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The Untyped Setting

Untyped categories

Categories with only one object (i.e. monoids)

— with additional categorical properties.

Properties such as:

Monoidal Tensors, Cartesian or Compact Closure,

Duals, Traces, Projections / Injections, Enrichment, &c.
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Where might we find such structures?

@ Untyped computation (A calculus & C-monoids)

@ Polymorphic types (System F, parametrized types)

@ Fractals (e.g. the Cantor space)

@ State machines (Pushdown automata / binary stacks)
@ Linguistics and models of meaning

@ (Infinite-dimensional) quantum mechanics

@ Group theory (Thompson’s V and F groups)

@ Semigroup theory (The polycyclic monoids Pp)

@ Crystallography and Tilings

@ Modular arithmetic & cryptography
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Why study coherence in this setting?

Doesn’t MacLane tell us all we need to know about coherence?

Is there anything special about untyped categories?
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Why study coherence in this setting?

Doesn’t MacLane tell us all we need to know about coherence?

Is there anything special about untyped categories?

@ They test the limits of various coherence theorems.

© Untypedness itself is the strictification of a

certain categorical property,

— closely connected to coherence for associativity.
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A simple example

The Cantor monoid ¢/
@ Single object: N.
@ Arrows: all bijections on N.

The monoidal structure

We have atensor (_x_) U x U — U.

2.f(3) n even,
(fxg)(n) = {
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The coherence isomorphisms:

@ The associativity isomorphism:

2n n(mod 2) =0,
7(nN)=< n+1 n(mod4)=1,
o n (mod 4) = 3.

@ The symmetry isomorphism:

n—1 nodd,
o(n) =

n+1 neven.

MacLane’s pentagon and hexagon
conditions are satisfied.
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Is it because [ is absent?

We can make a genuine monoidal category from (4, x).

How to: adjoin a strict unit

@ Take the coproduct with the trivial monoid /, giving /]| /.
© Extend _x _to the coproduct by

I« = ldy1y = -1

©Q (U]]!/,_«.)is agenuine monoidal category.

(Construction based on the theory of Saavedra units).
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Some ‘peculiarities’ of the Cantor monoid

Within the Cantor monoid (4, * )

@ Associativity is not strict, even though

Xx(YxZ)=(XxY)xZ

© Not all canonical (for associativity) diagrams commute.

© No strictly associative tensor on ¢/ can exist.
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Canonical diagrams that do not commute

This canonical diagram does not commute:

N

T*1N

1[N*T

/X
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Yes, there are two paths you can go by,

Using a randomly chosen number:

n—n

Taking the right hand path, 60 — 60
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Yes, there are two paths you can go by, but ...

On the left hand path,

120
60 - n—2n
240

Samson is 60, not 240; this diagram does not commute!

Not all canonical (for associativity) diagrams commute.
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Is there a conflict with MacLane’s Theorem?

http://en.wikipedia.org/wiki/Monoidal_category

g Y “It follows that any diagram whose
*C Q ) 5 5 o g
3% ny morphisms are built using [canonical
- isomorphisms], identities and tensor
WIKIPEDIA p / ”
The Free Encyclopedia prOdUCt Commutes-
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Tinker, Tailor, Soldier, Sarcasm

Untangling The Web — N.S.A. guide to internet use

@ Do not as a rule rely on Wikipedia
as your sole source of information.

@ The best thing about Wikipedia are
the external links from entries.

peter.hines@york.ac.uk



MaclLane, on MacLane’s Theorem

Categories for the working mathematician (15 ed.)

(p-158) Moreover, all diagrams involving [canonical iso.s]
must commute.

(p- 159) These three [coherence] diagrams imply that “all” such
diagrams commulte.

(p. 161) We can only prove that every “formal” diagram commutes.
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What does his theorem say?

MacLane’s coherence theorem for associativity

All diagrams within the image of a certain
functor are guaranteed to commute.

This commonly, but not always, means all canonical diagrams.

We are interested in situations where this is not the case.
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Coherence for associativity — a convention

We will work with monogenic categories

Objects are generated by:
@ Some object S,
@ Atensor (-® ).

This is not a restriction —
@ S should be thought of as a ‘variable symbol’.

@ We will also rely on naturality.
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The Source Of the fU nCtOF (Buxus Sempervirens)

This is based on (non-empty) binary trees.

[

RN

X 0
AN
0 X

AN

X X

@ Leaves labelled by x,

@ Branchings labelled by 1.

The rank of a tree is the number of leaves.
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A posetal category of trees

MacLane’s category W.

@ (Objects) All non-empty binary trees.

@ (Arrows) A unique arrow between any two trees
of the same rank.

— write this as (v < u) € W(u, v).

@ (.0.) is a monoidal tensor on W.

© W is posetal — all diagrams over YV commute.
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MacLane’s Substitution Functor

MacLane’s theorem relies on a monoidal functor

WSub : (W,0) — (C,®)
This is based on a notion of substitution.

i.e. mapping formal symbols to concrete objects & arrows.
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The functor itself

On objects:

@ WSub(x) = S,
@ WSub(uOv) = WSub(u) @ WSub(v).

An object of WW:
0
7\
X O
RN
0 X
RN
X X
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An inductively defined functor (1)

On objects:

@ WSub(x) = S,

@ WSub(uOv) = WSub(u) @ WSub(v).

An object of C:

/\
/\
/\
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An inductively defined functor (ll)

On arrows:

@ WSub(u <+ u)=1.
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.

@ WSub((adb)0c «+ all(bdc)) =7_ .
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.

@ WSub((adb)0c «+ all(bdc)) =7_ .

The role of the Pentagon

The Pentagon condition — WSub is a monoidal functor.
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The story so far ...

We have a functor WSub : (W, 00) — (C, ®).
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The story so far ...

We have a functor WSub : (W,0) — (C, ®).
@ Every object of C is the image of an object of W
@ Every canonical arrow of C is the image of an arrow of W

@ Every diagram over WV commutes.

As a corollary:

The image of every diagram in (W, [J) commutes in (C, ®).
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The story so far ...

We have a functor WSub : (W,0) — (C, ®).
@ Every object of C is the image of an object of W
@ Every canonical arrow of C is the image of an arrow of W

@ Every diagram over WV commutes.

As a corollary:

The image of every diagram in (W, [J) commutes in (C, ®).

Question: Are all canonical diagrams in the image of WSub?

— This is only the case when YWSub is an embedding!
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How to Rectify the Anomaly

Given a badly-behaved category (C, ®), we can

build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (C, ®).

We (still) assume C is monogenic, with objects generated by {S, - ® _}
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Constructing Plat;

O
S/ \D
D/ \S
N
S S

Leaves labelled by S € Ob(C),

Branchings labelled by .

There is an instantiation map /nst : Ob(Plat;) — Ob(C)

SO((SOS)dS) — S® ((S®S)® S)

This is not just a matter of syntax!
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Constructing Plat;

What about arrows?

Homsets are copies of homsets of C

Given trees Ty, T,

P/atc(T1, Tg) = C(/HST(T1),IHST(T2))

Composition is inherited from C in the obvious way.
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The tensor ( O ) : Plat; x Plat. — Plat;

A

— X

fOg

AOX BOY

B

——Y

The tensor of Plat: is

@ (Objects) A free formal pairing, ACIB,

@ (Arrows) Inherited from (C, ®), so fClg “p f®g.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.

© As a corollary:

All canonical diagrams of ( Plat;, [J) commute.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.

© As a corollary:

All canonical diagrams of ( Plat;, [J) commute.

© Instantiation defines an epic monoidal functor
Inst : (Plat;,00) — (C,®)

through which McL.s substitution functor always factors.
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A monic / epic decomposition

MacLane’s substitution functor always factors
through the platonic ideal:

(monic)

W, 0) —222 (Plat;, 0))
WSub. Inst (epic)
(C,®)

This gives a monic / epic decomposition of his functor.
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The ‘Platonic Ideal’ of an untyped monoidal category

Can we build an untyped category over which
all canonical diagrams commute?

The simplest possible case:

The trivial monoidal category (Z, ®).
@ Objects: Ob(Z) = {x}.
@ Arrows: Z(x, x) = {1x}.

@ Tensor:
X®X:X, 1X®1X:1X
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What is the platonic ideal of Z?

(Objects) All non-empty binary trees:

S\,
N
A\,

(Arrows) For all trees T4, Tp,

Platz(Ty, T») is a single-element set.

There is a unique arrow between any two trees!
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A la recherche du tensors perdu

(P.H. 1997) The prototypical self-similar category (X', )
@ Objects: All non-empty binary trees.

@ Arrows: A unique arrow between any two objects.

This monoidal category:

@ was introduced to study self-similarity S =~ S ® S,

© contains MacLane’s (W, ) as a wide subcategory.
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Self-similarity

The categorical identity S~ S® S
Exhibited by two canonical isomorphisms:
@ (Code) <4:5985—-S
® (Decode) >:S—S® S

These are unique (up to unique isomorphism).

peter.hines@york.ac.uk



Self-similarity

The categorical identity S~ S® S
Exhibited by two canonical isomorphisms:
@ (Code) <4:5985—-S
® (Decode) >:S—S® S

These are unique (up to unique isomorphism).

Uniqueness ...

Unique up to unique isomorphism
is not the same as
actually unique.

Actual uniqueness implies that S is the unit object.
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Examples of self-similarity

@ (Infinitary examples)
The natural numbers N, Separable Hilbert spaces, Infinite
matrices, the Cantor set & other fractals, Binary stacks, &c.

@ (Untyped examples)
C-monoids, the Cantor monoid U, any untyped
monoidal category.

@ (Trivial examples)
The unit object | of any monoidal category.

peter.hines@york.ac.uk



What is strict self-similarity?

Can the code / decode maps
1:859S8S—+S , >:S—-8S®S

be strict identities?
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What is strict self-similarity?

Can the code / decode maps
1:859S8S—+S , >:S—-8S®S

be strict identities?

In untyped monoidal categories:
We only have one object, S = S® S.

Take the identity as both the code and decode arrows.

Untyped = Strictly Self-Similar.



Strictifying self-similarity

Question: Does there exist a strictification procedure
for self-similarity?

Essential preliminaries

We need a coherence theorem for self-similarity.

and how it relates to associativity.

peter.hines@york.ac.uk



Coherence for Self-Similarity

(a special case of a much more general theory)
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A straightforward coherence theorem

We base this on the category (X, 0)

@ Objects All non-empty binary trees.

@ Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over X commute.

We will define a monoidal substitution functor:

XSub: (x,0) = (C,®)
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The self-similarity substitution functor

An inductive definition of XSub : (X,0O0) — (C,®)

On objects:

X — S
ulv — XSub(u)® XSub(v)

(x+<x) — 1s5€C((S,S)

(x+xOx) —» <€C(S®S,S)
(xOx <~ x) — >€C(S,S®S)

(bOv < alu) — X Sub(b < a) ® XSub(v < u)
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.

© Every arrow built up from
{«,>,15, -®_}

is the image of an arrow in X.
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.

© Every arrow built up from
{«,>,15, -®_}

is the image of an arrow in X.

© The image of every diagram in X commutes.
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X Sub factors through the Platonic ideal

There is a monic-epic decomposition of X Sub.

X Sub.

(x,0) (Plat;, )

Inst
X Sub.

(€, ®)

Every canonical (for self-similarity) diagram
in (Platz,J) commutes.
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Relating associativity and self-similarity
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A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane’s (W,0) The category (X,0)

Objects: Binary trees. Objects: Binary trees.
Arrows: Unique arrow between Arrows: Unique arrow between
two trees of the same rank. any two trees.

There is an obvious inclusion (W, ) — (X,0)
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Is associativity a restriction of self-similarity?

Does the following diagram commute?

(W, 0)¢ (4, 00)

WSub X Sub

(€, ®)

Does the associativity functor
factor through

the self-similarity functor?
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Proof by contradiction:

Let’s assume this is the case.

Special arrows of (X, 0)

For arbitrary trees u, e, v,

tiew = ((ude)dv « ub(eOv))
I = (v« eOv)
rn = (u+ ule)
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Since all diagrams over X commute:

The following diagram over (X', [J) commutes:

uO(eOv) luew (uOe)Ov

1,00 ruO1y

ulv
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Since all diagrams over X commute:

The following diagram over (X', [J) commutes:

uO(eOv) luew (uOe)Ov

1,00 ruO1y

ulv

Let’s apply X' Sub to this diagram.

By Assumption: t,e, — 7y £ v (@ssoc. iso.)

Notation: u— U, v~V e—E |, |, — Ay, ru— py
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Since all diagrams over X commute:

The following diagram over (C, ®) commutes:

U (E® V) (U E)o V

Tu®Ay pu1y

UV
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Since all diagrams over X commute:

The following diagram over (C, ®) commutes:

U (E® V) (U E)o V

1u®Ay pu®ly
U Vv
This is MacLane’s units triangle
— E is the unit object for (C, ®).

The choice of e was arbitrary — every object is the unit object!
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A general result

The following diagram commutes

exactly when (C, ®) is degenerate —

)

i.e. all objects are isomorphic to the unit object.
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Generalising Isbell’s argument

@ Strict associativity: All arrows of (W, J) are mapped to
identities of (C, ®)

© Strict self-similarity: All arrows of (', [J) are mapped to
the identity of (C, ®).

WSub trivially factors through X' Sub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.
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Another perspective ...

Another way of looking at things:

One cannot simultaneously strictify

(I) Associativity A®(B®C) = (AwB)®C
(1) Self-Similarity S~S®S

The ‘No Simultaneous Strictification’ Theorem
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A simple consequence:

Strictifying associativity ...

transforms untyped structures into typed structures.

Strictifying self-similarity ...

transforms strict associativity into /ax associativity.
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How to strictify self-similarity
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A simple, almost painless, procedure ()

@ Start with a monogenic category (C, ®), generated by a
self-similar object
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A simple, almost painless, procedure ()

@ Start with a monogenic category (C, ®), generated by a
self-similar object

>

S S®S
\_/

<

@ Construct its platonic ideal (Platc, )
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A simple, almost painless, procedure ()

@ Start with a monogenic category (C, ®), generated by a
self-similar object

>

S S®S
\_/

<

@ Construct its platonic ideal (Platc, )
@ Use the (monic) self-similarity substitution functor

XSub: (X,0) — (Plate,0)
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A simple,almost painless, procedure (ll)

@ The image of X'Sub is a wide subcategory of (Platc, ).

It contains, for all objects A,
a unique pair of inverse arrows
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A simple,almost painless, procedure (ll)

@ The image of X'Sub is a wide subcategory of (Platc, ).

It contains, for all objects A,
a unique pair of inverse arrows

@ Use these to define an endofunctor ¢ : Plaf- — Plalc.
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The type-erasing endofunctor

@ Objects
®(A) =S , forall objects A
@ Arrows
A f B
DAT \LQB
S o) S

@ Functoriality is trivial ...
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A natural tensor on C(S, S)

As a final step:

Define atensor (_x _) on C(S, S) by

SeS—™® .s%S

S S

txu

(C(S,S),_* ) is an untyped monoidal category! |

peter.hines@york.ac.uk



Type-erasing as a monoidal functor

@ Recall, Plat:(S,S) = C(S,S).
@ Up to this obvious isomorphism,
o : (Plate,d) — (C(S, S), *)

is a monoidal functor.
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Type-erasing as a monoidal functor

@ Recall, Plat:(S,S) = C(S,S).
@ Up to this obvious isomorphism,
o : (Plate,d) — (C(S, S), *)

is a monoidal functor.

What we have ...

A monoidal functor from Plat
to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1g.
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A useful property

Basic Category Theory
diagram © commutes =- diagram ®(©) commutes.

2,
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As above, so below

diagram © commutes < diagram () commutes.

53] v
f ‘ g
<‘1v
T T
<y <lw
S
el e o(g) "W
d(D) S S
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To arrive where we started ...

A monogenic category:
@ The generating object: natural numbers N.
@ The arrows bijective functions.

@ The tensor disjoint union Aw B = Ax {0} UB x {1}.

The self-similar structure:

Based on the familiar Cantor pairing c(n, i) = 2n + i.

Let us strictify this self-similar structure.
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The end is where we started from

The Cantor monoid:

The object The natural numbers N
The arrows All bijections N — N
2.f(3) neven,
The tensor (fxg)(n) =
2.9(%) +1 nodd.
2n n(mod 2) =0,
The associativity isomorphism 7(n)=< n+1 n(mod4)=1,

ns n (mod 4) = 3.

n+1 neven,
The symmetry isomorphism o(n) =
n—1 nodd.
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