On the Reality of Observable Properties

Shane Mansfield

SamsonFest May 29, 2013

Background: A Criterion for 'Reality' of the Wavefunction

Harrigan & Spekkens (2010):

Propose a mathematical distinction between *ontic* and *epistmic* interpretations of the wavefunction

Pusey, Barrett & Rudolph (2012):

Prove no-go result based on this

Ontic

Corresponds directly to reality

Epistemic

Corresponds to our state of knowledge about reality

Overview

- \bullet Alternative definition for ontic/epistemic
 - Agrees with Harrigan & Spekkens

But:

- More general
- Avoids measure-theoretic issues
- Simple
- Application: observable properties
 - $\bullet\,$ Novel characterisation of $\mathit{non-locality/contextuality}$
 - A weak Bell theorem

Harrigan-Spekkens Definition for the Wavefunction

- Assume a space Λ of *ontic states*
- Each $|\psi\rangle$ induces a probability distribution $\mu_{|\psi\rangle}$ over Λ
- Ontic if $\forall |\psi\rangle \neq |\phi\rangle$. $\mu_{|\psi\rangle}, \mu_{|\phi\rangle}$ have non-overlapping supports
- Otherwise *epistemic*

Roughly

- Ontic properties are generated by functions $\hat{f}:\Lambda \to \mathcal{V}$
- Epistemic properties are inherently probabilistic

Carefully

A \mathcal{V} -valued property over Λ is a function $f : \Lambda \to \mathcal{D}(\mathcal{V})$, where $\mathcal{D}(\mathcal{V})$ is the set of probability distributions over \mathcal{V} .

- The property is *ontic* if $f(\lambda)$ is a delta function for all $\lambda \in \Lambda$.
- Otherwise it is *epistemic*.

Relating Definitions

A property f gives probability distributions over \mathcal{V} conditioned on Λ . We can simply use Bayes' theorem

$$p(\lambda|v) = \frac{p(v|\lambda) \cdot p(\lambda)}{p(v)}$$

to obtain probability distributions over Λ conditioned on $\mathcal V.$ Explicitly,

$$\mu_v(\lambda) := \frac{(f(\lambda))(v) \cdot p(\lambda)}{\int_{\Lambda} (f(\lambda'))(v) \cdot p(\lambda) \, d\lambda'}.$$

For finite Λ , we set $p(\lambda)$ to be uniform on Λ .

Proposition

A \mathcal{V} -valued property over finite Λ is ontic (present definition) *iff* the distributions $\{\mu_v\}_{v\in\mathcal{V}}$ have non-overlapping supports (Harrigan-Spekkens definition)

We assume spaces:

Λ	ontic states
P M O $\mathcal{M} \subseteq \mathcal{P}(M)$	preparations measurements outcomes contexts

An ontological model h over Λ specifies:

- **(**) A distribution $h(\lambda|p)$ over Λ for each preparation $p \in P$;
- **2** For each $\lambda \in \Lambda$ and set of compatible measurements $\overline{m} \in \mathcal{M}$, a distribution $h(\overline{o}|\overline{m},\lambda)$ over functional assignments $\overline{o}: \overline{m} \to O$ of outcomes to these measurements.

The operational probabilities are then prescribed by

$$h(\overline{o}|\overline{m},p) = \int_{\Lambda} d\lambda \ h(\overline{o}|\overline{m},\lambda) \ h(\lambda|p)$$

Ontological Models

 λ -independence (free will)

 $h(\lambda|p),$ not $h(\lambda|\overline{m},p)$

Determinism

 $\forall \overline{m} \in \mathcal{M}, \lambda \in \Lambda. \exists \overline{o} \in \mathcal{E}(\overline{m}) \text{ such that } h(\overline{o}|\overline{m}, \lambda) = 1$

Parameter Independence

 $\forall o\in O,\overline{m}\in\mathcal{M},\lambda\in\Lambda$ the marginal probabilities $h(o|m,\lambda)$ are well-defined

Local Realism

Conjunction of the above

The observable properties of an ontological model h over Λ are the O-valued properties $f_m : \Lambda \to \mathcal{D}(O)$ given by

 $\left(f_m(\lambda)\right)(o) := h(o|m,\lambda)$

for each $m \in X$ such that the marginal $h(o|m, \lambda)$ is well-defined

Theorem

A model is local/non-contextual *iff* all measurements are of ontic observable properties

We can use this as a route to a number of results:

- Canonical form for local models
- EPR argument
- Weak Bell theorem

Theorem

Local realistic ontological models can be expressed in a canonical form, with an ontic state space $\Omega := \mathcal{E}(X)$, and probabilities

$$h(\overline{o}|\overline{m},\omega) = \prod_{m\in\overline{m}} \,\delta\left(\omega(m),\overline{o}(m)\right)$$

for all $\overline{m} \in \mathcal{M}, \, \overline{o} \in \mathcal{E}(\overline{m}), \, \text{and} \, \omega \in \Omega$

Use canonical transformation $\{f_m : \Lambda \to \mathcal{O}\}_{m \in X} \longrightarrow \{\omega_\lambda : X \to O\}_{\lambda \in \Lambda}$

- The quantum wavefunction itself is taken to be the ontic state
- A preparation produces a density matrix (a distribution on the projective Hilbert space)
- By construction, operational probabilities agree with Born Rule

Proposition

Any non-trivial quantum mechanical observable is epistemic with respect to $\psi\text{-complete quantum mechanics}$

PROOF (OUTLINE): Take some $\hat{A} \neq \mathbb{1}$ and any $|\psi\rangle$ that's not an eigenvector. Then $(f_{\hat{A}}(\lambda))(o_1) = h(o_1|\hat{A}, \lambda) = |\langle v_1|\psi\rangle|^2 > 0$, and similarly $(f_{\hat{A}}(\lambda))(o_2) > 0$

Corollary (EPR)

Assuming locality/non-contextuality, quantum mechanics cannot be $\psi\text{-complete}$

Theorem

There exist quantum correlations that cannot be realised by any local/non-contextual ontological model for which the wavefunction is ontic

PROOF (OUTLINE): there exists a function $\Psi : \Lambda \to \mathcal{H}$, specifying the wavefunction associated with each ontic state. For any $\lambda \in \Psi^{-1}(|\psi\rangle)$,

$$(f_{\hat{A}}(\lambda))(o_1) = h(o_1|\hat{A},\lambda) = |\langle v_1|\psi\rangle|^2 > 0,$$

and similarly $(f_{\hat{A}}(\lambda))(o_2) > 0$

Theorem

Quantum mechanics is not realisable by any preparation independent, local/non-contextual ontological theory

- Alternative definition
 - More general
 - Avoids measure-theoretic issues
 - Simple
- A first application: observable properties
 - $\bullet\,$ Novel characterisation of $\mathit{non-locality/contextuality}$
 - Makes contact with sheaf-theoretic approach
- Weak Bell theorem
 - A non-locality/contextuality test?
 - Question strength of *preparation independence*?

Rui at Rue Samson (Post-release) Photo credit: Nadish