Objects) A free formal pairing, A�B,

(Arrows) Inherited from (C,⊗), so f�g def .
= f ⊗ g.
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Some properties of the platonic ideal ...

1 The functor

WSub : (W,�)→ (PlatC ,�)

is always monic.

2 As a corollary:

All canonical diagrams of (PlatC ,�) commute.

3 Instantiation defines an epic monoidal functor

Inst : (PlatC ,�)→ (C,⊗)

through which McL’.s substitution functor always factors.
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A monic / epic decomposition

MacLane’s substitution functor always factors
through the platonic ideal:

(W,�)

(monic)
WSub //

WSub

$$

(PlatC ,�)

Inst (epic)

��
(C,⊗)

This gives a monic / epic decomposition of his functor.
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The ‘Platonic Ideal’ of an untyped monoidal category

Can we build an untyped category over which

all canonical diagrams commute?

The simplest possible case:

The trivial monoidal category (I,⊗).

Objects: Ob(I) = {x}.

Arrows: I(x , x) = {1x}.

Tensor:
x ⊗ x = x , 1x ⊗ 1x = 1x

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 peter.hines@york.ac.uk



What is the platonic ideal of I?

(Objects) All non-empty binary trees:

�

x �

� x

x x

(Arrows) For all trees T1,T2,

PlatI(T1,T2) is a single-element set.

There is a unique arrow between any two trees!
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A la recherche du tensors perdu

(P.H. 1997) The prototypical self-similar category (X ,�)

Objects: All non-empty binary trees.

Arrows: A unique arrow between any two objects.

This monoidal category:

1 was introduced to study self-similarity S ∼= S ⊗ S,

2 contains MacLane’s (W,�) as a wide subcategory.
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Self-similarity

The categorical identity S ∼= S ⊗ S

Exhibited by two canonical isomorphisms:

(Code) C : S ⊗ S → S

(Decode) B : S → S ⊗ S

These are unique (up to unique isomorphism).

Uniqueness ...
Unique up to unique isomorphism

is not the same as

actually unique.

Actual uniqueness implies that S is the unit object.
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Examples of self-similarity

(Infinitary examples)
The natural numbers N, Separable Hilbert spaces, Infinite
matrices, the Cantor set & other fractals, Binary stacks, &c.

(Untyped examples)
C-monoids, the Cantor monoid U , any untyped
monoidal category.

(Trivial examples)
The unit object I of any monoidal category.
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What is strict self-similarity?

Can the code / decode maps

C : S ⊗ S → S , B : S → S ⊗ S

be strict identities?

In untyped monoidal categories:

We only have one object, S = S ⊗ S.

S

Id
**
S ⊗ S

Id

gg

Take the identity as both the code and decode arrows.

Untyped ≡ Strictly Self-Similar.
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Strictifying self-similarity

Question: Does there exist a strictification procedure
for self-similarity?

Essential preliminaries

We need a coherence theorem for self-similarity.

and how it relates to associativity.
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Coherence for Self-Similarity

(a special case of a much more general theory)
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A straightforward coherence theorem

We base this on the category (X ,�)

Objects All non-empty binary trees.

Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over X commute.

We will define a monoidal substitution functor:

XSub : (X ,�)→ (C,⊗)
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The self-similarity substitution functor

An inductive definition of XSub : (X ,�)→ (C,⊗)

On objects:

x 7→ S
u�v 7→ XSub(u)⊗XSub(v)

On arrows:

(x ← x) 7→ 1S ∈ C(S,S)

(x ← x�x) 7→ C ∈ C(S ⊗ S,S)
(x�x ← x) 7→ B ∈ C(S,S ⊗ S)

(b�v ← a�u) 7→ XSub(b ← a)⊗XSub(v ← u)
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Interesting properties:

1 XSub : (X ,�)→ (C,⊗) is always functorial.

2 Every arrow built up from

{C , B , 1S , ⊗ }

is the image of an arrow in X .

3 The image of every diagram in X commutes.
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XSub factors through the Platonic ideal

There is a monic-epic decomposition of XSub.

(X ,�)
XSub //

XSub

$$

(PlatC ,�)

Inst

��
(C,⊗)

Every canonical (for self-similarity) diagram
in (PlatC ,�) commutes.
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Relating associativity and self-similarity
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A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane’s (W,�)

Objects: Binary trees.

Arrows: Unique arrow between

two trees of the same rank.

The category (X ,�)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion (W,�) ↪→ (X ,�)
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Is associativity a restriction of self-similarity?

Does the following diagram commute?

(W,�) �
� //

WSub

��

(X ,�)

XSub

��
(C,⊗)

Does the associativity functor

factor through

the self-similarity functor?
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Proof by contradiction:

Let’s assume this is the case.

Special arrows of (X ,�)

For arbitrary trees u,e, v ,

tuev = ((u�e)�v ← u�(e�v))

lv = (v ← e�v)

ru = (u ← u�e)
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Since all diagrams over X commute:

The following diagram over (X ,�) commutes:

u�(e�v)
tuev //

1u�lv

��

(u�e)�v

ru�1v

��
u�v

Let’s apply XSub to this diagram.

By Assumption: tuev 7→ τU,E ,V (assoc. iso.)

Notation: u 7→ U , v 7→ V , e 7→ E , lv 7→ λV , ru 7→ ρU
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Since all diagrams over X commute:

The following diagram over (C,⊗) commutes:

U ⊗ (E ⊗ V )
τUEV //

1U⊗λU

  

(U ⊗ E)⊗ V

ρU⊗1V

~~
U ⊗ V

This is MacLane’s units triangle
— E is the unit object for (C,⊗).

The choice of e was arbitrary — every object is the unit object!
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A general result

The following diagram commutes

(W,�) �
� //

WSub

��

(X ,�)

WSub

��
(C,⊗)

exactly when (C,⊗) is degenerate —

i.e. all objects are isomorphic to the unit object.
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Generalising Isbell’s argument

1 Strict associativity: All arrows of (W,�) are mapped to
identities of (C,⊗)

2 Strict self-similarity: All arrows of (X ,�) are mapped to
the identity of (C,⊗).

WSub trivially factors through XSub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.
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Another perspective ...

Another way of looking at things:

One cannot simultaneously strictify

(I) Associativity A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C

(II) Self-Similarity S ∼= S ⊗ S

The ‘No Simultaneous Strictification’ Theorem
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A simple consequence:

Strictifying associativity ...

transforms untyped structures into typed structures.

Strictifying self-similarity ...

transforms strict associativity into lax associativity.
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How to strictify self-similarity
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A simple, almost painless, procedure (I)

Start with a monogenic category (C,⊗), generated by a
self-similar object

S

B
**
S ⊗ S

C

gg

Construct its platonic ideal (PlatC ,�)

Use the (monic) self-similarity substitution functor

XSub : (X ,�)→ (PlatC ,�)
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A simple,almost painless, procedure (II)

The image of XSub is a wide subcategory of (P latC ,�).

It contains, for all objects A,
a unique pair of inverse arrows

S

BA

&&
A

CA

ff

Use these to define an endofunctor Φ : PlatC → PlatC .
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The type-erasing endofunctor

Objects
Φ(A) = S , for all objects A

Arrows
A f // B

CB
��

S

BA

OO

Φ(f )
// S

Functoriality is trivial ...
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A natural tensor on C(S,S)

As a final step:

Define a tensor ( ? ) on C(S,S) by

S ⊗ S t⊗u // S ⊗ S

C
��

S

B

OO

t?u
// S

(C(S,S), ? ) is an untyped monoidal category!
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Type-erasing as a monoidal functor

Recall, PlatC(S,S) ∼= C(S,S).

Up to this obvious isomorphism,

Φ : (PlatC ,�)→ (C(S,S), ?)

is a monoidal functor.

What we have ...

A monoidal functor from PlatC
to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1S.
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A useful property

Basic Category Theory

diagram D commutes ⇒ diagram Φ(D) commutes.

D v
g

&&u
h

//

f
88

w

S
Φ(g)

&&
Φ(D) S

Φ(h)
//

Φ(f )

88

S
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As above, so below

In this case ...
diagram D commutes ⇔ diagram Φ(D) commutes.

D v
g

&&Cv

��

u
h

//

f
88

Cu

��

w

Cw

��

S
Φ(g)

&&

Bv

OO

Φ(D) S
Φ(h)

//

Φ(f )

88
Bu

OO

S

Bw

OO
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To arrive where we started . . .
A monogenic category:

The generating object: natural numbers N.

The arrows bijective functions.

The tensor disjoint union A ] B = A× {0} ∪ B × {1}.

The self-similar structure:

N

c−1

44N ] N

c
uu

Based on the familiar Cantor pairing c(n, i) = 2n + i .

Let us strictify this self-similar structure.
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The end is where we started from

The Cantor monoid:

The object The natural numbers N

The arrows All bijections N→ N

The tensor (f ? g)(n) =


2.f
(n

2

)
n even,

2.g
(n−1

2

)
+ 1 n odd.

The associativity isomorphism τ(n) =


2n n (mod 2) = 0,

n + 1 n (mod 4) = 1,

n−3
2 n (mod 4) = 3.

The symmetry isomorphism σ(n) =


n + 1 n even,

n − 1 n odd.
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