
Computational Interpretations of Differential
Logic

Jim Laird (University of Bath)

May 30, 2013

Computational Interpretations of Linear Logic

Samson’s “Computational Interpretations of Linear Logic” (1993)

I Gave a “translation” from (french) logic to (english)
computation.

I Introduced novel concepts — in particular, the idea of proofs
as processes.

I Initiated much research into linear type theories for
programming languages and process calculi.

Bellin and Scott (1994) showed that proofs as processes can be
framed naturally in Milner’s “Synchronous π-calculus”. We will
give operational and denotational interpretations of the latter,
linking back to Samson’s original work.

“Differential Logic”

A collection of formalisms for reasoning about linearization:

I Differential lambda-calculus (Erhard and Regnier) —
λ-calculus with an operator obeying chain and product rules,
Taylor expansion, etc.

I Differential Categories (Blute, Cockett and Seely) —
categorical models for the above, based on models of LL.

I Differential nets (Ehrhard and Regnier) — graphical formalism
for differential structure.

More differential ideas:

I The differential λ-calculus is “the same” as Boudol’s resource
λ-calculus (Tranquilli).

I There is an encoding of the finitary π-calculus in differential
nets. (Ehrhard and Laurent).

I Manzonetto, McCusker and L. have studied free constructions
of differential models based on relations, and on games —
latterly (with Pagani) with a quantitative flavour.

Motivations - and connections to Samson’s work

Aim - to understand the french results, and recast them in a
quantitative setting, with a denotational semantics, yielding:

I A quantitative account of resource-sensitive computation.

I A typed (non-interleaving) model of concurrency.

I A modular way to combine structure (e.g. sequentiality) and
valuations.

I A way to describe compact closed categories and bialgebras
(cf. Fock Space).

A Calculus of Solos

E&L’s representation of the π-calculus essentially factors via the
Calculus of Solos (the Fusion Calculus without prefixing), which
can encode the π-calculus via a clever trick due to Laneve. We will
work with a typed, simplified version.
Terms are formed according to the grammar:

p, q ::= k ∈ S | x(~y) | νa.p | p|q | !p

where S is a set of constants (“scalars”), a, b, c . . . range over
channel names, and x , y , . . . are metavariables ranging over
channel ends (a+, a−, b+, b−, . . .)

Types

I Channel ends are given complementary types:

T = X | X ∗ | µX .(T1, . . . ,Tn)

(X ∗)∗ = X and µX .(T1, . . . ,Tn)
∗ = µX .(T ∗

1 , . . . ,T ∗
n).

I Given a type T = µX .(T1, . . . ,Tn), let T .i be the unfolding
of the ith component — i.e. Ti [T/X][T ∗/X ∗]

Typing Judgements

x(y1,...,yn)`Γ,x :T ;y1:T .1∗,...,yn:T .n∗ k`Γ; k ∈ S

p`Γ;∆ `q;Γ;∆′

p|q`Γ;∆,∆′
p`Γ;∆,a+:T ,a−:T ∗

νa.p`Γ;∆

p`Γ;
!p`Γ;

p`Γ,x :T ;∆
p`Γ;∆,x :T

Evaluation Semantics

Fix a total Σ-semiring (commutative semiring with all countable
sums) R = (|R|,Σ, 0, ., 1) and interpretation of scalars in R.

({};C)⇓R1
(T ;C)⇓e

(s,T ;C)⇓s.e

(p,T ;C ,a)⇓Re
(νa.p,T ;C)⇓Re

(p,q,T ;C)⇓Re
(p|q,T ;C)⇓Re

(pn,T ;C)⇓Ren

(!p,T ;C)⇓RΣn∈Nen

(x(~y1),...,x(~yi−1),x(~yi+1),...,x(~yn),T [~yi/~z];C)⇓Rei 1≤i≤n
(x(~z),x(~y1),...,x(~yn),T ;C)⇓RΣi≤nei

x 6∈ FN(T)

Examples of notions of testing

I R is the two-point Boolean lattice ({>,⊥},
∨

,⊥,∧,>). ⇓R is
may-testing — does a reduction path to the empty
configuration exist?

I R is the semiring of natural numbers (N∞,Σ, 0,×, 1) — How
many different reduction paths exist?

I R is a probability or log semiring, e.g. (R∞,Σ, 0,×, 1) What
is the probability of a successful reduction?

I R is an exotic semiring, e.g. (N∞,
∧

,∞,+, 0) or
(R∞,

∨
, 0,+, 0). What is the cost of the least/most

expensive path?

Each Σ-semiring induces a contextual equivalence ∼R .

Expressiveness

We can express:

I Sums — p(~y) + q(~y) = νa.a+(~y)|!(ν~y .a−(~y)|p)|!ν~y .a−(~y)|q)
— note that this is idempotent iff R is a dioid.

I Units — 0∼Rνa.a+() and 1∼R !0 — note that 1 6∼R0 in
general.

I Unguarded bound input — e.g. νy .x(y)|p — cf. the
synchronous π-calculus.

I Non-linear solos — e.g x(y) = νa.x(a+)|!(νb.a−(b+)|y(b−)).

I Differential/Resource λ-calculus — Milner’s encoding of λ in
π readily extends to bags of applicands.

I Guarded prefixing (π-calculus style) — we may delay
communication on b by binding it to a channel communicated
on a. Note that if a and b are the same channel, this requires
recursive types.

Multiset Objects

In a commutative-monoid-enriched SMC, say that multiset object
for A is a (commutative) bialgebra
(!A, µA :!A⊗!A →!A, eA : I →!A, δA :!A →!A⊗!A, ιA :!A → I) with
maps εA : A →!A and ηA :!A → A such that:

(i) εA; ηA : A → A = idA

(ii) eA; ηA : I → A = 0 and εA; ιA : A → I = 0

(iii) εA; δA : A →!A⊗!A = εA ⊗ eA + eA ⊗ εA and
µA; ηA :!A⊗!A → A = ηA ⊗ ιA + ιA ⊗ ηA

Categorical Model

To model our type theory, we require:

I a compact closed category (C, I ,⊗), which is

I Σ-monoid-enriched, and

I a self-dual functor ! : C → C, with natural commutative
monoid structure, and a nat. trans. ε : I →! making
(!A, µA, eA, µ∗A∗ , e∗A∗ , εA, ε∗A∗) a multiset object for A.

Note that if C is Σ-monoid enriched, then C(I , I) is a Σ-semiring
(RI) and C is RI Σ-semimodule enriched.

Examples

For any Σ-semiring R, the following (symmetric monoidal)
categories are equivalent:

I The category of R-weighted relations (objects are sets and
morphisms from A to B are maps from A×B to R, composed
by setting f ; g(a, c) = Σ{f (a, b).g(b, c) | b ∈ B}).

I The Kleisli category of the monad R on the category of sets
and functions.

I The symmetric monoidal category of free R Σ-semimodules
and countably additive functions.

I The symmetric monoidal category of all R Σ-semimodules (by
Zorn’s lemma).

Every object is self-dual, and for any set A, the set !A of finite
multisets over A is a multiset object over A.

Multiset Objects as Limits/Colimits

Let N be the (symmetric monoidal) category in which objects are
natural numbers and morphisms are permutations.

I If !A is a limit and a colimit for the diagram JA : N → C
sending n to A⊗n and each permutation to the corresponding
isomorphism, then it is a multiset object.

I Given any multiset object !A, we have maps pn :!A → A⊗n

and in : A⊗n →!A. If Σn∈ωpn; in is the identity on !A, then !A
is a limit/colimit for JA.

I Any such object is the free monoid/cofree comonoid - so we
have a (degenerate) model of linear logic, which is also a
differential category.

Constructing models

We can construct a limit/colimit for JA as the infinite biproduct of
tensor powers

⊕
i∈ω Ai . We can obtain these from free

constructions:

I R-semimodule enrichment — take the category of objects of
C in which morphisms from A to B are functions from C(A,B)
to R.

I Countable biproducts —take the category of indexed families
of objects of C and matrices of morphisms.

I Tensor powers — take the Karoubi envelope K(C) (we need
RI to have natural number division) — we can use the

idempotent Σ{JA(π) | π∈perm(n)}
n! to build tensor powers of A.

Denotational Semantics

I Types are interpreted as functors — in particular
µX .(T1, . . . ,Tn) as an invariant for ![[T1]]⊗ . . .⊗![[Tn]] (a
fixed point in our indexed families construction).

I Terms interpret as morphisms — solos as unit morphisms,
parallel compositions as the tensor product, and restriction as
the canonical trace operator (composition with the counit).

Full abstraction

Theorem Any instance of our categorical model is sound
(p ⇓R e ⇐⇒ [[p]]R = e).
Theorem R-semimodule interpretation is fully abstract
(p∼Rq ⇐⇒ [[p]]R = [[q]]R).

Conclusions

I R-semimodules are just the biproduct completion of the
one-object category R — what about starting with more
interesting structure (e.g. games) and how do we represent it
syntactically.

I What about a richer typing system — e.g. linear types.

I How much of our construction can be carried out in categories
which don’t have all infinite sums (e.g. Hilbert Spaces)?

