Dialogue categories and Frobenius monoids

Paul-André Melliès

CNRS & Université Paris Diderot

SamsonFest Oxford 28 May 2013

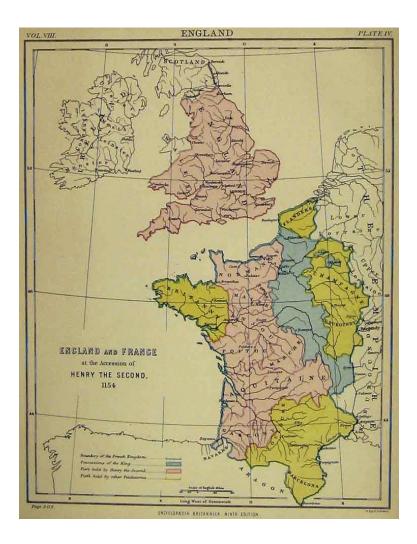
Two [academic] lifes entangled



Dialogue games

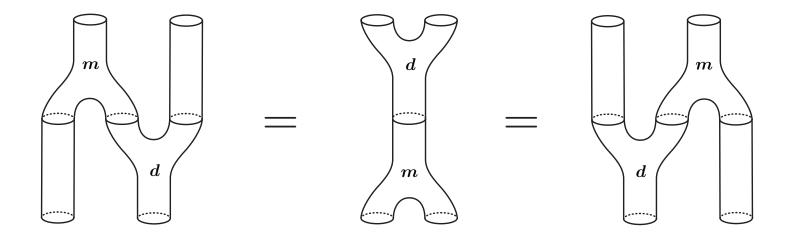
Frobenius algebras

Living on both sides of the Channel



The Australian connection

A Frobenius monoid *F* is a monoid and a comonoid satisfying



A deep relationship with *-autonomous categories discovered by Brian Day and Ross Street.

Original purpose of tensorial logic

To provide a clear type-theoretic foundation to game semantics

Propositions as types \Leftrightarrow Propositions as games

based on the idea that

game semantics is a diagrammatic syntax of continuations

Continuations

Captures the difference between addition as a function

 $nat \times nat \Rightarrow nat$

and addition as a sequential algorithm

 $(nat \Rightarrow \bot) \Rightarrow \bot \times (nat \Rightarrow \bot) \Rightarrow \bot \times (nat \Rightarrow \bot) \Rightarrow \bot$

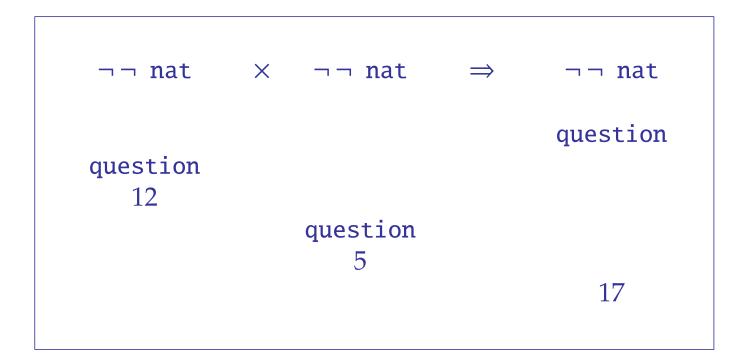
This enables to distinguish the left-to-right implementation

lradd = $\lambda \varphi$. $\lambda \psi$. $\lambda k. \varphi (\lambda x. \psi (\lambda y. k (x + y)))$

from the right-to-left implementation

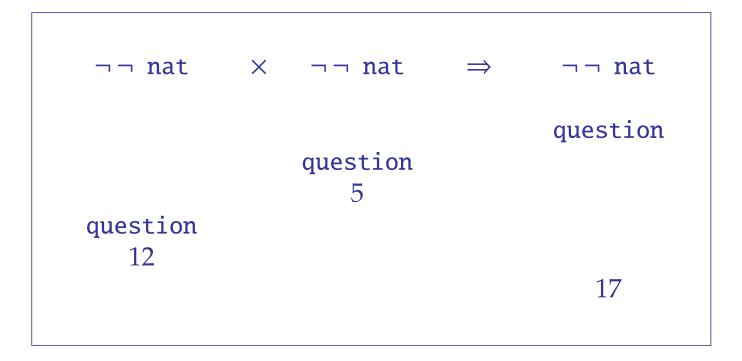
rladd = $\lambda \varphi. \lambda \psi. \lambda k. \psi (\lambda y. \varphi (\lambda x. k (x + y)))$

The left-to-right addition



lradd = $\lambda \varphi. \lambda \psi. \lambda k. \varphi (\lambda x. \psi (\lambda y. k (x + y)))$

The right-to-left addition



rladd = $\lambda \varphi. \lambda \psi. \lambda k. \psi (\lambda y. \varphi (\lambda x. k (x + y)))$

Tensorial logic

tensorial logic = a logic of tensor and negation

- = linear logic without $A \cong \neg \neg A$
- = the syntax of linear continuations
- = the syntax of dialogue games

A synthesis between linear logic and game semantics

Tensorial logic

▷ Every sequent of the logic is of the form:

$$A_1, \cdots, A_n \vdash B$$

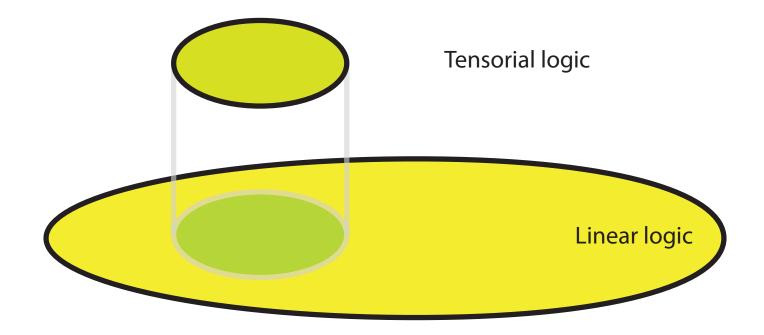
▷ Main rules of the logic:

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \qquad \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C}$$

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \qquad \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash \bot}$$

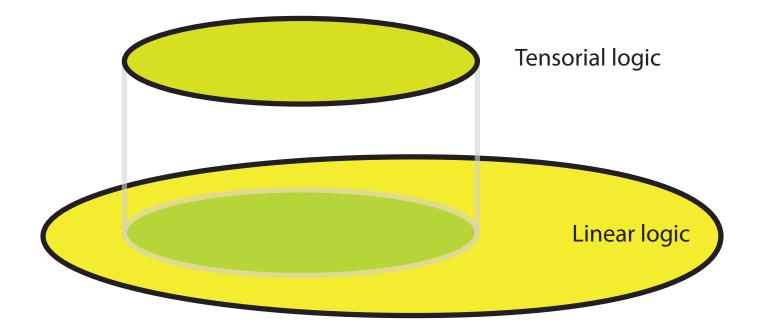
The primitive kernel of logic

A different way to think of polarities



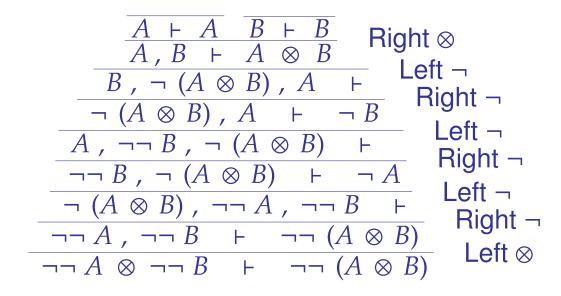
Motto: linear logic is a depolarized tensorial logic

A different way to think of polarities



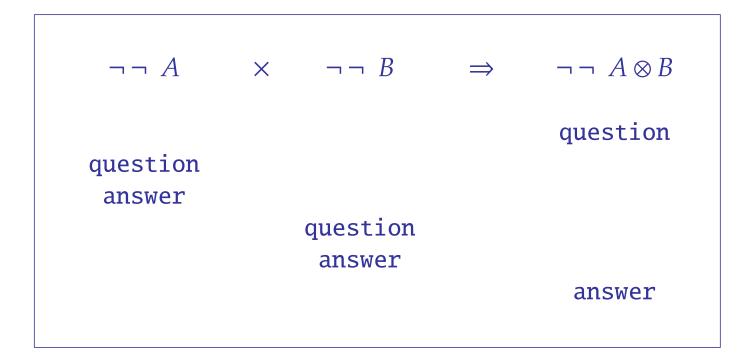
Motto: linear logic is a depolarized tensorial logic

The left-to-right scheduler



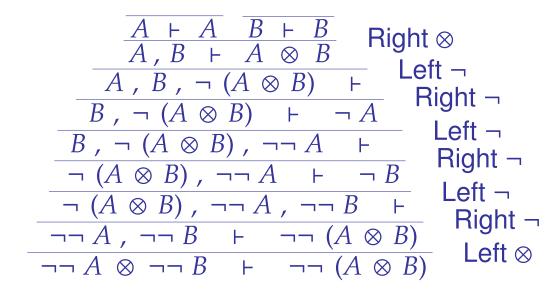
lrsched = $\lambda \varphi. \lambda \psi. \lambda k. \varphi (\lambda x. \psi (\lambda y. k(x, y)))$

The left-to-right scheduler



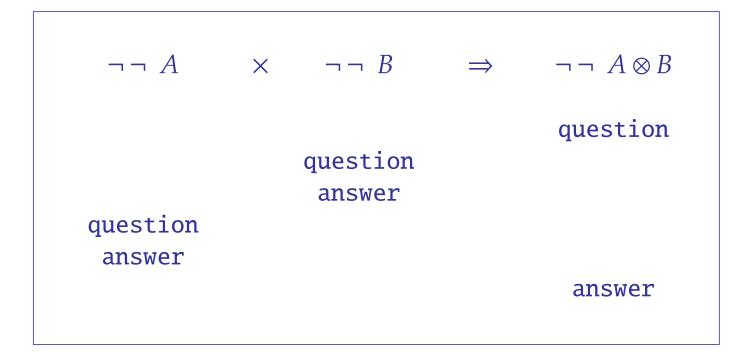
lrsched = $\lambda \varphi. \lambda \psi. \lambda k. \varphi (\lambda x. \psi (\lambda y. k(x, y)))$

The right-to-left scheduler



rlsched = $\lambda \varphi. \lambda \psi. \lambda k. \psi (\lambda y. \varphi (\lambda x. k(x, y)))$

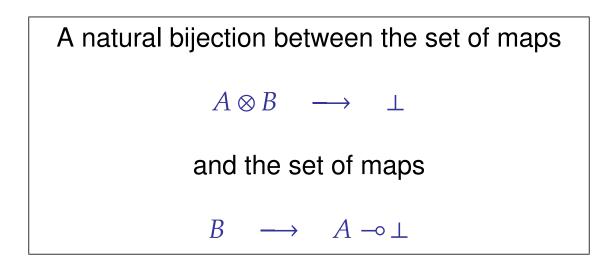
The right-to-left scheduler



rlsched = $\lambda \varphi. \lambda \psi. \lambda k. \psi (\lambda y. \varphi (\lambda x. k(x, y)))$

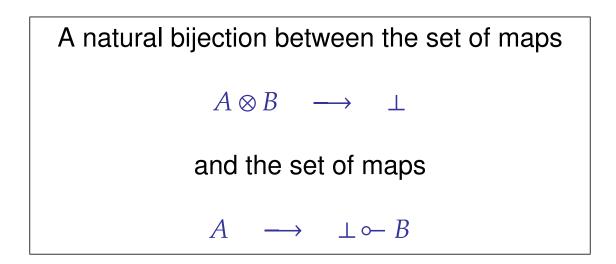
A functorial bridge between proofs and knots

A monoidal category with a left duality



A familiar situation in tensorial algebra

A monoidal category with a right duality



A familiar situation in tensorial algebra

Definition. A dialogue category is a monoidal category \mathscr{C} equipped with

 \triangleright an object \bot

▷ two natural bijections

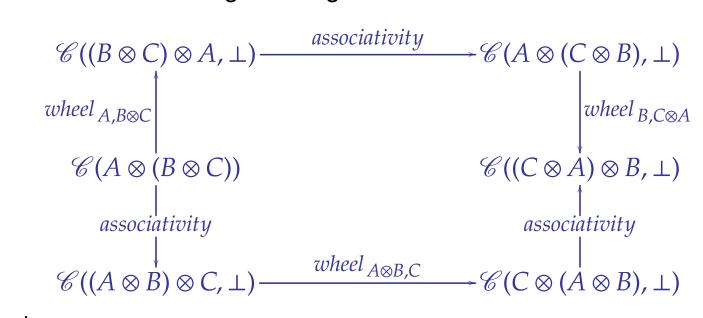
$$\begin{split} \varphi_{A,B} &: & \mathscr{C}(A \otimes B, \bot) & \longrightarrow & \mathscr{C}(B, A \multimap \bot) \\ \psi_{A,B} &: & \mathscr{C}(A \otimes B, \bot) & \longrightarrow & \mathscr{C}(A, \bot \multimap B) \end{split}$$

Helical dialogue categories

A dialogue category equipped with a family of bijections

wheel $_{A,B}$: $\mathscr{C}(A \otimes B, \bot) \longrightarrow \mathscr{C}(B \otimes A, \bot)$

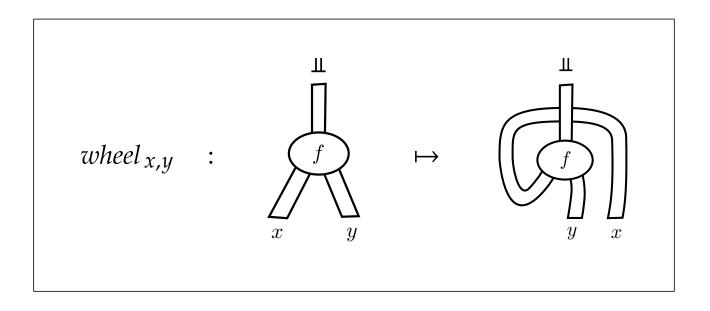
natural in A and B making the diagram



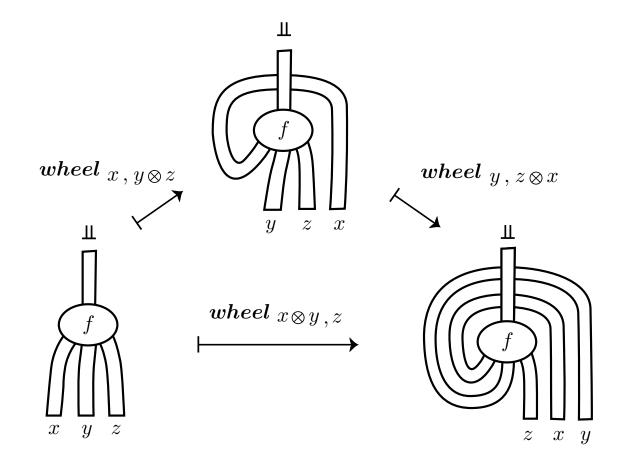
commutes.

Helical dialogue categories

The wheel should be understood diagrammatically as:



The coherence diagram

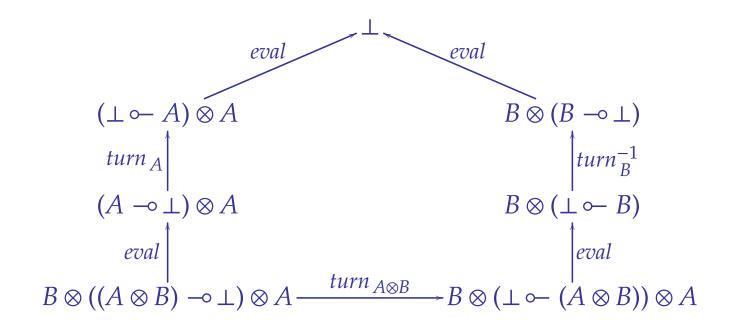


An equivalent formulation

A dialogue category equipped with a natural isomorphism

 $turn_A : A \multimap \bot \longrightarrow \bot \multimap A$

making the diagram below commute:



The free dialogue category

The objects of the category $free-dialogue(\mathscr{C})$ are the formulas of tensorial logic:

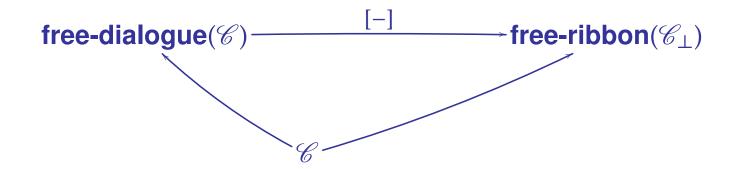
 $A,B ::= X | A \otimes B | A \multimap \bot | \bot \multimap A | 1$

where X is an object of the category \mathscr{C} .

The morphisms are the **proofs** of the logic modulo equality.

A proof-as-tangle theorem

Every category % of atomic formulas induces a functor [-] such that



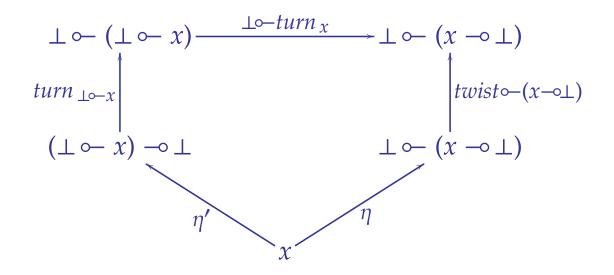
where \mathscr{C}_{\perp} is the category \mathscr{C} extended with an object \perp .

Theorem. The functor [-] is faithful.

 \rightarrow a topological foundation for game semantics

An illustration

Imagine that we want to check that the diagram



commutes in every balanced dialogue category.

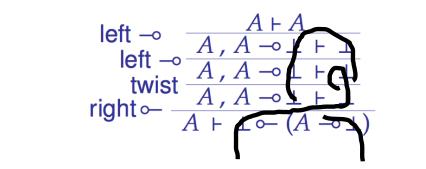
An illustration

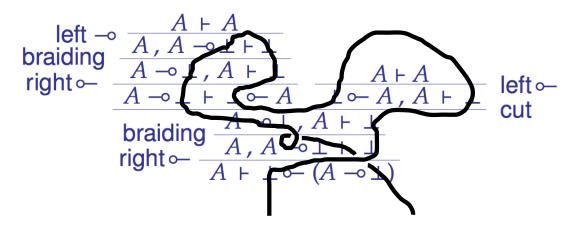
Equivalently, we want to check that the two derivation trees are equal:

$$\begin{array}{c} \operatorname{left} \multimap & \frac{A \vdash A}{A, A \multimap \bot \vdash \bot} \\ \operatorname{left} \multimap & \frac{A, A \multimap \bot \vdash \bot}{A, A \multimap \bot \vdash \bot} \\ \operatorname{twist} & \frac{A, A \multimap \bot \vdash \bot}{A, A \multimap \bot \vdash \bot} \\ \operatorname{right} \multimap & \frac{A \vdash A}{A \vdash \bot \multimap (A \multimap \bot)} \end{array}$$

$$\begin{array}{c} \operatorname{left} \multimap & \frac{A \vdash A}{A, A \multimap \bot \vdash \bot} \\ \operatorname{braiding}_{\mathsf{right}} \multimap & \frac{A \vdash A}{A, A \multimap \bot \vdash \bot} \\ \hline A \multimap \bot \vdash \bot \multimap A \\ \hline A \multimap \bot \vdash \bot \multimap A \\ \hline \Box \multimap A, A \vdash \bot \\ \hline \Box \multimap A, A \vdash \bot \\ \operatorname{braiding} \\ \hline A, A \multimap \bot \vdash \bot \\ \hline A, A \multimap \bot \vdash \bot \\ \hline A \vdash \bot \multimap (A \multimap \bot) \\ \end{array} \begin{array}{c} \operatorname{left} \multimap \\ \operatorname{cut} \\ \operatorname{cut} \\ \operatorname{cut} \\ \end{array}$$

An illustration



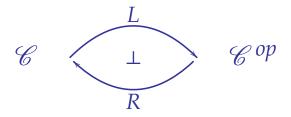


equality of proofs \iff equality of tangles

A symmetric account of dialogue categories

The self-adjunction of negations

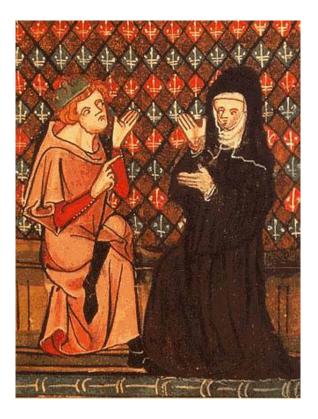
Negation defines a pair of adjoint functors



witnessed by the series of bijection:

 $\mathscr{C}(A, \neg B) \cong \mathscr{C}(B, \neg A) \cong \mathscr{C}^{op}(\neg A, B)$

The symmetry of logic



Eloise speaks to Abelard who speaks to Eloise who speaks to...

From categories to chiralities

This leads to a slightly bizarre idea:

decorrelate the category \mathscr{C} from its opposite category \mathscr{C}^{op}

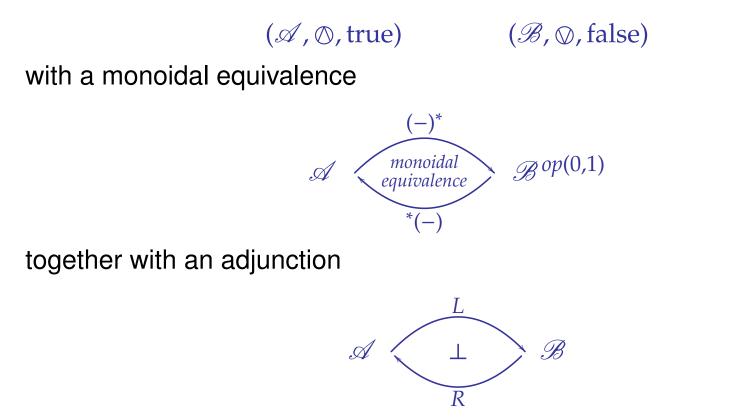
So, let us define a **chirality** as a pair of categories $(\mathscr{A}, \mathscr{B})$ such that

 $\mathscr{A} \cong \mathscr{C} \qquad \mathscr{B} \cong \mathscr{C}^{op}$

for some category \mathscr{C} .

Here \cong means **equivalence** of category

A dialogue chirality is a pair of monoidal categories



and two natural bijections

$$\chi^{L}_{m,a,b} : \langle m \otimes a | b \rangle \longrightarrow \langle a | m^{*} \otimes b \rangle$$
$$\chi^{R}_{m,a,b} : \langle a \otimes m | b \rangle \longrightarrow \langle a | b \otimes m^{*} \rangle$$

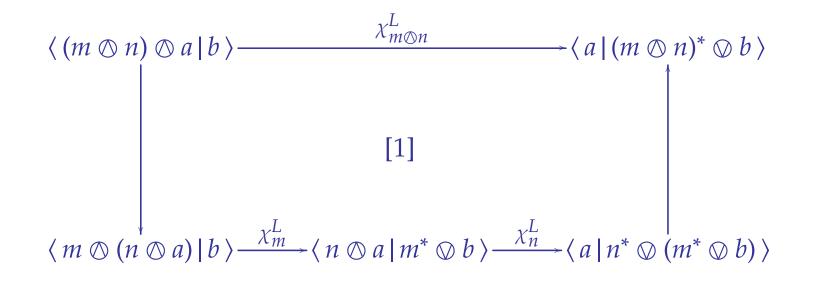
where the evaluation bracket

$$\langle -|-\rangle : \mathscr{A}^{op} \times \mathscr{B} \longrightarrow Set$$

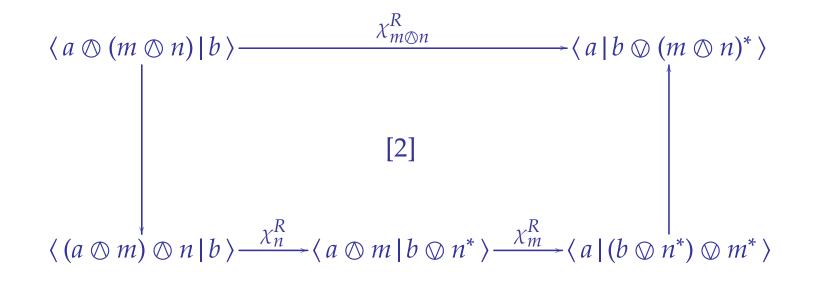
is defined as

$$\langle a | b \rangle := \mathscr{A}(a, Rb)$$

These are required to make the diagrams commute:



Dialogue chiralities



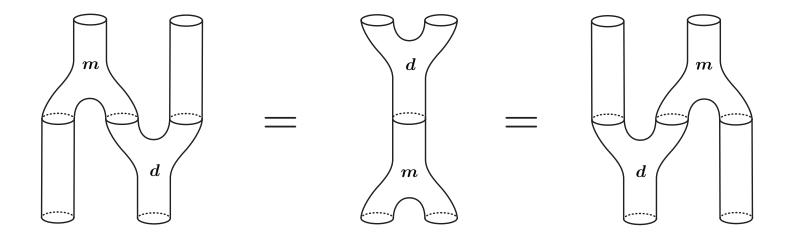
Dialogue chiralities

Chiralities as Frobenius monoids

A bialgebraic account of dialogue categories

Frobenius monoids

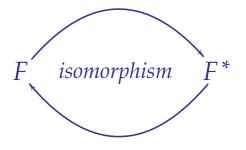
A Frobenius monoid *F* is a monoid and a comonoid satisfying



A deep relationship with *-autonomous categories discovered by Brian Day and Ross Street.

Frobenius monoids are self-dual

An isomorphism between the Frobenius monoid F and its dual F^*



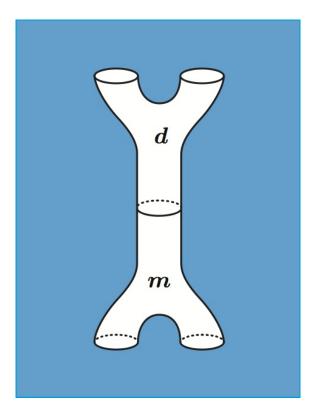
induced by a non-degenerate 2-form

$$\langle -, - \rangle : F \otimes F \longrightarrow I$$

satisfying the equality:

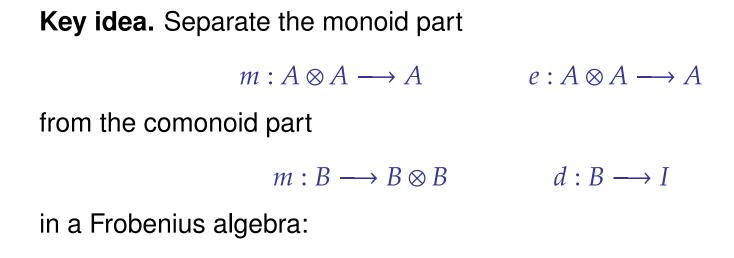
$$\langle x \cdot y, z \rangle = \langle x, y \cdot z \rangle$$

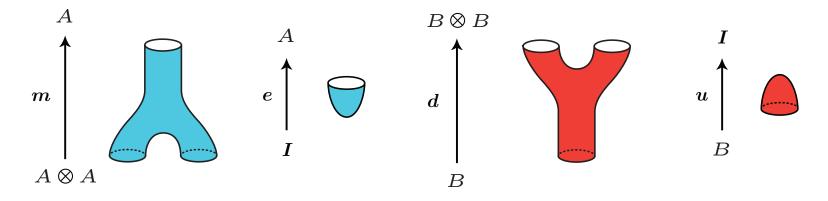
The symmetry of Frobenius algebras



Monoid speaks to comonoid who speaks to monoid who speaks to...

A symmetric presentation of Frobenius algebras





43

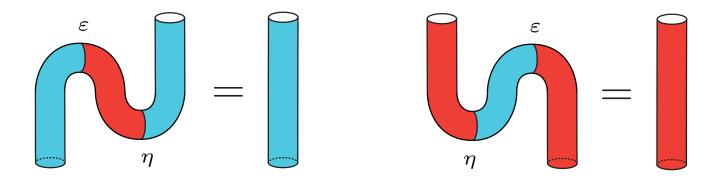
A symmetric presentation of Frobenius algebras

Then, relate A and B by a dual pair

 $\eta : I \longrightarrow B \otimes A$

 $\varepsilon : A \otimes B \longrightarrow I$

in the sense that:

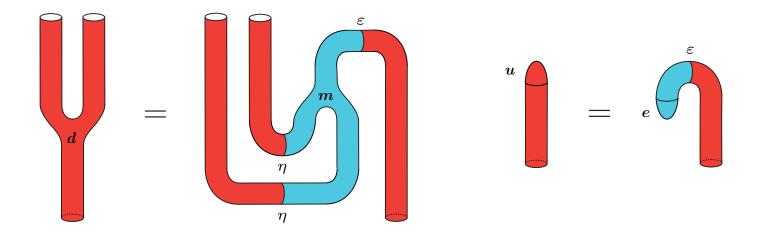


A symmetric presentation of Frobenius algebras

Require moreover that the dual pair

 $(A, m, e) \dashv (B, d, u)$

relates the algebra structure to the coalgebra structure, in the sense that:

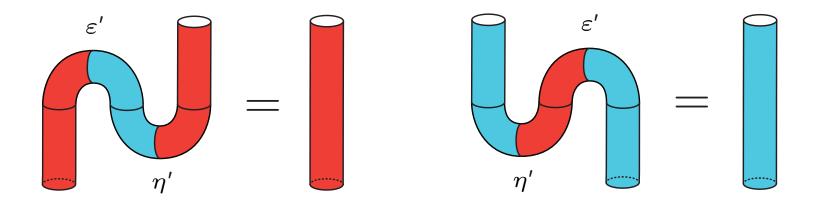


Symmetrically

Relate *B* and *A* by a dual pair

 $\eta' : I \longrightarrow B \otimes A \qquad \varepsilon' : A \otimes B \longrightarrow I$

this meaning that the equations below hold:

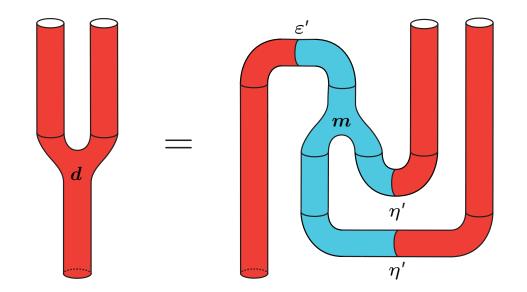


Symmetrically

and ask that the dual pair

 $A \dashv B$

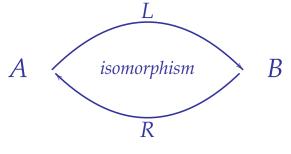
relates the coalgebra structure to the algebra structure, in the sense that:



An alternative formulation

Key observation:

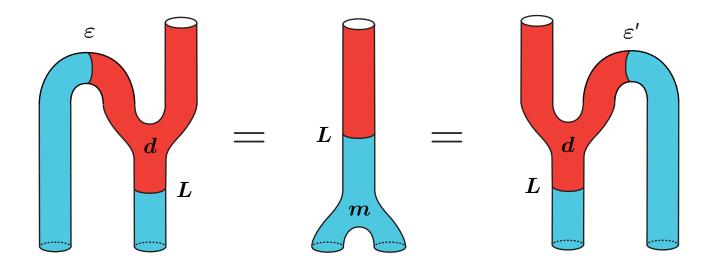
A Frobenius monoid is the same thing as such a pair (A, B) equipped with



between the underlying spaces A and B and...

Frobenius monoids

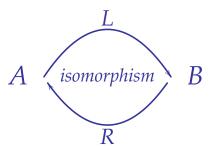
... satisfying the two equalities below:



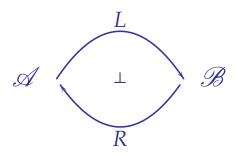
Reminiscent of currification in the λ -calculus...

Not far from the connection, but...

Idea: the « self-duality » of Frobenius monoids



is replaced by an **adjunction** in dialogue chiralities:



Key objection: the category $\mathscr{B} \cong \mathscr{A}^{op}$ is not <u>dual</u> to the category \mathscr{A} .

Categorical bimodules

A bimodule

 $M : \mathscr{A} \longrightarrow \mathscr{B}$

between categories \mathscr{A} and \mathscr{B} is defined as a functor

 $M : \mathscr{A}^{op} \times \mathscr{B} \longrightarrow \mathsf{Set}$

Composition of two bimodules

$$\mathscr{A} \xrightarrow{M} \mathscr{B} \xrightarrow{N} \mathscr{C}$$

is defined by the coend formula:

$$M \circledast N$$
 : $(a, c) \mapsto \int^{b \in \mathscr{B}} M(a, b) \times N(b, c)$

A well-known 2-categorical miracle

Fact. Every category \mathscr{C} comes with a biexact pairing

 $\mathcal{C} \rightarrow \mathcal{C}^{op}$

defined as the bimodule

hom : $(x, y) \mapsto \mathscr{A}(x, y) : \mathscr{C}^{op} \times \mathscr{C} \longrightarrow$ **Set**

in the bicategory **BiMod** of categorical bimodules.

The opposite category \mathscr{C}^{op} becomes <u>dual</u> to the category \mathscr{C}

52

Biexact pairing

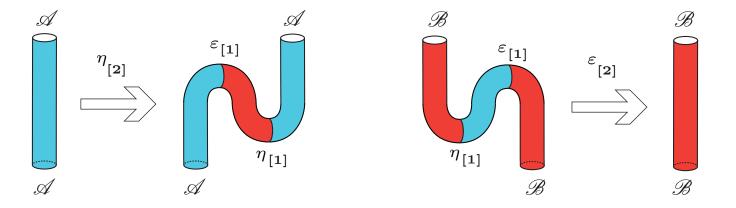
Definition. A biexact pairing

 $\mathcal{A} \dashv \mathcal{B}$

in a monoidal bicategory is a pair of 1-dimensional cells

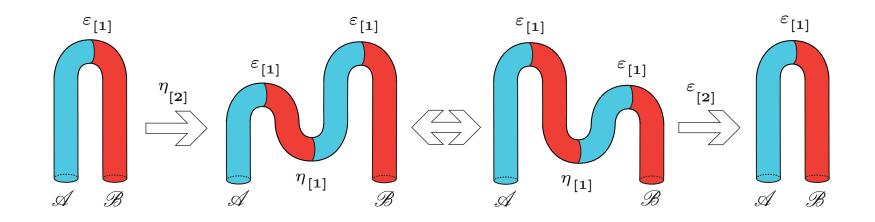
 $\eta_{[1]}: \mathscr{A} \otimes \mathscr{B} \longrightarrow I \qquad \qquad \varepsilon_{[1]}: I \longrightarrow \mathscr{B} \otimes \mathscr{A}$

together with a pair of invertible 2-dimensional cells



Biexact pairing

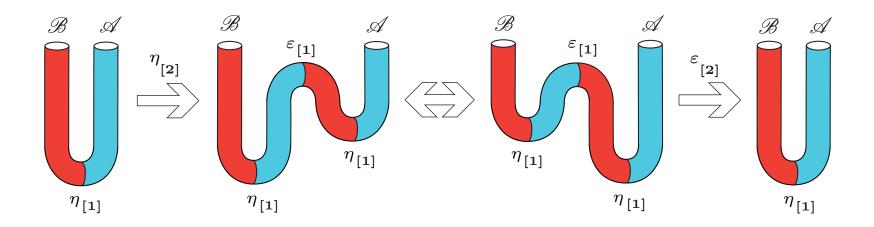
such that the composite 2-dimensional cell



coincides with the identity on the 1-dimensional cell $\mathcal{E}_{[1]}$,

Biexact pairing

and symmetrically, such that the composite 2-dimensional cell



coincides with the identity on the 1-dimensional cell $\eta_{[1]}$.

Amphimonoid

In any symmetric monoidal bicategory like **BiMod**...

Definition. An amphimonoid is a pseudomonoid

 $(\mathscr{A}, \otimes, \text{true})$

and a pseudocomonoid

 $(\mathcal{B}, \otimes, \text{false})$

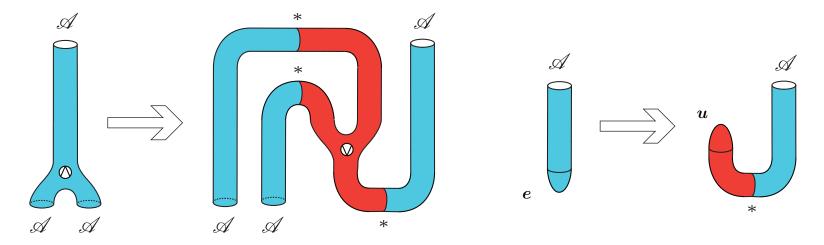
equipped with a biexact pairing

 $\mathcal{A} \dashv \mathcal{B}$

Bialgebraic counterpart to the notion of chirality

Amphimonoid

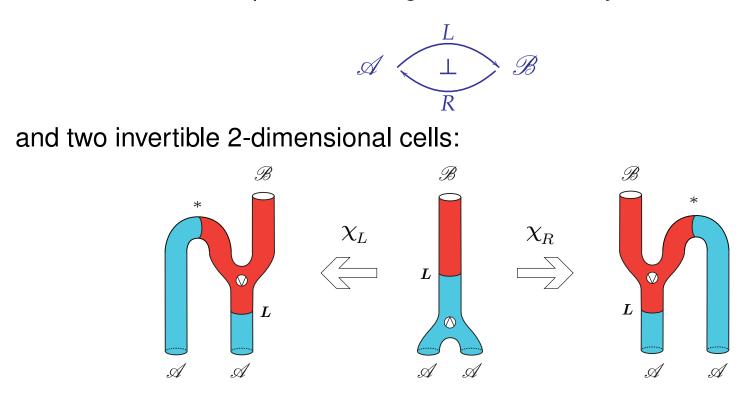
together with a pair of invertible 2-dimensional cells



defining a pseudomonoid equivalence.

Bialgebraic counterpart to the notion of monoidal chirality

Definition. An amphimonoid together with an adjunction



Bialgebraic counterpart to the notion of dialogue chirality

The 1-dimensional cell

 $L : \mathscr{A} \to \mathscr{B}$

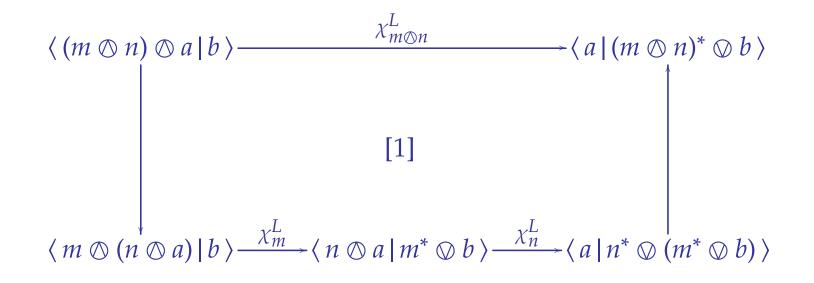
may be understood as defining a bracket

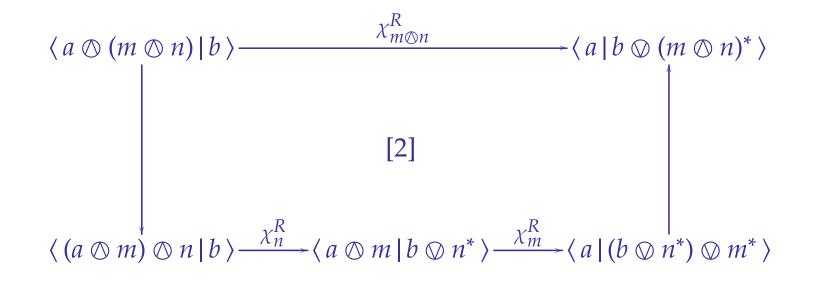
 $\langle a | b \rangle$

between the objects \mathscr{A} and \mathscr{B} of the bicategory \mathscr{V} .

Each side of the equation implements currification:

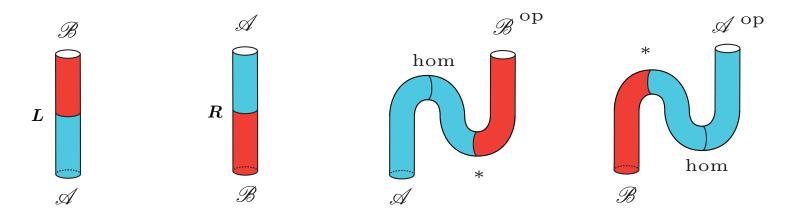
 $\chi_L: \langle a_1 \otimes a_2 | b \rangle \Rightarrow \langle a_2 | a_1^* \otimes b \rangle \qquad \chi_R: \langle a_1 \otimes a_2 | b \rangle \Rightarrow \langle a_1 | b \otimes a_2^* \rangle$





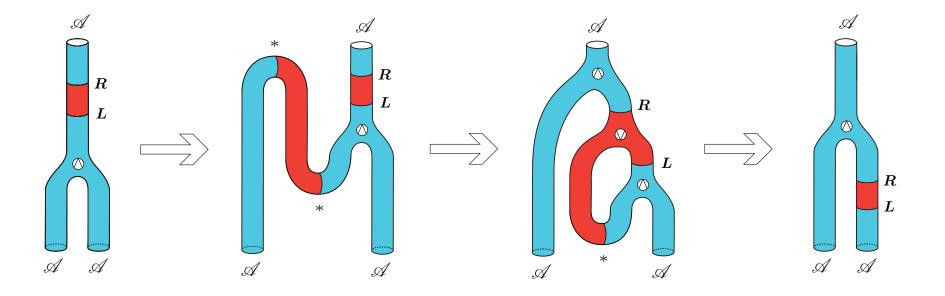
Correspondence theorem

Theorem. A helical chirality is the same thing as a Frobenius amphimonoid in the bicategory **BiMod** whose 1-dimensional cells



are representable, that is, induced by functors.

Tensorial strength formulated in cobordism



 $a_1 \otimes RL(a_2) \vdash RL(a_1 \otimes a_2)$

 $\mathcal{A}(RL(a_1 \otimes a_2), a) \longrightarrow \mathcal{A}(a_1 \otimes RL(a_2), a)$

Thank you !