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Background:
A Criterion for ‘Reality’ of the Wavefunction

Harrigan & Spekkens
(2010):
Propose a mathematical
distinction between ontic and
epistmic interpretations of the
wavefunction

Pusey, Barrett & Rudolph
(2012):
Prove no-go result based on this

Ontic

Corresponds directly to reality

Epistemic

Corresponds to our state of
knowledge about reality



Overview

Alternative definition for ontic/epistemic

Agrees with Harrigan & Spekkens

But:

More general
Avoids measure-theoretic issues
Simple

Application: observable properties

Novel characterisation of non-locality/contextuality
A weak Bell theorem



Harrigan-Spekkens Definition for the Wavefunction

Assume a space Λ of ontic states

Each |ψ〉 induces a probability distribution µ|ψ〉 over Λ

Ontic if ∀ |ψ〉 6= |φ〉 .
µ|ψ〉, µ|φ〉 have non-overlapping supports

Otherwise epistemic
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Figure 1 | Physical properties. Our definition of a physical property is
illustrated. Consider a collection, labelled by L, of probability distributions
{µL(⌦)}. ⌦ denotes a system’s physical state. a, If every pair of distributions
are disjoint, then the label L is uniquely fixed by ⌦ and we call it a physical
property. b, If, however, L is not a physical property, then there exists a pair
of labels L,L0 with distributions that both assign positive probability to
some overlap region �. A ⌦ from � is consistent with either label.

supports, that is there is some region � of phase space where both
distributions are non-zero, then the labels L and L0 cannot refer to
a physical property of the system (Fig. 1).

Similar considerations apply in the quantum case. Suppose
that, for any pair of distinct quantum states | 0i and | 1i, the
distributions µ0(⌦) and µ1(⌦) do not overlap: then, the quantum
state | i can be inferred uniquely from the physical state of
the system and hence satisfies the above definition of a physical
property. Informally, every detail of the quantum state is ‘written
into’ the real physical state of affairs. But if µ0(⌦) and µ1(⌦) overlap
for at least one pair of quantum states, then | i can justifiably be
regarded as ‘mere’ information.

Our main result is that for distinct quantum states | 0i and
| 1i, if the distributionsµ0(⌦) andµ1(⌦) overlap (more precisely: if
�, the intersection of their supports, has non-zero measure), then
there is a contradiction with the predictions of quantum theory.We
present first a simple version of the argument, which works when
|h 0| 1i|= 1/

p
2. Then the argument is extended to arbitrary | 0i

and | 1i. Finally, we present amore formal version of the argument,
whichworks even in the presence of experimental error andnoise.

Consider two methods of preparing a quantum system,
corresponding to quantum states | 0i and | 1i, with |h 0| 1i| =
1/

p
2. Choose a basis of the Hilbert space so that | 0i = |0i and

| 1i=|+i= (|0i+|1i)/
p
2. To derive a contradiction, suppose that

the distributions µ0(⌦) and µ1(⌦) overlap. Then there exists q> 0
such that preparation of either quantum state results in a ⌦ from the
overlap region�with probability at least q.

Now consider two systems whose physical states are uncor-
related. This can be achieved, for example, by constructing and
operating two copies of a preparation device independently. Each
system can be prepared such that its quantum state is either | 0i or
| 1i, as illustrated in Fig. 2. With probability q2 > 0 it happens that
the physical states ⌦1 and ⌦2 are both from the overlap region �.
This means that the physical state of the two systems is compatible
with any of the four possible quantum states |0i⌦ |0i, |0i⌦ |+i,
|+i⌦ |0i and |+i⌦ |+i.

The two systems are brought together and measured. The
measurement is an entangledmeasurement, which projects onto the
four orthogonal states:

|⇠1i = 1p
2
(|0i⌦ |1i+|1i⌦ |0i)

|⇠2i = 1p
2
(|0i⌦ |�i+|1i⌦ |+i)

|⇠3i = 1p
2
(|+i⌦ |1i+|�i⌦ |0i)

|⇠4i = 1p
2
(|+i⌦ |�i+|�i⌦ |+i) (1)
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Figure 2 | The protocol. Two systems are prepared independently. The
quantum state of each, determined by the preparation method, is either |0i
or |+i. The two systems are brought together and measured. The outcome
of the measurement can only depend on the physical states of the two
systems at the time of measurement.

where |�i = (|0i � |1i)/
p
2. The first outcome is orthogonal to

|0i ⌦ |0i, hence quantum theory predicts that this outcome has
probability zero when the quantum state is |0i ⌦ |0i. Similarly,
outcome |⇠2i has probability zero if the state is |0i ⌦ |+i, |⇠3i if
|+i ⌦ |0i, and |⇠4i if |+i ⌦ |+i. This leads immediately to the
desired contradiction. At least q2 of the time, the measuring device
is uncertain which of the four possible preparation methods was
used, and on these occasions it runs the risk of giving an outcome
that quantum theory predicts should occur with probability 0.
Importantly, we have needed to say nothing about the value of q
per se to arrive at this contradiction.

We have shown that the distributions for |0i and |+i cannot
overlap. If the same can be shown for any pair of quantum states
| 0i and | 1i, then the quantum state can be inferred uniquely from
⌦. In this case, the quantum state is a physical property of the system.

For any pair of distinct non-orthogonal states | 0i and | 1i, a
basis of the Hilbert space can be chosen such that

| 0i = cos(✓/2)|0i+ sin(✓/2)|1i

| 1i = cos(✓/2)|0i� sin(✓/2)|1i (2)

with 0 < ✓ < ⇡/2. These states span a two-dimensional subspace
of the Hilbert space. We can restrict attention to this subspace
and from here on, without loss of generality, treat the systems
as qubits. As above, suppose that there is a probability at least
q > 0 that the physical state of the system after preparation is
compatible with either preparation method having been used, that
is, the resulting ⌦ is in�.

A contradiction is obtained when n uncorrelated systems are
prepared, where n will be fixed shortly. Depending on which of
the two preparation methods is used each time, the n systems are
prepared in one of the quantum states

|9(x1 ...xn)i = | x1i⌦ ···⌦ | xn�1i⌦ | xni (3)

where xi 2 {0,1}, for each i. As the preparations are independent,
there is a probability at least qn that the complete physical state of
the systems emerging from the devices is compatible with any one
of these 2n quantum states. The contradiction is obtained if there is
a joint measurement on the n systems such that each outcome has
probability zero on at least one of the |9(x1 ...xn)i. (This type of
measurement was first introduced in a different context by Caves,
Fuchs and Schack11; in their terminology, the existence of such a
measurement shows the states are post-Peierls incompatible.)
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Alternative (General) Definition

Roughly

Ontic properties are generated by functions f̂ : Λ→ V
Epistemic properties are inherently probabilistic

Carefully

A V-valued property over Λ is a function f : Λ→ D(V), where
D(V) is the set of probability distributions over V.

The property is ontic if f(λ) is a delta function for all
λ ∈ Λ.

Otherwise it is epistemic.



Relating Definitions

A property f gives probability distributions over V conditioned
on Λ. We can simply use Bayes’ theorem

p(λ|v) =
p(v|λ) · p(λ)

p(v)

to obtain probability distributions over Λ conditioned on V.
Explicitly,

µv(λ) :=
(f(λ)) (v) · p(λ)∫

Λ (f(λ′)) (v) · p(λ) dλ′
.

For finite Λ, we set p(λ) to be uniform on Λ.

Proposition

A V-valued property over finite Λ is ontic (present definition) iff
the distributions {µv}v∈V have non-overlapping supports
(Harrigan-Spekkens definition)



Ontological Models

We assume spaces:

Λ ontic states

P preparations
M measurements
O outcomes

M⊆ P(M) contexts



Ontological Models

An ontological model h over Λ specifies:

1 A distribution h(λ|p) over Λ for each preparation p ∈ P ;

2 For each λ ∈ Λ and set of compatible measurements m ∈M, a
distribution h(o|m,λ) over functional assignments o : m→ O of
outcomes to these measurements.

The operational probabilities are then prescribed by

h(o|m, p) =

∫
Λ

dλ h(o|m,λ) h(λ|p).



Ontological Models

λ-independence (free will)

h(λ|p), not h(λ|m, p)

Determinism

∀m ∈M, λ ∈ Λ. ∃o ∈ E(m) such that h(o|m,λ) = 1

Parameter Independence

∀o ∈ O,m ∈M, λ ∈ Λ the marginal probabilities h(o|m,λ) are
well-defined

Local Realism

Conjunction of the above



Characterising Locality

The observable properties of an ontological model h over Λ are the
O-valued properties fm : Λ→ D(O) given by

(fm(λ)) (o) := h(o|m,λ)

for each m ∈ X such that the marginal h(o|m,λ) is well-defined

Theorem

A model is local/non-contextual iff
all measurements are of ontic observable properties

We can use this as a route to a number of results:

Canonical form for local models

EPR argument

Weak Bell theorem



Canonical Form for Local Models

Theorem

Local realistic ontological models can be expressed in a
canonical form, with an ontic state space Ω := E(X), and
probabilities

h(o|m,ω) =
∏
m∈m

δ (ω(m), o(m))

for all m ∈M, o ∈ E(m), and ω ∈ Ω

Use canonical transformation

{fm : Λ→ O}m∈X −→ {ωλ : X → O}λ∈Λ



EPR: ψ-complete Quantum Mechanics

The quantum wavefunction itself is taken to be the ontic
state

A preparation produces a density matrix
(a distribution on the projective Hilbert space)

By construction, operational probabilities agree with
Born Rule



EPR

Proposition

Any non-trivial quantum mechanical observable is epistemic
with respect to ψ-complete quantum mechanics

Proof (outline): Take some Â 6= 1 and any |ψ〉 that’s not an eigenvector.

Then (fÂ(λ)) (o1) = h(o1|Â, λ) = |〈v1|ψ〉|2 > 0, and similarly

(fÂ(λ)) (o2) > 0

Corollary (EPR)

Assuming locality/non-contextuality, quantum mechanics
cannot be ψ-complete



A Weak Bell Theorem

Theorem

There exist quantum correlations that cannot be realised by
any local/non-contextual ontological model for which the
wavefunction is ontic

Proof (outline): there exists a function Ψ : Λ → H, specifying the
wavefunction associated with each ontic state. For any λ ∈ Ψ−1 (|ψ〉),

(fÂ(λ)) (o1) = h(o1|Â, λ) = |〈v1|ψ〉|2 > 0,

and similarly (fÂ(λ)) (o2) > 0

Theorem

Quantum mechanics is not realisable by any preparation
independent, local/non-contextual ontological theory



Summary

Alternative definition

More general
Avoids measure-theoretic issues
Simple

A first application: observable properties

Novel characterisation of non-locality/contextuality
Makes contact with sheaf-theoretic approach

Weak Bell theorem

A non-locality/contextuality test?
Question strength of preparation independence?
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