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London 1994: Semantics of Computation

Interaction Categories and the Foundations of
Typed Concurrent Programming

Sammon Abeamsky, Simon Gay avd Rajagopsl Nagarajan

1.1  Semantic Paradigms

Denotational Semantics The most influential and longest established of current par
adigms for the semantics of computation is denotational semantics. It is this paradigm
which best approximates by far to the ideal of a mathematical theory of computation in
the sense of McCarthy [45] or Scott [54].

The criticism we wish to lodge is one of scope. Despite its pretensions to universality,
denotational semantics has an inherent bias towards a particular computational paradigm,
that of functional computation. By this we mean, not only functional programming lan-
guages, but that whole sphere of computation in which the behaviour of the program is
adeanatelv abstracted as the comnntation of a function. This view of nroerams as fane-
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Process Calculi A different family of semantic paradigms has been developed for re-
active systems. The most notable of these is the process caleulus paradigm, pioneered
by Milner and Hoare, and exemplified by CCS [49] and CSP [32]. The great achieve-
ment of this paradigm over the past 15 years has been ta develop an algebraic theory
of concurrency. as a basis for structural methods of description of concurrent systems.
The major limitation is that no canonical theory or calenlus for concurrency has emerged;
there is a veritable Babel of formalisms, combinators, equivalences. This may suggest that
the current methodologies for concurrency are insufficiently constrained, or perhaps that

some kev ideas are still missine. Some secondarv. hnt also sienificant limitations of the
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Calculi vs. Semantic Universes At this point it will be useful to contrast the method-

ology implicit in presenting theories of concurrency as formal “process caleuli”, with that Claim
in which one presents a “semantic universe” in the form of a categorical model. The for-
mal calculus approach starts from a set of combinators generating a syntax: then one may
define a structured operational semantics or a model, various notions of equivalence, etc,

The weakness of this methodology is in the very first step; why this set of combinators
rather than any otherl If in fact a consensus had been reached that some calculus was
canonical for concurrency in the same way and for the same kind of reasons that A-calculus
enjoys this status for functional computation, then this would not have been a problem.
History has turned out otherwise, and should caution us to beware of availing ourselves
tao readily of the seductive freedoms of BNF.

In the categorical semantic approach, we define

s “objects” (types) A, B. ('
o “morphisms” (programs) f: 4 — B

e composition
f:A—B g:B—=C

fi9:A=C
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1.2 The Interaction Category Paradigm

We propose Interaction Categories as a new paradigm for the semantics of computation.
In place of sets, functions, and function composition, an Interaction Category is a semantic

universe where
o Types are process specifications A, B, ('
o Morphisms are processes p: A — B

s Composition is interaction
p:A—B g:B—=C

pig:A—=C



Sta Maria 1997: Co:)ciptslin.time
Category Theory in Computer Science e

Specifying Interaction Categories _

Question 2

D. Pavlovi¢*! and S. Abramsky? Claim

P{CRIW < ¥oa' € AGF € B. (aR3Aa'RE') = (aPo’ = 0F"). (17)

The total category Rel® will he the familiar category Coh of coherence spaces
[14]. By imposing on each set of traces § C A* (or on labelled trees, or transition
systems) the coherence requirement

sa,sa' € § = ada’ (18]

for all & # o' € A, all previously described specifications lift to Coh, and yield
interaction categories with a grain of true concurrency. It is interesting to notice
that already the synchronous ones can be specified in many different, meaningful
ways.

Coh sC Proc
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Composition and Refinement of Behavioral Specifications

Dusko Pavlovic and Douglas R. Smith
Kestrel Institute
3260 Hillview Avenue
Palo Alto, California 94304 USA

Abstract

This paper presents a mechanizable framework for
specifying, developing, and reasoning about complex
systems. The framework combines features from alge-
braic specifications, abstract state machines, and re-
finement calculus, all couched in a categorical setting,
In particular, we show how to extend algebraic spec-
ifications to evolving specifications (especs) in such a
way that composition and refinement operations ex-
tend to capture the dynamics of evolving. adaptive,
and self-adaptive software development. while remain-
ing efficiently computable. The framework is partially
implemented in the Epoxi system.

1 TIntroduction

system.

Especs grew out of higher-order algebraic specifi-
cations as implemented in Specware [11), the evolv-
ing algebras of Gurevich (aka abstract state machines)
[4], as well as the classical axiomatic semantics of
Floyd/Hoare/Dijkstra. Especs go beyond all three, not
only allowing the capture of logical structure and be-
havior. but also the composition of systems and their
refinement to code. Of course the composition and
refinement operations are meaning-preserving, so that
any code produced by means of composition and re-
finement is guaranteed to be consistent with the initial
especs.

The paper is structured straightforwardly. We first
discuss how to extend logical specifications to model
behavior. and then define especs and how to refine
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espec GCD-0 is
import GCD-base

spec ;; the spec extends the spec from GCD-base with a theorem
thm ged(x,x) = x ;; this theorem follows from axiom gcd-spec
end-spec
prog ;; the keyword prog encloses the state machine
stad One init[X-in,Y-in] is ;; the initial state receives X-in and Y-in
end-stad
stad Two fin[Z] is ;i this stad extends the global spec with a local axiom
axiom Z = ged(X-in,Y-in)
end-stad
step Out : One -> Twe is ;3 transition from stad One to stad Two
Z |-> ged(X-in,Y-in)
end-step
end-prog
end-espec

Note that the steps are expressed in terms of symbol
translations. Because of the connection between trans-
lations and transitions, we will henceforth use assign-
ments instead; i.e. write x := e instead of x |-> e.

axiom Z = ged(X-in,Y-in)
end-stad

step initialize : One -> Loop is
X = ¥-in

Q ion 2
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3 Especs

The concept of espec is now formally defined.

Definition 3.1 A graph s consists of two sets edge,
and node,, and two functions, dom, and cod, from
edge, to node,.

A shape is a graph s, which is moreover

stad assigns to each shape-node n a state de-
seription stad(n), which comes with a translation
sta(n) : spec, — stad(n):

e step assigns to each shape-edge u :m — n a step
(or transition) step(u) : stad(m) « stad(n). keep-
ing S invariant, in the sense that the following
diagram commutes.

spec
o reflezive, in the sense that there is a function 4
e > ey st{m) st(n)
idy : node, — edge,, which assigns a distin- / \
quished loop to each node;
stad(m) <———  stad(n)
step(u)

o distinguished initial node i, and a set O of final
nodes o;

Together with the morphisms preserving all displayed
structure, shapes form the category Shape.

Definition 3.2 An evolving spec, or espec A con-
sists of

T |

4 Refinements

We now define the concept of a refinement (or mor-
phism) between two especs. A characteristic of espec
refinements is that logical structure and behavior re-
fine contravariantly, in opposite directions. If A refines

Claim
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spec, and specg to their extensions stad, and stadg.

_ ! condition is also straightforward; c.g. for step Loop1 in
Just like specy refines spec 4 because it proves all for- k b ¥ v

Claim

mulas in the image fspec[spec ], each stads(n) refines
stad A ( fenape(n2)) because it proves all formulas in the
image feag(n)[stad.s( fonape(n2))]. The structural refine-
ment is thus extended from fi.. : specy — specy
t0 foag @ Stads — stadg. Its naturality ensures that
each transition stepy(v) of B extends the transition
Step (unapel)) Of A.

The guard condition ensures that every behavior of
B maps to a behavior of A. There are stronger versions
of the guard condition that also ensure that B simu-
lates all of A’s behaviors, and others that eliminate
nondeterminism. Rather than commit to one such def-
inition, we use several, but the gnard condition above
is sufficient for the purposes of this paper

Let us return to the example in Section 2. In the
refinement from GCD-0 to GCD-1, fiec is a simple in-
clusion, and fihape is given by the stad map

One +— One

Loop +—  One
Two +— Two

GCD-1. the guard condition instant;
Loop - X >Y = true

where the consequent is the guard on step idoye in
GCD-0.

5 Colimits

Composition of especs is carried out by the colimit op-
eration. Colimits in ESpec are constructed from the
colimits in Spec, the limits in Shape, plus some wiring
to connect them in Cat. First of all. recall that all
colimits can be derived from the initial object and the
pushouts. Of course, the initial espec consists of the
empty spec, and a one-state-one-step program (with
the state represented by the empty spec).

To describe the pushout of especs, suppose we are
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shape
Fasee PoA g _gon
shapeg shape.
sta
Jm,/ Nm«
sty ste
op
ext

extyl L ety

To compute the pushout, we first compute the corre-
sponding pushout of specs and the pullback of shapes.

spec

shape 4

specy spece

bepac

specp

Sanase

shape

shapep

op

It is easy to see that M : Spec™ — Cat maps the

shape,.

fo specy Gepec
— specc
spec,
sta(t) |
wafl : ste (4)
stad 4(f) Lstn (1)
stad i) stade: (j)
stadp (k)

Since shapep, is the pullback of fape and gspape, the
node k corresponds to a pair (,j) of the nodes from
shapey and shape,., identified in shape, as the node
€ = fenape(i) = Gsnape(d). Of course, i = senype(k) and
J = tehape(k).

This construction gives the node part stadp of
sty : shape;, — ext}}, as well as the components of
Sstag and feae. The arrow part stepy, is induced by the
fact that the bottom of the cube is a pushout, using the
naturality of fsaq and geag. This also yields the natu-
rality of sgaq and tg,¢. Finally we construct the guards
for the edges of shapep,. Given an edge w: k — k' of
shape, define
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Category of specifications
» objects: specifications
» morphisms: processes / interpretations
» colimits: composite specifications

» limits: composite processes
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Answer 2

Categories are good for working computer scientists:

» concrete abstract nonsense
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Categories are good for working computer scientists:

» concrete abstract nonsense

» variants:
general concrete nonsense,
particular abstract nonsense. . .
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Are working computer scientists good for categories?
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Completions of Categories

Seminar lectures given 1966 in Zorich
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Zurich 1966

It is an open problem whether there exists a sup- and inf-complete
category A'''' with a sup- and inf-dense embedding A - A'''',

in analogy to the Dedekind completion of an ordered set.
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Isbell’s answer

Small Subcategories and Completeness

by
Jonn R. IsBELL

Case Western Reserve University
Cleveland, Ohio

Lambek has asked [7] whether every small category & has a small-com-
plete extension € in which every object is both a limit and a colimit of
objects of #. Such an extension is normal and has all the strong complete-
ness properties (and sharpness). I think they merit study and propose to
call them (small-complete) Lambek extensions. However, our immediate
concern is negative.

3.1. No Lambek extension of the one-object category Z, has finite limits.
Pranf Far anv oronn of call a diaoram @ — .of that is constant an each
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Intuition

Category of specifications

» objects: specifications
» morphisms: transitions / interpretations
» colimits: composite specifications

» limits: composite processes
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Intuition

Category of specifications

» objects: specifications
» morphisms: transitions / interpretations
» colimits: composite specifications

» limits: composite processes

Bicompletion

» adjoins all derivable concepts

» preserving all specified concepts
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Categorical mystery

We cannot conservatively extend

» all specified concepts by

» all derivable concepts

in a category.
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Bicompletion of matrices

Cocomplete specifications, complete processes

§ eV Y9

of the matrix S° x P i) %

Concepts in time

D. Pavlovic
How | met
Samson
Question 2

Claim



Remark

A category C is a square matrix

C°xC — ¥V

(a b)

— C(ab)
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What do we know about bicompletions

[S,—, ><)

| (v.—.9) || Vv-catbicompl. |  V-matrix bicompl.
(10 <1),<,A) || Dedekind-MacNeille | Formal Concept Analysis
([0 <1].<x) ICFCA 2012
([0 < ].2,4) Samson 60
( 29272

Isbell: may not exist |
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Concrete abstract nonsense

Consider (N, —, ®)-enriched categories where

INI
N(m,n)
men

{n:{0,1,...,n—1}}

men

{0,1,...,.mxn-1}
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Concrete abstract nonsense
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Concrete abstract nonsense

Latent Semantic Analysis in Categories

» Spectral Decomposition of RL and LR

» Singular Value Decomposition of ¢
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Claim

Categories are good for friendship.
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