Categorical coherence in the untyped setting

Peter M. Hines

SamsonFest - Oxford - May 2013

The Untyped Setting

Untyped categories

Categories with only one object (i.e. monoids)

- with additional categorical properties.

Properties such as:
Monoidal Tensors, Cartesian or Compact Closure,
Duals, Traces, Projections / Injections, Enrichment, \&c.

Where might we find such structures?

- Untyped computation (λ calculus \& C-monoids)
- Polymorphic types (System F, parametrized types)
- Fractals (e.g. the Cantor space)
- State machines (Pushdown automata / binary stacks)
- Linguistics and models of meaning
- (Infinite-dimensional) quantum mechanics
- Group theory (Thompson's V and F groups)
- Semigroup theory (The polycyclic monoids P_{n})
- Crystallography and Tilings
- Modular arithmetic \& cryptography

Why study coherence in this setting?

Doesn't MacLane tell us all we need to know about coherence?

Is there anything special about untyped categories?
(1) They test the limits of various coherence theorems.
(2) Untypedness itself is the strictification of a
certain categorical property,

Why study coherence in this setting?

Doesn't MacLane tell us all we need to know about coherence?

Is there anything special about untyped categories?
(1) They test the limits of various coherence theorems.
(2) Untypedness itself is the strictification of a certain categorical property,

- closely connected to coherence for associativity.

A simple example

The Cantor monoid \mathcal{U}

- Single object: \mathbb{N}.
- Arrows: all bijections on \mathbb{N}.

The monoidal structure
We have a tensor (-* $): \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$.

$$
(f \star g)(n)=\left\{\begin{array}{lr}
2 . f\left(\frac{n}{2}\right) & n \text { even, } \\
2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd. } .
\end{array}\right.
$$

The coherence isomorphisms:

- The associativity isomorphism:

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

- The symmetry isomorphism:

$$
\sigma(n)=\left\{\begin{array}{cc}
n-1 & n \text { odd } \\
n+1 & n \text { even }
\end{array}\right.
$$

MacLane's pentagon and hexagon conditions are satisfied.

Is it because $/$ is absent?

We can make a genuine monoidal category from (\mathcal{U}, \star).

How to: adjoin a strict unit

(1) Take the coproduct with the trivial monoid I, giving $\mathcal{U} \amalg I$.
(2) Extend - \star to the coproduct by

$$
I \star_{-}=I d_{u^{\prime}}|=-\star|
$$

(3) $\left(\mathcal{U} \amalg I_{,-\star}\right)$ is a genuine monoidal category.

Some 'peculiarities' of the Cantor monoid

Within the Cantor monoid $(\mathcal{U}, ~ \star)$

(1) Associativity is not strict, even though

$$
X \star(Y \star Z)=(X \star Y) \star Z
$$

(2) Not all canonical (for associativity) diagrams commute.
(3) No strictly associative tensor on \mathcal{U} can exist.

Canonical diagrams that do not commute

This canonical diagram does not commute:

Yes, there are two paths you can go by,

Using a randomly chosen number:

Taking the right hand path, $60 \mapsto 60$

Yes, there are two paths you can go by, but ...

On the left hand path,

Samson is 60 , not 240 ; this diagram does not commute!

Not all canonical (for associativity) diagrams commute.

Is there a conflict with MacLane's Theorem?

http://en.wikipedia.org/wiki/Monoidal_category
"It follows that any diagram whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

Tinker, Tailor, Soldier, Sarcasm

Untangling The Web - N.S.A. guide to internet use

- Do not as a rule rely on Wikipedia as your sole source of information.
- The best thing about Wikipedia are the external links from entries.

MacLane, on MacLane's Theorem

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)
(p.158) Moreover, all diagrams involving [canonical iso.s] must commute.
(p. 159) These three [coherence] diagrams imply that "all" such diagrams commute.
(p. 161) We can only prove that every "formal" diagram commutes.

What does his theorem say?

MacLane's coherence theorem for associativity

All diagrams within the image of a certain functor are guaranteed to commute.

This commonly, but not always, means all canonical diagrams.

We are interested in situations where this is not the case.

Coherence for associativity - a convention

We will work with monogenic categories

Objects are generated by:

- Some object S,
- A tensor (- \otimes_{-}).

This is not a restriction -

- S should be thought of as a 'variable symbol'.
- We will also rely on naturality.

This is based on (non-empty) binary trees.

- Leaves labelled by x,
- Branchings labelled by \square.

The rank of a tree is the number of leaves.

A posetal category of trees

MacLane's category \mathcal{W}.

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.
- write this as $(v \leftarrow u) \in \mathcal{W}(u, v)$.

Key points:
(1) (\square) is a monoidal tensor on \mathcal{W}.
(2) \mathcal{W} is posetal - all diagrams over \mathcal{W} commute.

MacLane's Substitution Functor

MacLane's theorem relies on a monoidal functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

This is based on a notion of substitution.
i.e. mapping formal symbols to concrete objects \& arrows.

The functor itself

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{W} :

An inductively defined functor (I)

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{C} :

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.

The role of the Pentagon

The Rantazon condition

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-, \ldots,}$.

The role of the Pentagon

> The Pantanan nonditinn - Whb is a monoidal functor.

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-,,,-}$.

The role of the Pentagon

The Pentagon condition $\Longrightarrow \mathcal{W}$ Sub is a monoidal functor.

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of

Every canonical arrow of \mathcal{C} is the image of an arrow of $)$

- Every diagram over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \square) commutes in (

Question: Are all canonical diagrams in the image of \mathcal{W} Sub? - This is only the case when wsub is an embedding!

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \square) commutes in (\mathcal{C}, \otimes).

Question: Are all canonical diagrams in the image of \mathcal{W} Sub? - This is onty the case when wsub is an embedaling!

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \square) commutes in (\mathcal{C}, \otimes).

Question: Are all canonical diagrams in the image of \mathcal{W} Sub?

- This is only the case when \mathcal{W} Sub is an embedding!

Given a badly-behaved category (\mathcal{C}, \otimes), we can build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (\mathcal{C}, \otimes).

We (still) assume \mathcal{C} is monogenic, with objects generated by $\left\{S,{ }_{-} \otimes_{-}\right\}$

Constructing Plat $c_{\mathcal{C}}$

Objects are free binary trees

Leaves labelled by $S \in O b(\mathcal{C})$,
Branchings labelled by \square.

There is an instantiation map Inst : $O b\left(P l a t_{\mathcal{C}}\right) \rightarrow O b(\mathcal{C})$

$$
S \square((S \square S) \square S) \mapsto S \otimes((S \otimes S) \otimes S)
$$

Constructing Plat $c_{\mathcal{C}}$

What about arrows?

Homsets are copies of homsets of \mathcal{C}
Given trees T_{1}, T_{2},

$$
\operatorname{Plat}_{\mathcal{C}}\left(T_{1}, T_{2}\right)=\mathcal{C}\left(\operatorname{Inst}\left(T_{1}\right), \operatorname{Inst}\left(T_{2}\right)\right)
$$

Composition is inherited from \mathcal{C} in the obvious way.

The tensor $(\square):$ Plat $_{\mathcal{C}} \times$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$

The tensor of Platc is

- (Objects) A free formal pairing, $A \square B$,
- (Arrows) Inherited from (\mathcal{C}, \otimes), so $f \square g \stackrel{\text { def. }}{=} f \otimes g$.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:
All canonical diagrams of $\left(\right.$ Plat $\left._{C}, \square\right)$ com
(3) Instantiation defines an epic monoidal functor

> Inst : (Platc
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P l a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P / a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor

$$
\text { Inst }:\left(\text { Plat }{ }_{\mathcal{C}}, \square\right) \rightarrow(\mathcal{C}, \otimes)
$$

through which McL'.s substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

The 'Platonic Ideal' of an untyped monoidal category

Can we build an untyped category over which all canonical diagrams commute?

The simplest possible case:

The trivial monoidal category (\mathcal{I}, \otimes).

- Objects: $O b(\mathcal{I})=\{x\}$.
- Arrows: $\mathcal{I}(x, x)=\left\{1_{x}\right\}$.
- Tensor:

$$
x \otimes x=x, \quad 1_{x} \otimes 1_{x}=1_{x}
$$

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:

(Arrows) For all trees T_{1}, T_{2},
$\operatorname{Plat}_{\mathcal{I}}\left(T_{1}, T_{2}\right)$ is a single-element set.

There is a unique arrow between any two trees!

A la recherche du tensors perdu

(P.H. 1997) The prototypical self-similar category (\mathcal{X}, \square)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:
(1) was introduced to study self-similarity $S \cong S \otimes S$,
(2) contains MacLane's (\mathcal{W}, \square) as a wide subcategory.

Self-similarity

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\triangleleft: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).

Actual uniqueness implies that S is the unit object.

Self-similarity

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\triangleleft: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).

Uniqueness ...

Unique up to unique isomorphism is not the same as actually unique.

Actual uniqueness implies that S is the unit object.

Examples of self-similarity

- (Infinitary examples)

The natural numbers \mathbb{N}, Separable Hilbert spaces, Infinite matrices, the Cantor set \& other fractals, Binary stacks, \&c.

- (Untyped examples)

C-monoids, the Cantor monoid \mathcal{U}, any untyped monoidal category.

- (Trivial examples)

The unit object I of any monoidal category.

What is strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In untyped monoidal categories:

Take the identity as both the code and decode arrows

Untyped \equiv Strictly Self-Similar

What is strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In untyped monoidal categories:
We only have one object, $S=S \otimes S$.

Take the identity as both the code and decode arrows.

Untyped \equiv Strictly Self-Similar.

Strictifying self-similarity

Question: Does there exist a strictification procedure for self-similarity?

Essential preliminaries

We need a coherence theorem for self-similarity. and how it relates to associativity.

Coherence for Self-Similarity

(a special case of a much more general theory)

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \square)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is posetal - all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$$
\mathcal{X} \text { Sub : }(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

The self-similarity substitution functor

An inductive definition of \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$

On objects:

$$
\begin{aligned}
x & \mapsto S \\
u \square v & \mapsto \mathcal{X} \operatorname{Sub}(u) \otimes \mathcal{X} \operatorname{Sub}(v)
\end{aligned}
$$

On arrows:

$$
\begin{aligned}
(x \leftarrow x) & \mapsto 1 S \in \mathcal{C}(S, S) \\
(x \leftarrow x \square x) & \mapsto \triangleleft \in \mathcal{C}(S \otimes S, S) \\
(x \square x \leftarrow x) & \mapsto \triangleright \in \mathcal{C}(S, S \otimes S) \\
(b \square v \leftarrow a \square u) & \mapsto \mathcal{X} \operatorname{Sub}(b \leftarrow a) \otimes \mathcal{X} \operatorname{Sub}(v \leftarrow u)
\end{aligned}
$$

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(3) The image of every diagram in \mathcal{X} commutes.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) The image of every diagram in \mathcal{X} commutes.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) The image of every diagram in \mathcal{X} commutes.

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.

Every canonical (for self-similarity) diagram in (Plate,$\square)$ commutes.

Relating associativity and self-similarity

A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane's (\mathcal{W}, \square)

Objects: Binary trees.
Arrows: Unique arrow between two trees of the same rank.

The category (\mathcal{X}, \square)

Objects: Binary trees.
Arrows: Unique arrow between any two trees.

There is an obvious inclusion $(\mathcal{W}, \square) \hookrightarrow(\mathcal{X}, \square)$

Is associativity a restriction of self-similarity?

Does the following diagram commute?

Does the associativity functor factor through
the self-similarity functor?

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \square)
For arbitrary trees u, e, v,

$$
\begin{aligned}
t_{u e v} & =((u \square e) \square v \leftarrow u \square(e \square v)) \\
I_{v} & =(v \leftarrow e \square v) \\
r_{u} & =(u \leftarrow u \square e)
\end{aligned}
$$

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.

D., Asarumptian: t ith (assoc. iso.)

Notation:

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.
By Assumption: $t_{u e v} \mapsto \tau_{U, E, V}$ (assoc. iso.)
Notation: $u \mapsto U, v \mapsto V, e \mapsto E, I_{V} \mapsto \lambda_{V}, r_{u} \mapsto \rho_{U}$

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle $-E$ is the unit obiect for $(\mathcal{C}$.

The choice of e was arbitrary - every object is the unit object!

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle

- E is the unit object for (\mathcal{C}, \otimes).

The choice of e was arbitrary - every object is the unit object!

A general result

The following diagram commutes

exactly when (\mathcal{C}, \otimes) is degenerate -
i.e. all objects are isomorphic to the unit object.

Generalising Isbell's argument

(1) Strict associativity: All arrows of (\mathcal{W}, \square) are mapped to identities of (\mathcal{C}, \otimes)
(2) Strict self-similarity: All arrows of (\mathcal{X}, \square) are mapped to the identity of (\mathcal{C}, \otimes).
\mathcal{W} Sub trivially factors through \mathcal{X} Sub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.

Another perspective ...

Another way of looking at things:

One cannot simultaneously strictify
(I) Associativity $\quad A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
(II) Self-Similarity $S \cong S \otimes S$

The 'No Simultaneous Strictification' Theorem

A simple consequence:

Strictifying associativity ...

transforms untyped structures into typed structures.

Strictifying self-similarity ...
transforms strict associativity into lax associativity.

How to strictify self-similarity

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

Construct its platonic ideal (Platc, \square)

- Use the (monic) self-similarity substitution functor

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plat,$~ \square)$
- Use the (monic) self-similarity substitution functor

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plat $_{\mathcal{C}}, \square$)
- Use the (monic) self-similarity substitution functor

$$
\mathcal{X} \operatorname{Sub}:(\mathcal{X}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

A simple,almost painless, procedure (II)

- The image of \mathcal{X} Sub is a wide subcategory of ($\left.\mathcal{P l a t}_{C}, \square\right)$.

It contains, for all objects A,
a unique pair of inverse arrows

A simple,almost painless, procedure (II)

- The image of \mathcal{X} Sub is a wide subcategory of (\mathcal{P} lat $\left.C_{C}, \square\right)$.

It contains, for all objects A,
a unique pair of inverse arrows

- Use these to define an endofunctor $\Phi:$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$.
- Objects

$$
\Phi(A)=S, \text { for all objects } A
$$

- Arrows

- Functoriality is trivial ...

A natural tensor on $\mathcal{C}(S, S)$

As a final step:
Define a tensor (-*_) on $\mathcal{C}(S, S)$ by

$\left(C(S, S),{ }_{-} \star_{-}\right)$is an untyped monoidal category!

Type-erasing as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

What we have

Type-erasing as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

What we have ...

A monoidal functor from Platc to an untyped monoidal category.

- every canonical (for self-similarity) arrow is mapped to 1 s .

A useful property

Basic Category Theory

diagram \mathfrak{D} commutes \Rightarrow diagram $\Phi(\mathfrak{D})$ commutes.
\mathfrak{D}

$\Phi(\mathfrak{D})$

As above, so below

In this case ...

diagram \mathfrak{D} commutes \Leftrightarrow diagram $\Phi(\mathfrak{D})$ commutes.

To arrive where we started

A monogenic category:

- The generating object: natural numbers \mathbb{N}.
- The arrows bijective functions.
- The tensor disjoint union $A \uplus B=A \times\{0\} \cup B \times\{1\}$.

The self-similar structure:

Based on the familiar Cantor pairing $c(n, i)=2 n+i$.

Let us strictify this self-similar structure.

The end is where we started from

The Cantor monoid:

The object	The natural numbers \mathbb{N}
The arrows	$(f \star g)(n)= \begin{cases}2 . f\left(\frac{n}{2}\right) & n \text { even, } \\ 2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd. }\end{cases}$
The tensor	$\tau(n)= \begin{cases}2 n & n(\bmod 2)=0, \\ n+1 & n(\bmod 4)=1, \\ \frac{n-3}{2} & n(\bmod 4)=3 .\end{cases}$
The associativity isomorphism	
The symmetry isomorphism	$\sigma(n)=\left\{\begin{array}{rr}n+1 & n \text { even, } \\ n-1 & n \text { odd. }\end{array}\right.$

